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ABSTRACT
Genomics is an extremely complex domain, in terms of concepts,
their relations, and their representations in data. This tutorial in-
troduces the use of ER models in the context of genomic systems:
conceptual models are of great help for simplifying this domain
and making it actionable. We carry out a review of successful
models presented in the literature for representing biologically-
relevant entities and grounding them in databases. We draw a
difference between conceptual models that aim to explain the
domain and conceptual models that aim to support database de-
sign and heterogeneous data integration. Genomic experiments
and/or sequences are described by several metadata, specify-
ing information on the sampled organism, the used technology,
and the organizational process behind the experiment. Instead,
we call data the actual regions of the genome that have been
read by sequencing technologies and encoded into a machine-
readable representation. First, we show how data and metadata
can be modeled, then we exploit the proposed models for de-
signing search systems, visualizers, and analysis environments.
Both domains of human genomics and viral genomics are ad-
dressed, surveying several use cases and applications of broader
public interest. The tutorial is relevant to the EDBT community
because it demonstrates the usefulness of conceptual models’
principles within very current domains; in addition, it offers a
concrete example of conceptual models’ use, setting the premises
for interdisciplinary collaboration with a greater public (possibly
including life science researchers).

1 INTRODUCTION
Genomics has to date become a big data generation domain [42].
Since 2008 the costs to sequence a single human genome have
experienced a significant drop [33]; consequently, a growing num-
ber of experimental samples has been deposited in public archives.
Unfortunately, this has not been matched by contextual data cura-
tion and integration. Especially, models in the domain are overly
complex and do not allow practical use or guidance for database
design. Moreover, experiments descriptions are very heteroge-
neous and lack standards, while semantic integration can only
be achieved by cumbersome linking to specialized ontologies [3].
The recent COVID-19 pandemic has brought general attention
also to genomics of infectious diseases and microbial research,
including viral typing. Laboratories around the world started
sequencing samples extracted from patients with COVID-19, har-
boring SARS-CoV-2 viral bio-material, leading to the collection
of several million sequences [31].

Conceptual models can bring useful support in this context,
especially by providing a shared clarification of this domain that
drives data integration solutions [4, 6]. These, in turn, allow for
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building data management systems, which empower effective
search over the genome.

This tutorial carries out a review of classic successful models
presented in literature for representing biologically-relevant enti-
ties [26, 34, 36, 38] (i.e., explanatory models) and grounding them
on databases [44? ] (i.e., data-design models). We draw a difference
between conceptual models and databases that aim to explain,
unfold and query the domain knowledge and those that are func-
tional to design databases and to heterogeneous data integration
directed to the deployment of analytical and research-oriented
services. Two exemplary and current domains are considered,
with a focus on the need for data-driven approaches: i) human
genomics (including expression of genes, somatic and inherited
mutations) and ii) viral sequence genomics (including the ones
of SARS-CoV-2, the virus responsible for COVID-19).

2 HUMAN GENOMICS
Big genomic datasets are organized as collections of samples.
Samples are the basic unit of information, containing experimen-
tal data that corresponds to a given individual and preparation
(e.g., cell line and antibody used) that first undergoes Next Gen-
eration Sequencing [40] (producing "raw data"), then alignment
and calling processes (producing "processed data"). Each sample
includes DNA segments or regions (possibly the whole genome)
– called region data in the following – and it is associated with
information about the performed experiment, i.e., metadata of
the sample.

We introduce the Genomic Conceptual Model (GCM, [9]), for
describing metadata and high-level properties of regions (see
Figure 1). The schema was built through a top-down method,
by abstraction of important conceptual properties of genomic
sources. The schema is centered on the notion of experimental
item, typically a file containing genomic regions and their proper-
ties, which is analyzed from four points of view: 1) the biological
process observed in the experiment (with the biosample being
sequenced, derived from a tissue or a cell culture) and donor; 2)
the management of the experiment, describing the organization
behind it; 3) the technological process used for the production of
the item; 4) The parameters used for internal organization.

An integration pipeline called META-BASE [5] can be fol-
lowed to build a repository based on the GCM: data are down-
loaded from the original sources (with heterogeneous formats),
transformed into a key-value format with rules or prediction
models [16], and cleaned to reduce redundancy. At the schema
level, sources’ information is mapped within a database based on
the GCM; at the value level, this information is normalized using
biomedical ontologies [3]. The repository can then be queried by
means of GenoSurf [13], which allows searching experimental
data within a database using semantically enriched queries.

Several features and phenomena can be measured on the
genomes of humans (not only mutations); these can be repre-
sented using an interval-based paradigm, resulting in the Ge-
nomic Data Model (GDM) [28], using spatial regions (with a start,
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Figure 1: The Genomic Conceptual Model [9].

a stop, and an arbitrary set of features) to answer complex bio-
logical queries in a data-driven fashion, leveraging big-data and
cloud computing optimizations.

This data-driven paradigm is demonstrated to participants by
the GenoMetric Query Language (GMQL) [29] a formal language
that combines relational algebra and domain-specific operators
to effectively query GDM interval-based data. GMQL is compiled
down to an intermediate representation (IR). Each instance of IR
is a direct acyclic graph, where nodes are atomic operations and
connections represent the flow of the information, which goes
from the input data to the result of the query. The IR is further
split into two sub-graphs: one elaborates the portion of the query
related to the regions and the other manipulates the metadata.
Having an intermediate representation allows to implement clas-
sical relational databases optimizations (e.g., avoiding loading
unused tables, performing selection before the join), while the
peculiarity of the presence of two sub-graphs leads to specialized
optimizations, such as the meta-first [35]. In the meta-first opti-
mization, the nodes of the IR are rearranged in such a way that all
the operations on the metadata are executed before even loading
the region data; this allows to filter the region data (which are
usually much bigger than the corresponding metadata) directly
at the reading stage, thus reducing significantly the consumption
of both memory and execution time. The optimized IR is then
interpreted by an execution engine. The main implementation
uses Apache Spark [27], but other engines based on Apache Flink,
SciDB (an array-based DBMS for data-intensive applications) and
PostgreSQL has been evaluated [17, 18, 23, 25]. One of the most
challenging aspects in the development of GMQL using scalable
engines such as Apache Spark, lies in the implementation of
theta-joins. We demonstrate to participants an effective strategy
based on binning the genome in non-overlapping portions and
assigning each region to each bin it overlaps. The computations
of the join are executed within each bin, and a filtering strategy of
the results avoids the generations of duplicates in the output [12].
The selection of the best binning size is a critical point, as large
bins create fewer duplicates on the input data while smaller ones
lead to a faster intra-bin computation [22].

Similarly, the IR allows reusing the same execution engines
to build new frameworks. We show in particular pyGMQL [32],
a Python wrapper of GMQL with additional perks, including
the ability to convert instances of GDM in Pandas DataFrames
for visualization and statistical analysis. The result can be then
re-converted to GDM and elaborated with GMQL.

The cloud-based implementation has driven the design of
Federated GMQL [15], a large infrastructure based on communi-
cation protocols and federated query execution mechanisms and
policies, to connect multiple geographically separated instances
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Figure 2: The Viral Conceptual Model [7].

of the GMQL system, in order to share data and evaluate queries
in a federated and privacy-performing fashion.

Finally, building upon the repository of big datasets and the
computational engine, another system has been realized to over-
come technological barriers for biologists: GeCoAgent is a con-
versational agent [20] where users may explore and analyze
genomic datasets using a natural language interface that maps
into concepts and actions.

To summarize, through several examples, we demonstrate to
participants how well-designed data models can be leveraged to
develop applications that are both accessible to the final user and
with high performance in terms of execution time and memory
consumption.

3 VIRAL GENOMICS
The COVID-19 pandemic has attracted incredible attention to the
mechanisms of birth, spread, and evolution of viruses. Extensive
sequencing has been performed since January 2020, reaching to-
day about 10 million sequences deposited in open databases [30].

Similarly to what was presented in the human genomics case,
also in this domain, we can adopt a methodology that includes a
modeling phase, analyzing the peculiarity of data and proposing a
conceptual model to unify relevant sources; an integration phase,
in which relevant databases are selected and integrated by means
of pipelines that feed a large repository; and a search phase, when
methods for querying data are built to respond to scientists’
needs.

Following this paradigm, the Viral ConceptualModel (VCM [7],
see Figure 2) has been designed to describe genomic samples’
metadata, their sequencing, their several functional parts, their
mutations (i.e., deviation) with respect to an expected reference,
and the presence of such mutations on parts of the virus that
are critical for vaccine and serological assays design. In this tu-
torial, we focus on the design of this conceptual model, as it
can be exploited to implement highly performing data-intensive
applications. It allows the development of methods and tools to
efficiently answer complex research queries, able to replicate the
scientific results of recent articles, hence demonstrating consid-
erable potential in supporting virology research.

The ViruSurf [14] database has been developed based on the
VCM, fed by a high-performance pipeline of sequence data ex-
traction and processing [2]. Such pipeline extracts information
from data archives where worldwide laboratories deposit SARS-
CoV-2 sequences (namely, GenBank [39], COG-UK [43], and GI-
SAID [41]), applies content curation (including standardizazion,
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cleaning, computation of metrics and variant calling), and data-
base content optimization. On top of this database, a powerful
search system of viral sequences allows building queries us-
ing metadata or mutations patterns as filters. In parallel, the
same database supports Episurf [10], a system to query and ana-
lyze epitopes, which are portions of viruses recognized by the
host immune system and thus fundamental to the development
of vaccines. Both systems feed the VirusViz visualization en-
gine [11], which receives the results of queries and provides
metadata summarization, variant descriptions, and variant visu-
alization. VirusViz offers rich customization and the possibility
of grouping and comparatively analyzing populations of interest
(allowing, for instance, to trace new variants since their starting
dates in a precise location). The system was employed to study
the evolution of SARS-CoV-2 variants only based on their mu-
tational patterns, providing interesting insights about variant
emergence [37, 45]. In a complementary way, ViruClust [19] is
a tool for fine-tuning clusters of sequences, used for fine-grain
surveillance.

The VCM can be further abstracted if one aims to represent
both the data and the external knowledge that is being collected
about SARS-CoV-2, such as notions on variants with: 1) their
effects (in terms of disease severity, transmissibility, vaccine es-
cape, etc.); 2) their composition (in terms of sets of mutations);
3) their characteristic mutations. Mutations are distinct due to
their original and alternative nucleotide or amino acid residues
and their location, e.g., within particular regions of the genome
with given functions [1].

4 JOINT DIRECTIONS
The elements described during the tutorial are part of a broad
vision: availability of conceptual models, related databases, and
search systems for both humans and viruses’ genomics will pro-
vide important opportunities for genomic and clinical research,
especially if the sequences of viruses (or of other pathogens) can
be connected to genotype and phenotype information regarding
its host, i.e., the human organism. In this direction, we show a
unifying model that interlinks a viral genome to the genomic fea-
tures of the human being who has been infected [6]. This vision
has been embraced by the COVID-19 Host Genetics Initiative,
which aims at gathering an open community of thousands of
researchers who produce, share, and analyze data to learn the
genetic determinants of COVID-19 susceptibility, severity, and
outcomes [24].Within this international group, we engaged in the
design, structuring, and harmonization of a comprehensive data
dictionary to help with the submission of individual-level data.
The phenotype refers to severe patients who were hospitalized;
it has about 200 clinical variables that have been progressively
consolidated and annotated, describing demographics, exposure,
risk factors, co-morbidities, hospitalization admission and course,
and longitudinal encounters with symptoms, treatments, and lab
data. The data dictionary [8] can be used to format clinical pheno-
type data that are currently being collected and hosted by EGA,
the European Genome-Phenome Archive of EMBL-EBI [21]. The
initiative already collected a considerable amount of results, cur-
rently reaching 9.4 K critically ill cases, 25 K hospitalized cases,
and 125 K reported cases of SARS-CoV-2 infection with almost
3M controls.

5 LEARNING GOALS
Participants of the tutorial can learn how conceptual models
are used to represent genomic entities and how they can be
employed as a basis for building usable databases and systems.
They learn basic notions of viral and human genomes and how to
pose meaningful queries to a number of different search systems
for genomic research. The gap between a very complex topic and
its understanding is reduced by means of a conceptual modeling
approach. The proposed paradigmmay be adapted to other highly
specialized domains, both within life sciences and within data
science in the broader sense. The tutorial also provides a series of
practical tasks, ordered by increasing complexity for both human
and viral genomics.

6 TARGET AUDIENCE, PREREQUISITE
KNOWLEDGE

The tutorial targets researchers that are curious about the applica-
tion of conceptual modeling and database theory to the complex
and current domain of genomics. The tutorial aims to explore the
strength of conceptual models’ and databases’ principles within
very practical applied scenarios. Basic knowledge of ER models
syntax is required. No previous knowledge of biology and ge-
nomics is requested, as we cover all the basic ingredients that
are necessary to understand the workflow and the interactive
session’s queries.

7 EARLIER VERSIONS OF THE TUTORIAL
The tutorial has been presented to the International Conference
on Conceptual Modeling in 2021 (https://er2021.org/papers.html),
focused on modeling aspects rather than on their applications
to databases. In this version, we originally provide insights on
the technological challenges brought by genomic (and in general
biological) data that can be addressed practically. Additionally, we
share results of recent database-driven research on SARS-CoV-2
evolution and platforms that support current studies.
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