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Abstract. While exponential growth in public genomic data can af-
ford great insights into biological processes underlying diseases, a lack of
structured metadata often impedes its timely discovery for analysis. In
the Gene Expression Omnibus, for example, descriptions of genomic sam-
ples lack structure, with different terminology (such as “breast cancer”,
“breast tumor”, and “malignant neoplasm of breast”) used to express the
same concept. To remedy this, we learn models to extract salient infor-
mation from this textual metadata. Rather than treating the problem as
classification or named entity recognition, we model it as machine trans-
lation, leveraging state-of-the-art sequence-to-sequence (seq2seq) models
to directly map unstructured input into a structured text format. The
application of such models greatly simplifies training and allows for im-
putation of output fields that are implied but never explicitly mentioned
in the input text.
We experiment with two types of seq2seq models: an LSTM with at-
tention and a transformer (in particular GPT-2), noting that the latter
outperforms both the former and also a multi-label classification ap-
proach based on a similar transformer architecture (RoBERTa). The
GPT-2 model showed a surprising ability to predict attributes with a
large set of possible values, often inferring the correct value for unmen-
tioned attributes. The models were evaluated in both homogeneous and
heterogenous training/testing environments, indicating the efficacy of
the transformer-based seq2seq approach for real data integration appli-
cations.

Keywords: genomics · high-throughput sequencing · metadata integra-
tion · deep learning · translation models · natural language processing

1 Introduction

Technologies for DNA sequencing have made incredible steps in the last decade,
producing rapidly expanding quantities of various types of genomic data with
ever lower costs1 and faster production times. Biologists and bioinformaticians
1 Companies currently offer complete genome sequencing for under 600USD (e.g.

https://www.veritasgenetics.com/myGenome) with costs expected to fall.
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Fig. 1. GenoSurf, a metadata driven
search interface for genomic datasets

Fig. 2. Growth over time of # samples
available in the GEO database

need access to such datasets for their everyday work, and open data is available
through various platforms. Unfortunately, each platform enforces its own data
model and formats, and this heterogeneity can hinder data analysis. There is
need to integrate resources [4] to prevent scientists from missing relevant data
or wasting time on data preparation. Metadata-driven search engines such as
GenoSurf [7] attempt to do this by allowing users to search for genomic samples
with given characteristics using a structured interface (see Fig. 1). GenoSurf
integrates metadata schemas from important genomic sources (ENCODE [8],
TCGA [31], 1000 Genomes [27], and Roadmap Epigenomics [18]), but misses
samples from the largest public genomic repository, the Gene Expression Om-
nibus (GEO) [2].

The data in GEO is of fundamental importance to the scientific community
for understanding various biological processes, including species divergence, pro-
tein evolution and complex disease. The number of samples in the database is
growing exponentially (see Fig. 2), and while tools for retrieving information
from GEO datasets exist2, large-scale analysis is complicated due to heterogene-
ity in the data processing across studies and most importantly in the metadata
describing each experiment. When submitting data to the GEO repository, sci-
entists enter experiment descriptions in a spreadsheet (see Fig. 3) where they
can provide unstructured information and create arbitrary fields that need not
adhere to any predefined dictionary. The validity of the metadata is not checked
at any point during the upload process3, thus the metadata associated with
gene expression data, usually does not match with standard class/relation iden-
tifiers from specialized biomedical ontologies. The resulting free-text experiment
descriptions suffer from redundancy, inconsistency, and incompleteness [32].
2 NCBI E-utilities [17] provide a federated search engine supporting information on ex-

perimental protocols, but lack functionality regarding characteristics of the sample,
such as species of origin, age, gender, tissue, mutations, disease state, etc.

3 Information regarding the submission of high-throughput sequences is provided at
https://www.ncbi.nlm.nih.gov/geo/info/seq.html.
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Fig. 3. Spreadsheet for describing data
when submitting dataset to GEO

Tech
nolo

gy
 vi

ew

(1,1)

(1,1)

(0,N)

(0,N)

Technique

Platform

ProgramName

ProjectId

ExpTypeId

ProjectName

Target
Antibody

Feature

Project

Experiment
Type

Biological view
Ethnicity

Species

Cell

(1,N)

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

Age

Tissue

BioReplicateNum
TechReplicateNum

SourceId

Gender

DonorId

SourceId

BioSampleId

ReplicateId

IsHealthy

Type

Disease

BioSample

Replicate

Donor

SourceId

M
an

ag
em

en
t v

iew (1,N)
(0,N)

SourceSite

CaseId

SourceId
Case

ItemId
SourceId
Size

Pipeline
SourceUri

ExternalRef

DataType
Format
Name

Assembly
IsAnn

ContentType

(1,1)

(0,N)

Extraction view
DatasetId

Dataset

Item

LastUpdateChecksum

LocalUri

Fig. 4. Genomic Conceptual Model

In this paper, we develop automated machine learning methods for extracting
structured information from the heterogeneous GEO metadata. Our aim is to
populate a structured database with attributes according to the Genomic Con-
ceptual Model (GCM) [5], which recognizes a limited set of concepts4 (shown
in Fig. 4), that are supported by most genomic data sources. GCM provides a
common language for genomic dataset integration pipelines (see META-BASE
framework [3]), fuelling user search-interfaces such as GenoSurf.

The main contributions of this paper are the following:

1) We provide a novel formulation of the metadata integration problem as a
machine translation (MT) problem, which has a number of benefits over
both a named-entity recognition (NER) based approach (since there is no
requirement for annotating input training sequences), and over a multi-label
classification based approach (since the same model architecture can be used
regardless of the target attributes to be extracted).

2) We provide experimental evidence demonstrating the effectiveness of the
transformer-based translation models over simpler attention based seq2seq
models and over the classification based approach using a similar transformer
architecture. Experiments are performed in both homogeneous and heteroge-
nous training/testing environments, indicating the ability of the seq2seq
model to impute values often unobserved in the input, and the efficacy of
the approach for real data integration applications.

In the next section we discuss related work on integration for genomics re-
sources. In Section 3, we overview the multi-label classification and the translation-
based approaches studied for the proposed problem. In Section 4, we describe
4 The data model centers on the item of experimental data, with views describing

biological elements, technology used, management aspects, and extraction parameters.
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the experiments, including the used datasets, the setup configuration and results.
Section 5 concludes the paper.

2 Related Work

There is a compelling need to structure information in large biological datasets
so that metadata describing experiments is available in a standard format and
is ready for use in large-scale analysis [16]. In recent years, several strategies
for annotating and curating GEO database metadata have been developed (see
Wang et al. [29] for a survey). We group the approaches into five non-exclusive
categories: 1) manual curation, 2) regular expressions, 3) text classification,
4) named-entity recognition, and 5) imputation from gene expression.

Manual curation: Structured methods for authoring and curating metadata
have been promoted by numerous authors [14, 24, 20]. Moreover, a number of
biological metadata repositories (e.g. RNASeqMetaDB [13], SFMetaDB [19] and
CREEDS [30]) manually annotate their datasets, guaranteeing high accuracy.
This option is however, highy time-consuming and hardly practicable as the
volume and diversity of biological data grows.

Regular expressions: The use of regular expressions for extracting struc-
tured metadata fields from unstructured text is common [12]. This simple tech-
nique is limited, however, to matching patterns that are: expressible, yet iden-
tifiers for biological entities often do not follow any particular pattern (e.g.,
IMR90, HeLa-S3, GM19130); explicit, i.e. matching the cell line K562 cannot
produce the implied sex, age, or disease information5; and unique, i.e. it cannot
discern between multiple string matches in the same document.

Text classification: Machine learning techniques can be used to predict
the value of metadata fields based on unstructured input text. Posch et al. [25]
proposed a framework for predicting structured metadata from unstructured
text using tf-idf and topics modeling based features. The limitations of the clas-
sification approach include that a separate model needs to be trained for each
attribute to extract and that values of the attribute need to be known in advance.

Named-entity recognition: NER models are often used to extract knowl-
edge from free text data including medical literature. They work by identifying
spans within an input text that mention named entities, and then assigning these
spans into predefined categories (such as Cell Line, Tissue, Sex, etc.). By learning
their parameters and making use of the entire input sentence as context, these
systems overcome the limitations of simple regular expression based approaches.
In particular, certain works [11, 16] have employed NER to to map free textual
description into existing concepts from curated specialized ontologies that are
well-accepted by the biomedical community [6] to improve the integrated use of
heterogeneous datasets. In practice, training NER models can be difficult, since
the training sequences must be labelled on an individual word level. This is espe-
cially time consuming in the genomics domain, where biomedical fields require
5 K562 is a widely known cell line originally extracted from tissue belonging to a 53

year-old woman affected by myeloid leukemia.
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specific and technical labels. Moreover, there is no way to make use of publicly
available curated datasets that overlap with GEO to synthesize training data,
since the information they contain applies to the entire GEO sample as a whole.
A further drawback of NER methods, is that they can produce false positives
with high frequency, due to misleading information in samples’ descriptions (e.g.,
presence of pathologies in the family of an healthy patient).

Imputation from gene expression: The automated label extraction (ALE)
platform [12], trains ML models based on high-quality annotated gene expres-
sion profiles (leveraging on text-extraction approaches based on regular expres-
sion and string matching). However, the information is limited to a small set of
patient’s characteristics (i.e., gender, age, tissues). Authors in [10] also predict
sample labels using gene expression data; a model is built and evaluated for
both biological phenotypes (sex, tissue, sample source) and experimental condi-
tions (sequencing strategy). The approach is applied on repositories alternative
to GEO (i.e., training from TCGA samples, testing on GTEx [22] and SRA).

Each of the aforementioned approaches to genomic metadata extraction have
their limitations. As we will discuss in the next section, many (or all) of these
limitations can be overcome by making use of a translation (a.k.a. sequence-
to-sequence) modeling approach. To the best of our knowledge, no previous
work has applied this approach to the problem of automating the integration of
experiment metadata before.

3 Approaches

We now discuss two different approaches that we applied to the metadata extrac-
tion problem. Both leverage recent advances in Deep Learning for text analysis.
The first approach builds a multi-label classifier to predict metadata attribute
values using a deep embedding, and will serve as our baseline for later experi-
ments. The second makes use of a novel translation-based approach where pow-
erful sequence-to-sequence models are leveraged to solve the metadata extraction
problem in a more elegant and extensible fashion.

3.1 Multi-label Classification Approach

To model the metadata extraction problem using a classification approach, we
can simply turn the attribute-value prediction problem into a multi-label classi-
fication problem, by treating each possible value for each attribute as a separate
class to be predicted. An alternative would be to model the task as a multi-task
multi-class classification problem, where each attribute is associated with its own
softmax function (thereby constraining that each attribute must appear in the
output and must take on a single – possibly unknown – value). For simplicity and
extensibility purposes we choose instead to model the task as a single multi-label
classification problem where each attribute-value is associated with its own sig-
moid function. We then use a post-processing to select the most likely attribute
value for each attribute. We note that the classification approach requires that
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…

INPUT

Donor.species:

Homo Sapiens

Biosample.type:

cell line

Biosample.cell:

Peripheral blood 

mononuclear cells

Biosample.disease:

Mycobacterium 

tuberculosis

Dataset.assembly: 

hg19

ExperimentType.technique:

Chip-Seq

ExperimentType.feature:

histone mark

ExperimentType.target: 

H3K9me3

GCM SCHEMA OUTPUT

…

Fig. 5. Example mapping task: from GEO sample GSM1565792 input text, into GCM
attributes, to finally produce output key-value pairs

each attribute have a finite set of values and each value must be known at train-
ing time. It is most suitable for extracting attributes with a relatively small
number of possible values, and does not accommodate the situation where an
attribute needs to take on multiple values at once (e.g. because a single GEO
sample contains data for multiple cell lines).

RoBERTa: To build an embedding from the input text that can provide the
feature space for the classifier, we make use of RoBERTa [21], a variation on the
BERT [9] language model. These self-attention based transformer models [28]
have recently shown state-of-the-art performance for all kinds of text classifica-
tion tasks owing to the pre-training of the language model in an unsupervised
fashion on large text corpora. To build the multi-label classifier, a dense feed-
forward layer is place on top of the transformer stack. The last layer presents
a number of neurons equal to the total number of attribute-values, (the target
attributes are one-hot-encoded for the multi-label model).

3.2 Translation-based Approach

We treat the problem of extracting metadata from unstructured text as a trans-
lation task, where instead of translating input text into another language, we
translate it into a well structured list of extracted attributes. By approaching the
problem in this fashion, many strengths of translation models can be exploited:
i) translation models do not expect translated text to follow string patterns;
ii) translation models do not use a lookup approach (i.e., they can disambiguate
correctly input words whenever the text contains multiple possible choices for
a certain concept); iii) translation models do not expect a fixed number of out-
put values; iv) translation models can extract hidden information from the text
context.

Input and output formats: Each training sample is composed of input-
output pairs, where input corresponds to the textual description of a biological
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Table 1. Size of Encoder
and Decoder networks

Network Layer Size
Encoder Embedding 256

LSTM 512
Decoder Embedding 256

LSTM 512
Tan h 512
Dense Vocab size Fig. 6. Encoder-Decoder structure with attention

mechanism

sample and output is a list of attribute-value pairs. Fig. 5 shows an example
translation task: on the left, a metadata record from GEO repository describing
a human biological sample, in the middle the target schema, and on the right the
resulting output pairs. The text output produced by the translation model should
be human and machine readable, so we used a dash-separated list of “key: value”
pairs, Cell Line: HeLa-s3 - Cell Type: Epithelium - Tissue: Cervix.

We now discuss the Encoder-Decoder LSTM and OpenAI GPT-2 architec-
tures employed as translation models in our experiments.

Encoder-Decoder LSTM: This model is composed of two LSTM networks,
an encoder and a decoder, and exploits a Luong attention [23] mechanism. The
encoder is composed of an embedding layer plus an LSTM layer, which provides
hidden states to feed the attention mechanism for the decoding phase. The de-
coder is composed of an embedding layer, an LSTM layer and 2 dense layers
as shown in Fig. 6. We report the number of neurons of each layer of the en-
coder and decoder network in Table 1. The size of the dense layer depends on
the vocabulary size (and is thus determined by the tokenizer). The two dense
layers are needed for the attention mechanism: The output of the LSTM layer
is concatenated with the context vector, thus doubling the size of the vectors
coming from the LSTM layer. The first dense layer re-shapes the LSTM output
to the same size as the LSTM, while the second maps the output of the first
dense layer to the size of the vocabulary. The vocabulary token with the highest
probability is then predicted for each time step.

The embedding layer of the Encoder is fed with a tokenized version of the
input text and is executed once for each sample (batch of items). The decoding
phase takes place iteratively, thus the output is generated token-by-token. At
each i time step (corresponds to a single token), the embedding layer of the
decoder is fed with a tokenized version of the output text starting from the start
token (<start>) reaching the i-th token. The decoder is trained to generate
the i+1 -th token until the entire sequence has been generated, producing a
termination token (<end>). The decoder exploits the attention mechanism, as
shown in Fig. 6.

The training of LSTM model is performed by learning conditioned proba-
bilities of the next token over the entire vocabulary, given the (embedding for
the) current input token, the previous state and the sequence up to that point
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(exploiting the attention mechanism). Each token is a tensor that represents a
one-hot-encoding over the entire vocabulary.

To evaluate LSTM performance, we generated the output sequences for the
input strings in the test set as follows: the model encodes each input sequence, the
decoder generates the predicted probabilities over the entire vocabulary given
the input and the < start > token. The most probable output token is then
selected and concatenated to the input sequence after the < start > token.
After that point, the decoder generates a prediction given the input and the
generated sequence; the procedure goes on iteratively until the termination token
(< end >) is generated. In the unlikely case of a generation process that does
not end (because the termination character is never generated), production is
stopped when the output sequence reaches the maximum output length in the
training set.

OpenAI GPT-2 is a more powerful sequence-to-sequence pre-trained lan-
guage model [26], whose structure is based on Transformer Decoders [28]. Text
generation is done in a similar fashion as encoder-decoder, i.e., a generation
token-by-token. Differently from LSTM models, the text generation phase is not
preceded by an encoding phase. This means that the model is not trained on
input-output pairs; instead, it is trained on single sequences. Thus, we prepared
sentences composed of both input and output, separated with the “=” charac-
ter and terminated by ‘$’ (e.g., [Input sentence] = Cell line: HeLa-S3 -
Cell Type: Epithelium - Tissue Type: Cervix - Factor: DNase $).

GPT-2 training is performed by learning conditioned probabilities of the next
token over the entire vocabulary, given only the sequence of previous tokens. As
with the LSTM, each token is a tensor that represents a one-hot-encoding over
the entire vocabulary. To evaluate GPT-2 performance, we generated the output
sequences for the input strings in the test set employing a similar approach as
with the Encoder-Decoder LSTM model. GPT-2 outputs the probabilities over
the entire vocabulary for a given input sequence which terminates with ”=”.
The output token with the highest probability is then concatenated to the input
sequence. The model then outputs the probabilities given the new input sequence
(which is composed of the input sequence used at previous step concatenated
to the generated token); the process goes on until the termination token ($) is
generated.

In both described translation models, after the entire sequence is generated,
the tokenized output sequence is decoded back to text.

4 Experiments

Our experiments aim to evaluate and compare results of two seq2seq models: a
simple Encoder-Decoder model using a Long Short-Term Memory (LSTM) layer
with Luong attention [23], and the OpenAI Generative Pretrained Transformer
2 (GPT-2) Language Model [26], which makes use of transformer decoder cells
and has been proved to perform very well in NLP tasks, in particular in those
regarding text generation. As our baseline, we used the RoBERTa multi-label
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Table 2. Cistrome attributes: per-
centage of ‘None’ and count of dis-
tinct values

Attributes %‘None’ #distinct values
Cell line 52 519
Cell type 19 152
Tissue type 29 82
Factor 0 1252

Table 3. ENCODE attributes: percentage
of ‘None’ and count of distinct values

Attributes %‘None’ #distinct values
Age 1 169
Age units 32 6
Assay Name 0 26
Assay type 0 9
Biosample term name 0 9
Classification 1 6
Ethnicity 74 15
Genome assembly 16 11
Health status 53 65
Investigated as 48 22
Life stage 1 17
Organism 1 5
Project 0 3
Sex 1 10
Target of assay 48 344

classification model [21]. In the following, we first describe the data that we use
in the experiments, we then detail the experiment setup and finally report on
the obtained results. The code used in the experiments is publicly available6.

4.1 Datasets: GEO, Cistrome and ENCODE

We make use of data from GEO, Cistrome and ENCODE for our experiments.
GEO: Input text descriptions are taken from the GEOmetadb database [34].

We extracted the Title, Characteristics ch1, and Description fields, which in-
clude information about the biological sample from the gsm table. We format
the input by alternating a field name with its content and separating each pair
with the dash “-” character, e.g., Title: [...] - Characteristics: [...] -
Description: [...]. In this way, we allow the model to learn possible informa-
tion patterns, for example, information regarding “Cell Line” is often included
in the “Title” section. We pre-processed the input text by replacing special char-
acters (i.e., !@#$&̂*[]?\—‘˜ +”) with spaces and by removing “\n” and “\t”.

Cistrome: The Cistrome Data Browser [33] provides a collection of publicly
available data derived from the GEO Database. More specifically, it contains
ChIP-seq and chromatin accessibility experiments, two techniques used to ana-
lyze protein interactions with DNA and physically accessible DNA areas, respec-
tively. Importantly, the samples in Cistrome have been manually curated and
annotated with the cell line, cell type, tissue type, and factor name. We down-
loaded in total 44,843 metadata entries from Cistrome Data Browser7 with the
four mentioned attributes. As indicated in Table 2, three of the fields contain
many “None” values, but these should not be interpreted as missing, since they
actually indicate that the specific sample does not carry that kind of information.

ENCODE: The Encyclopedia of DNA Elements [8] is a public genomic
repository of datasets related to functional DNA sequences and to the regula-
6 https://github.com/DEIB-GECO/GEO-metadata-translator
7 http://cistrome.org/db/\#/bdown
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Table 4. Setup of the three different models for each experiment (BPE = Byte Pair
Encoding; LR = learning rate)

Model Batch size Loss function Tokenizer Optimizer LR beta 1 beta 2 epsilon
RoBERTa 10 Cross Entropy BPE Adam 2e-4 0.9 0.999 1e-6
LSTM 64 Sparse Cross Entropy keras Adam 1e-3 0.9 0.999 1e-7
GPT-2 5 Cross Entropy BPE Adam 1e-3 0.9 0.999 1e-6

tory elements that control gene expression. The ENCODE Consortium exploited
manual curation to collect and organize metadata for the DNA sequences [15],
making the repository one of the most complete and accurate genomic archives
from the point of view of data description. We downloaded 16,732 metadata
entries from ENCODE web portal8, by requesting the fields listed in Table 3
for each experiment sample. The free text input related to each sample, was re-
trieved by either: (i) exploiting a reference to the GEO GSM (only available for
6,233 entries) or (ii) by concatenating the additional ENCODE fields Summary,
Description and Biosample Description.

4.2 Experimental Setup

We designed three experiments to validate our proposal. Experiment 1 and 2
allow to compare performances of the three analyzed models on two different
datasets: Cistrome (with input from GEO) and ENCODE (with input both
from GEO and ENCODE itself). Experiment 3, instead, tested the performance
of the best proposed model on randomly chosen instances from GEO.

The Transformer library from HuggingFace9 was used for the GPT-2 model,
while the SimpleTransformers library10 was used for the RoBERTa model. The
LSTM encoder-decoder was built with Tensorflow [1] version 2.1 using the Keras
API. For the LSTM model, we performed the tokenization process using the
default Keras tokenizer, setting the API parameters to convert all characters
into lower case, using empty space as a word separator, and disabling character-
level tokenization. We added a space before and after the following characters:
opening/closing parenthesis, dashes, and underscores11. We also removed equal
signs. For the LSTM models, the resulting vocabulary had a size of 36,107 for
Experiment 1 and 17,880 for Experiment 2.

RoBERTa and GPT-2 were trained using a Tesla P100-PCIE-16GB GPU,
while the LSTM model was trained on Google Colaboratory12 with GPU accel-
erator. Table 4 lists the configurations for the systems. All models were subject
to early stopping method to avoid over-fitting.

8 https://www.encodeproject.org/
9 https://github.com/huggingface/transformers

10 https://github.com/ThilinaRajapakse/simpletransformers
11 Pre-processing was motivated by the fact that important character ngrams often

appear in sequences separated by special characters, e.g., “RH RRE2 14028”.
12 https://colab.research.google.com/
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Fig. 7. Experiment 1: per-class accuracy for the three models on Cistrome data.

Table 5. Experiment 1: overall accuracy, precision, and recall. Precision and recall are
weighted by the number of occurrences of each attribute value.

Model # Epochs Accuracy Precision Recall
RoBERTa 69 0.90 0.89 0.91
LSTM + Attention 15 0.62 0.65 0.62
GPT-2 47 0.93 0.93 0.93

For Experiment 1 and 2, data was split into training set (80%), validation
set (10%) and test set (10%). Some text cleaning and padding processes were
adopted: Encoder-Decoder requires input-output pairs that are padded to the
maximum length of concatenation of input and output; GPT-2 requires single
sentences that are padded to a maximum length of 500 characters. We excluded
sentences exceeding the maximum length.

4.3 Experiments 1 and 2

We evaluated the performances of LSTM (with attention mechanism) and GPT-
2 seq2seq models against RoBERTa, using samples from Cistrome (Experiment
1) and samples from ENCODE (Experiment 2).

In both experiments, overall GPT-2 outperforms both Encoder-Decoder LSTM
and RoBERTa, as it can be observed in Tables 5-6. Results divided by class are
shown in in Fig. 7 for Experiment 1 and in Fig. 8 for Experiment 2.

Experiment 1 considerations. From Fig. 7, RoBERTa seems to perform
better for classes that contain a low number of distinct values, i.e. cell type
and tissue type (which contain 380 and 249 possible values). Instead, for cell line
and factor (both with more than a thousand possible values) GPT-2 outperforms
RoBERTa. The number of “None” values is taken into consideration (Table 2),
the classes cell line, cell type and tissue type present a relevant percentage of
“None”, the weighted precision and recall analysis, however, shows high scores,
despite the unbalance of values count; this implies that the models were able to
correctly classify samples which lack of labels for certain classes.

Experiment 2 considerations. From Fig. 8, we appreciate a similar be-
haviour as in Experiment 1, i.e., translation models perform better for attributes
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Fig. 8. Experiment 2: per-class accuracy of the three models on ENCODE data.

Table 6. Experiment 2: overall accuracy, precision, and recall. Precision and recall are
weighted by the number of occurrences of each attribute value.

Model # Epochs Accuracy Precision Recall
RoBERTa 71 0.90 0.89 0.90
LSTM + Attention 22 0.19 0.19 0.19
GPT-2 48 0.96 0.96 0.96

with larger amount of distinct values. The attributes target of assay and biosam-
ple term name present the highest number of distinct values and GPT-2 far ex-
ceeded RoBERTa in terms of accuracy. Instead, this experiment highlights how
the LSTM model with attention does not perform well for a larger amount of
target attributes, at least with the tested model size. The labels health status and
ethnicity presented several “None” values (74% and 53%), but both RoBERTa
and GPT-2 were able to predict correctly almost the totality of samples, pro-
ducing results with high weighted precision and weighted recall.

Previous works aimed to extract a restricted set of labels (such as age and
sex) with unsatisfactory results; they often limited the target age unit to “years”
or “months” and the target sex to only “Male” and “Female”. A lot of different
scenarios for the input text made it impossible – for previous work – to extract
correctly the target attributes (for example cases for which the information needs
to be inferred, or when the experiment presents multiple cells, consequently
multiple ages and multiple sex). This experiment shows that a our proposed
translation approach can outperform state-of-the-art approaches, additionally
handling a different number of non-standard cases.
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Table 7. Experiment 3: Results of prediction of 200 manually labelled samples for
ENCODE class biosample term name.

Condition Accuracy Precision Recall
Label present in the input 0.83 0.70 0.68
Label absent from the input 0.062 0.038 0.038

4.4 Experiment 3: Randomly Chosen GEO Instances

In this experiment we study the behaviour of GPT-2 on a realistic scenario
involving randomly chosen samples from GEO. These samples were not selected
based on presence in a database (Cistrome or ENCODE) and thus provide a
realistic test scenario for the proposed use-case of the system. No reference labels
are available for the randomly selected set of 200 input descriptions, so each
instance was manually checked to provide ground-truth labels. The system was
trained using both the Cistrome and ENCODE datasets (10 epochs of training
on the former followed by 17 epochs of training on the latter). We note the
heterogeneity between the training and test examples for this experiment.

Table 7 reports performance for one exemplar class, the biosample term name,
which defines the tissue or cell line analyzed in the experimental sample. In
order to understand the ability of the system to impute values even when the
desired output label is not explicitly present in the input, the evaluation metrics
(accuracy, precision, and recall) are computed under two different conditions:
the true label is present in and absent from the input. Biosample term name
class contains a large number of heterogeneous values: some are only represented
by acronyms, e.g., “HeLaS3” that is a cell line; others are more verbose, e.g.,
“Peripheral blood mononuclear cells”; others indicate tissues of provenance, e.g.,
“synovial membrane”. Accuracy, precision and recall are very promising when
the model is able to exploit the information contained in the input text (i.e.,
condition “label present in the input”), while they are low in the opposite case;
the model still correctly predicts information that is not contained in the input,
in some few cases.

In addition to performance on the biosample term name attribute, we noted
interesting findings regarding the other classes (examples of input and output
shown in Table 8). In particular we found cases in which the output contains a
label that is:

1. unseen in training data, e.g., no sample contained target of assay: MYC-1.
2. absent from input description, e.g., for the input “HNRNPK ChIP-seq in

K562 K562 HNRNPK ChIP-seq in K562” the output correctly contained:
Organism: Homo sapiens - Age: 53 - Age units: year - Sex: female - Health
status: chronic myelogenous leukemia (CML), etc.

3. multi-valued: e.g., a particular GEO record contained samples from both
male and female donors13, and the output correctly noted both genders:
“Sex: male,female ...”.

13 The input in this case was: microRNA profile of case NPC362656 survival status
(1-death,0-survival): 0; gender (1-male,2-female): 1; age (years): 56; ...



14 G. Cannizzaro et al.

Table 8. Examples of GPT-2 translations of randomly selected GEO descriptions

Input Sentence Output Sentence
DNase-seq on 91 day old male fetal human
kidney tissue left kidney female embryo (59
days) and male embryo (91 day)

Assay name: DNase-seq - Assay type: DNA acces-
sibility - Target of assay: None - Genome assem-
bly: GRCh38 - Biosample term name: left kidney -
Project: ENCODE - Organism: Homo sapiens - Life
stage: embryonic - Age: 91,59 - Age units: day - Sex:
male,female - Ethnicity: None - Health status: None
- Classification: tissue - Investigated as: None

RNA Bind-n-Seq (RBNS) pulldown experi-
ment against PUM1

Assay name: RNA Bind-n-Seq - Assay type: RNA
binding - Target of assay: PUM1 - Genome assem-
bly: hg19 - Biosample term name: cell-free sample
- Project: ENCODE - Organism: None - Life stage:
None - Age: None - Age units: None - Sex: None -
Ethnicity: None - Health status: None - Classification:
None - Investigated as: RNA binding protein

ChIP-seq against eGFP-efl-1 in L1 larva
worms. strain YL418 (unc-119(ed3)III; vrIs65
[ pGES-1::EFL-1::GFP FLAG:EFL-1 3’UTR,
unc-119 (+) ] ) whole organism L1 larva ge-
netically modified using bombardment

Assay name: ChIP-seq - Assay type: DNA binding -
Target of assay: efl-1 - Genome assembly: ce11,ce10
- Biosample term name: whole organism - Project:
modENCODE - Organism: Caenorhabditis elegans -
Life stage: L1 larva - Age: unknown - Age units: None
- Sex: mixed - Ethnicity: None - Health status: None -
Classification: whole organisms - Investigated as: co-
factor,transcription factor

datatype: DnaseSeq; datatype descrip-
tion: DNaseI HS Sequencing; labver-
sion: baseAlignCounts.pl v 1,fseq v 1.84,
iff generic male,p-value cutoff: 0.05; repli-
cate: 1,2; cell: Colo829; cell organism: human;
cell description: malignant melanoma; cell
karyotype: cancer; cell sex: M; labversion:
baseAlignCounts.pl v 1 Duke human Colo829
DNase-seq COLO829 malignant melanoma

Assay name: DNase-seq - Assay type: DNA accessi-
bility - Target of assay: None - Genome assembly:
GRCh38,hg19 - Biosample term name: COLO829 -
Project: ENCODE - Organism: Homo sapiens - Life
stage: adult - Age: 45 - Age units: year - Sex: male
- Ethnicity: Caucasian - Health status: metastatic
melanoma - Classification: cell line - Investigated as:
None

4. reordered with respect to the input, e.g., an input containing “Tfh2 3 cell
type: Tfh2 CD4+ T cell; ...” correctly produced the output “Biosample term
name: CD4-positive Tfh2 ”.

5 Conclusions and Future Work

In this paper we targeted the problem of extracting useful metadata from free-
text descriptions of genomic data samples. Rather than treating the problem
as classification or named entity recognition, we model it as machine trans-
lation, leveraging state-of-the-art sequence-to-sequence (seq2seq) models to di-
rectly map unstructured input into a structured text format. The application of
such models greatly simplifies training and allows for imputation of output fields
that are implied but never explicitly mentioned in the input text.

We experimented with two types of seq2seq models: an LSTM with attention
and GPT-2 (a transformer based language model). We compared the seq2seq
models with a multi-label classification based approach using the RoBERTa
transformer-based embedding. The GPT-2 model outperforms both the LSTM
and the classifier. It demonstrated the ability to predict high-arity attributes
and to infer the correct value even for attributes that were not explicitly men-
tioned in (but were implied by0 the input text. The models were evaluated in
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both homogeneous and heterogenous training/testing environments, indicating
the efficacy of the transformer-based seq2seq approach for real data integration
applications.

A goal for future work is to apply the technique to other genomic and biomed-
ical databases, and to develop a crowdsourcing-based online training framework
that can allow us to scale up performance for a production system.
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