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Abstract
Background  Clinicians are interested in better understanding complex diseases, such as cancer or rare diseases, 
so they need to produce and exchange data to mutualize sources and join forces. To do so and ensure privacy, a 
natural way consists in using a decentralized architecture and Federated Learning algorithms. This ensures that data 
stays in the organization in which it has been collected, but requires data to be collected in similar settings and 
similar models. In practice, this is often not the case because healthcare institutions work individually with different 
representations and raw data; they do not have means to normalize their data, and even less to do so across centers. 
For instance, clinicians have at hand phenotypic, clinical, imaging and genomic data (each individually collected) 
and want to better understand some diseases by analyzing them together. This example highlights the needs and 
challenges for a cooperative use of this wealth of information.

Methods  We designed and implemented a framework, named I-ETL, for integrating highly heterogeneous 
healthcare datasets of hospitals in interoperable databases. Our proposal is twofold: (i) we devise two general and 
extensible conceptual models for modeling both data and metadata and (ii) we propose an Extract-Transform-Load 
(ETL) pipeline ensuring and assessing interoperability from the start.

Results  By conducting experiments on open-source datasets, we show that I-ETL succeeds in representing various 
health datasets in a unified way thanks to our two general conceptual models. Next, we demonstrate the importance 
of blending interoperability as a first-class citizen in integration pipelines, ensuring possible collaboration between 
different centers.

Conclusion  As a framework, I-ETL contributes to integrate and improve interoperability between healthcare 
institutions. When used in a decentralized federated platform, it eases the federated analysis of the different hospital 
databases and helps clinicians to obtain insights and knowledge on medical conditions of interest.
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Background
The overall recent digitization of the healthcare sector has 
led to new opportunities for researchers and clinicians to 
access, integrate, analyze, share, and reuse medical data 
[1]. An example of this is the emergence of self-tracking 
tools, which are source of plenty of healthcare data for 
various profiles of citizens [2]. Plenty of other initiatives 
have been conducted and deployed at different levels, 
from city- and national-, to European- and world-wide 
platforms, and on diverse healthcare major open issues 
(access to healthcare, cancer, genetic rare diseases, etc). 
For instance, the World Health Organization (WHO) 
collects world-wide data in their data hub [3] on vari-
ous healthcare domains, including COVID-19, mortality 
and access to healthcare, and computes yearly reports [4] 
after integrating and analyzing it. Another example is the 
European Union, which heavily invests in rare diseases 
investigation [5] since 2007, notably to develop new tools 
to decipher them, as they remain largely poorly under-
stood. As of today, around 6,000 rare diseases are known 
and 80% of them are of genetic origin, most of which have 
no effective treatment or allow for easy diagnosis. Con-
ducting data-driven research in the context of rare dis-
eases is evidently challenging, as assembling a sufficiently 
large dataset would require aggregating medical and 
genetic data from patients across numerous geographi-
cally distributed clinical institutions; however, current 
regulations, such as the General Data Protection Regula-
tion (GDPR), impede the aggregation of sensitive data in 
a centralized repository. In response to this, the scientific 
community is developing tools and solutions to analyze 
medical and genetic data in a federated and secure man-
ner. These tools do not require the exchange of real data 
but solely aggregate extracted information (e.g., statistics 
or partial models) computed from local datasets. Per-
forming federated analyses allows the study of larger sets 
of patients, potentially with heterogeneous types of data, 
thus obtaining more accurate results and insights.

However, from a data perspective, federated analyses 
require a significant effort in standardization and har-
monization to ensure interoperability among distributed 
datasets. It is clear that manual curation and cleaning are 
not feasible or scalable. Therefore, collaborating hospitals 
crucially need tools to automatically integrate heteroge-
neous and sensitive datasets with interoperability as a 
first-class citizen.

Conceptual models for healthcare data
Several large projects have proposed instruments for 
modeling and enforcing interoperability of distributed 
heterogeneous healthcare datasets, intending to facili-
tate federated analyses. Notably, the EHDEN project [6, 
7] safely integrates hundreds of relational (tabular) data-
sets across Europe to provide clinicians a single endpoint 

where they can select datasets of interest for observa-
tional studies, define protocols and run analyses. For 
unifying the different concepts across tables, they used 
the OMOP [8] (Observational Medical Outcomes Part-
nership) conceptual model as a Common Data Model 
(CDM). Similarly, [9] converts European healthcare data 
to the FHIR [10] data model in order to define Deep 
Learning models for early-diagnosis of children and teen-
agers regarding non-communicable chronic diseases. 
There exist many widely-adopted CDMs with the same 
intent of OMOP and FHIR; the most significant are i2b2 
[11] for precision medicine, GCM [12, 13] for genomic 
data (developed within the GeCo ERC AdG project [14]) 
and the Human Cell Atlas [15] for human cells, but also 
general ones such as openEHR [16], and SMART [17].

To fit the input data into a CDM of choice, it is common 
to rely on an ETL pipeline (Extract-Transform-Load). 
This is a three-step process where data is extracted from 
input sources, transformed/cleaned, and loaded into a 
target data container, usually a database, whose schema is 
the CDM. D-ETL [18] is a dynamic ETL pipeline partially 
automating the process by providing data harmonization 
techniques and simplifying the transformation process. 
In turn, experts specify “ETL structured rules” for map-
ping the actual input data to the CDM. Then, these rules 
are transformed into SQL statements and data is loaded 
into the target database. For the more general FHIR stan-
dard, [19] proposes a 6-step workflow to help healthcare 
scientists to model their data with FHIR entities – this is 
a more conceptual approach of the ETL process.

Metadata for better interoperability
To allow interoperability among datasets situated at dif-
ferent institutions, it is crucial to accurately describe 
each piece of information using unambiguous metadata. 
Metadata is supplementary information that allows the 
assignment of meaning to both the type of data and its 
associated value. While metadata can be of multiple 
forms, in clinical and biomedical settings it is a best 
practice to (re)use existing ontologies that describe data 
concepts. Many specialized ontologies exist, such as 
SNOMED-CT [20] for general-purpose healthcare terms, 
LOINC [21, 22] for clinical measurements, or OrphaNet 
[23] for disease classification. By using ontologies, data 
points can be mapped to unique ontology resources, thus 
enabling interoperability among datasets of interest.

Moreover, metadata are essential to interoperability, 
which is part of the “I” prescription of the FAIR princi-
ples [24], a set of guidelines to make data and its accom-
panying metadata Findable, Accessible, Interoperable, 
and Reusable. In general, FAIR principles encourage IT 
experts to identify their resources with unique and reus-
able identifiers (e.g., URIs), use widely used standards and 
protocols, and provide rich metadata by reusing existing 
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ontologies. They are, by definition, general enough to 
allow their adoption by very heterogeneous projects. 
Therefore, many healthcare integration systems have 
been designed with FAIR principles in mind; this is the 
case of UMG-MeDIC [25] and Scaleus-FD [26].

Although the principles of FAIRness are applied during 
dataset processing, it is also important to assess whether 
the dataset (or other digital object, such as a database) 
itself meets the FAIR criteria. According to a recent 
survey [27], existing assessment tools are often tied to a 
given context, may involve manual assessment, and often 
focus solely on data FAIRness, not considering metadata 
and semantics FAIRness. A possible solution to over-
come these limitations is to integrate FAIRness assess-
ment from the start and provide explainable metrics to 
users, to let them improve the quality (and FAIRness) of 
their data and metadata.

Limitations and contributions
As illustrated before, many approaches have been pro-
posed to model healthcare datasets that are very het-
erogeneous (in their model and content) and to enforce 
interoperability. Nevertheless, they exhibit some 
limitations.

First, many of them are tied to a single data model 
(e.g., EHDEN [6, 7] only integrates tabular data) or lever-
age a CDM tied to an healthcare domain (e.g., OMOP 
[8] models observational data only and is hardly exten-
sible to other domains like genomic or imaging data). 
Second, they all exhibit entities with specific attributes 
(see, for instance, the FHIR Observation entity with its 
24 attributes, including reason, status, subject, 
and value). In turn, these models lead to hand-made 
integration workflows (to map data concepts with those 
in the model and to adapt to specific attributes) or very 
abstract workflows. As an example, Dynamic-ETL [18] 
(a data integration pipeline) requires experts to write 
rules expressing how to match source models to OMOP. 
On the contrary, [19] proposes a FHIR-based workflow 

to transform existing medical data to FHIR. However, it 
does not include practical steps to realize the data inte-
gration part. The above reasons and examples emphasize 
why existing models are not convenient for the transfor-
mation of existing data to those models (while we note 
that they are suited for collecting new data). The main 
limitations include the attribute-based models leading to 
specific pipelines that are hardly reusable, and the techni-
cal barriers (e.g., map input and target models, and write 
corresponding data rules) that experts may not be able to 
surpass. Finally, FAIR metrics must be computed along 
ETL pipelines to ensure high findability, accessibility, 
interoperability, and reusability, while most works focus 
on assessing the interoperability on the obtained data 
[27].

In this work, we propose I-ETL, a novel framework 
to enforce interoperability among heterogeneous dis-
tributed healthcare datasets. It ensures privacy, requires 
moderate input from clinical experts, and computes a 
holistic interoperability assessment. Our main contribu-
tions are:

1.	 Two tightly linked, extensible, conceptual models 
for both metadata and data, based on experts’ 
knowledge, for achieving data interoperability within 
and across hospitals’ data stores.

2.	 An ETL pipeline in which interoperability is a first-
class citizen, producing a target database to be used 
in federated and distributed analytics contexts.

3.	 Guarantee of interoperability using a set of metrics 
that are progressively assessed during I-ETL.

Methods
I-ETL approach and concepts
The proposed I-ETL approach is a 5-step data science 
pipeline (see Fig. 1). Starting from the left side, medical 
experts decide collaboratively on a specific topic to study, 
e.g., pediatric intelligence disability or kidney cancer, and 
select a set of datasets relevant to their chosen topic. A 

Fig. 1  I-ETL, the framework building interoperable databases for federated analyses from heterogeneous healthcare data. Large arrows represent steps in 
the framework; dashed edges connect a step to its corresponding (intermediate) result. Interoperability metrics are shown below the task during which 
they are computed
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dataset is any sort of file containing data about patients; 
it may be, for instance, a CSV file containing the clinical 
measures obtained from blood samples, a DICOM file 
obtained from an eye MRI scan, a VCF file comprising 
patients’ genomic variants, etc. 

Next, after inspecting the selected datasets, practitio-
ners define a set of relevant features F  in those datasets. 
In this work, a feature is a specific attribute of data, e.g., 
the birth date of a patient, the size of the dark regions in 
MRI eye scans, etc.

Keeping F  in mind, practitioners fill the metadata M  
of the chosen datasets. We define metadata as any infor-
mation providing the context to understand and interpret 
a feature. Metadata typically includes the feature name, 
its data type, possibly an ontology resource that could be 
associated with it, etc. (details on our metadata model are 
given in Sect. 2.2).

The fourth step in the global pipeline is the ETL pro-
cess (later described in Sect. 2.4). In a nutshell, this aims 
at transforming the input datasets into a target data-
base whose schema is our general conceptual model for 
healthcare datasets (presented in Sect.  2.3), enabling 
interoperability between the ingested datasets, but also 
with the other databases used in the federated analy-
sis task. During the pipeline, interoperability metrics 
are collected (see Sect.  3.4) and are then reported to 
practitioners.

Metadata model
After picking relevant datasets for a use case of interest, 
practitioners have to select or extract a set of relevant 
features in their datasets. However, simply selecting 
(or extracting) a set of relevant features is not sufficient 
because individual datasets, or hospitals, may encode 
similar features with different names, thus prohibit-
ing interoperability. To overcome this semantic issue, 
we ask experts to specify which ontology resource may 
be used to represent each feature. This mapping of fea-
tures to existing ontology resources, done during the 
metadata creation, improves interoperability and align-
ment between hospitals. Unmapped features can still be 
referred to by their original names, even though this con-
siderably hinders interoperability.

The following list depicts our one-entity metadata 
model for describing datasets with interoperability as a 
first-class citizen:

 	• Name: the name of the feature;
 	• Ontology: the name of the ontology chosen to 

represent the feature concept where ontologies can 
be selected in well-known portals like BioPortal [28];

 	• Code: the code of the resource in the selected 
ontology that represents the feature;

 	• Kind: the type of feature, i.e., phenotypic, clinical, 
genomic, image, etc;

 	• DataType: the expected value type (among string, 
integer, numeric, boolean, category, 
date, or datetime);

 	• Unit: the unit to interpret the values when the 
feature data type is integer or numeric;

 	• Categories: when the feature is categorical, each 
value is paired to an ontology resource (a pair of the 
ontology name and a code).

 	• Visibility: whether the values for that feature can 
be shown publicly (public), after anonymization 
(anonymized), or cannot be shown at all 
(private), depending on their sensitivity.

Example instances. Assume we have two phenotypic 
features selected from datasets for the kidney disease sce-
nario, namely age and sex:

 	• The first feature is instantiated with the following 
values: name is “calc_age”, ontology and code are 
SNOMED-CT and “397669002”, dataType is 
integer, unit is “years” while categories is null 
(the feature is not categorical), and the visibility is 
anonymized to prevent the access to the original 
patient age (the age could be deduced if the patient is 
younger or older than the average).

 	• The second feature, about the sex, is instantiated 
with name “sex”, ontology is SNOMED-CT with the 
code “734000001”. The dataType is category, there 
will be no unit and the visibility would be public. 
For categories, we have two pairs: (Female, 
(SNOMED-CT 248152002)) and (Male, 
(SNOMED-CT 248153007)).

Common data model
After describing features with metadata, we run the ETL 
pipeline to transform the input datasets in a homog-
enized, interoperable target database. This relies on a 
common data model (CDM in short), which is a con-
ceptual model for representing homogeneously and mak-
ing all the selected data interoperable. Each database 
included in a federated scenario, implements the same 
CDM so that all databases can cooperate, be accessed, 
and queried in a unified way, regardless of the heteroge-
neous datasets they carried in origin.

Our CDM is illustrated in Fig.  2; it promotes two 
important characteristics. First, it isolates medical 
knowledge and concepts specified in the metadata from 
the actual data instances by distinguishing two con-
cepts: features and records. These two concepts are 
abstractions of how any dataset can be represented and 
make our model a common data model (as opposed to 
a project-based data model). As previously defined, a 
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Feature is an attribute of the data, e.g., the birth date 
of a patient. Instead, a Record is the actual value that a 
patient has for a certain feature, as produced by an hos-
pital. For instance, according to hospital H1, for patient 
P1 and a feature whose name is “birth_date” the value is 
“01/01/2000”. Second, it describes six different kinds of 
data (phenotypic, clinical, medicine, diagnosis, genomic, 
and imaging), while being easily extensible to new types 
of data, e.g., administrative data or patient history. This 
also contributes to make our model general enough to 
be considered as a common data model, possibly reused 
by many other diverse projects whose goals are to model 
very heterogeneous healthcare datasets in various 
settings. 

In our conceptual model (Fig. 2), we follow the typical 
notation of Entity-Relationship diagrams [29] established 
in [30]. The central entity is the Record; each record has 
a unique identifier, a value, and the name of the dataset 
to which it belongs. The value is of type any as records 
may capture not only atomic values, such as integer or 
boolean, but also complex ones, e.g., categories. The 
value can be further anonymized depending on its sensi-
tivity (see Sect. 2.4). The attribute dataset allows to keep 
track of the provenance, i.e., from where individual val-
ues come from.

Since clinicians need various kinds of data when study-
ing a research matter, the Record entity is specialized 
in 6 entities, namely phenotypic, clinical, medicine, 

diagnosis, genomic, or imaging, each of which inherits 
the Record attributes. Note that this set of data kinds 
can be easily extended or modified for different scenarios.

When a patient has an appointment, practitioners 
first collect phenotypic data, i.e., information about the 
patient, the environment and habits, each value lead-
ing to a PhenotypicRecord. Next, patients usually go 
through a series of tests in laboratories, including blood 
tests, breathing tests, skin tests, etc. For each test, cap-
tured values become ClinicalRecord instances. If 
the clinical record is associated with a sample, the sam-
ple identifier is stored in the optional attribute baseId. 
Genome sequences of patients are aligned on a default 
genome to obtain genomic variants. Those variants and 
their associated information, such as the chromosome on 
which it appears or the confidence, are represented with 
the GenomicRecord entity. The genomic record also 
saves the VCF file path from which the value has been 
extracted with the attribute vcf. Moreover, some patients 
are also asked to go for MRI scans to better visualize 
areas of interest. Each MRI scan is an image, from which 
a set of features are extracted and each value is stored as 
an ImagingRecord. As for genomic records, imaging 
records save the image file path from which the value has 
been extracted using the attribute scan. For patients tak-
ing medicines, each information in a prescription is seen 
as a MedicineRecord. Finally, patients may obtain a 
diagnosis, leading to a DiagnosisRecord.

Fig. 2  The interoperable conceptual model instantiated at each medical center database. Rectangles are entities, rounded boxes are relationships and 
triangles are specializations. Primary keys are underlined, and optional attributes are marked with a * (star). Our cardinalities adopt the notation in [29], 
e.g., a record instantiates exactly one feature, is associated with exactly one patient, and is registered by exactly one hospital. Features can be instantiated 
in 0 to n record entities
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Each Record is registered by exactly one Hospital, 
i.e., a clinical institution contributing to the federated 
analysis task. It has an identifier and a name. A Record 
has for subject exactly one Patient, i.e., an individual 
included in the studied cohort. Patients only have an 
identifier because they are totally anonymized for privacy, 
thus, no further personal information can be included.

Each Record entity instantiates exactly one Feature 
of the same kind, e.g., a phenotypic record instantiates 
a phenotypic feature. Those features are specializations 
of the Feature entity, carrying all the attributes. Each 
feature has an identifier; other attributes come from 
the metadata model. In turn, each feature has a name, a 
dataType, a unit, a set of categories, and a visibility. The 
last four attributes are optional because: the dataType 
and the visibility may not be specified by medical experts 
(visibility defaults to private for privacy reasons), the 
unit exists only for numerical features, and the list of cat-
egories only exists for categorical features.

A Feature is represented by zero or one Ontolo-
gyResource. Sometimes, features cannot be formalized 
in any ontology (hence the cardinality 0..1). It contains 
a system, i.e., the endpoint URL to access the ontology, a 
code, i.e., a unique identifier for the represented concept 
in that ontology, and a label, a human-friendly name for 
that concept. All of them are strings, only system and 
code are mandatory (in order to identify the represented 
concept).

A PhenotypicFeature captures any variable about 
the factors that may affect the patient, such as the envi-
ronment, daily routine, habits, etc. A ClinicalFeature 
may be about any chemical or clinical measurement. A 
GenomicFeature typically concerns the chromosomes 
carrying variants, the exact position of the variant, the 
type of variation (addition, deletion, mutation), etc. 
ImagingFeature instances can represent diverse fea-
tures depending on the patient’s disease. For instance, if 
the patient is affected by a brain tumor, the features may 

include the coordinates of the tumor in the MRI scan, 
the darkness of the tumor in the scan, etc. Additional 
features about the scanner and software can be included 
too, e.g., the software version, the scanner name, etc. A 
MedicineFeature captures variables such as the name 
of the medication, the start and length of the prescrip-
tion, whether the patient took the medicine, etc. Finally, 
a DiagnosisFeature captures a characteristic of the 
diagnosis attributed to a patient. Diagnosis character-
istics include the diagnosis name, but also the affected 
gene, whether the patient is a carrier or affected, etc.

ETL pipeline and target database
Our three-step ETL pipeline leverages the CDM for inte-
grating the input data in the target database, as shown in 
Fig.  3. It takes as input the selected datasets D1, ..., Dn 
and their accompanying metadata M . Next, the three 
steps Extract, Transform and Load are performed, as 
detailed in the following. While performing them, a num-
ber of metrics for assessing interoperability are computed 
to keep track of interoperability from the start to the very 
end of the process. 

Extract step. The input data, i.e., the metadata M  spec-
ified by clinical experts and the datasets D1, ..., Dn, is 
read and stored in memory. No normalization is applied 
at this stage (postponed to the Transform step).

Transform step. This step creates new objects 
(instances) that will fit the CDM, i.e., the conceptual 
model of the target database. While creating the objects, 
it also ensures that they are interoperable with each 
other, e.g., by applying interoperability implementation 
techniques to values. We proceed as follows:

1.	 A set of Patient instances is created as the union 
of all the patients in the input datasets. Each patient 
is anonymized by assigning an identifier with the 
scheme ⟨HospitalName:counter⟩, where 
HospitalName is the hospital name and counter 

Fig. 3  The ETL pipeline for integrating diverse and heterogeneous datasets, keeping interoperability as a first-class citizen
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is an auto-incremented number. No further personal 
information is stored for patients in the CDM for 
privacy reasons.

2.	 Each feature f ∈ F  is created based on the available 
information in the metadata M  and is specialized 
based on its kind. An identifier of the form ⟨
Feature:counter⟩ is assigned to each of them. 
If a feature presents both ontology name and code 
in its metadata, then an OntologyResource is 
created, respectively with the ontology name and 
code in attributes system and code. A query asking 
for the ontology resource label is sent to the ontology. 
If a non-empty result is returned, it is stored in 
the attribute label, otherwise the attribute remains 
empty. Next, the attributes dataType, unit and 
visibility are directly obtained from the metadata. 
Finally, the attribute categories is computed as a map 
containing pairs of a categorical value (a string) and 
the associated OntologyResource instance (if it 
exists).

3.	 Record instances are created out of the input 
datasets D1, ..., Dn. For each patient having a 
non-empty value v for a given feature of kind k, a k
Record is created, and the attribute value stores v.

	 The dataset attribute is set to the examined 
dataset Di. A unique identifier is assigned 
to the new instance, namely an identifier of 
the form ⟨Record:counter⟩. The created 
record also includes three foreign keys: register, 
associate, and instantiate, which are identifiers 
of existing Hospital, Patient, and Feature 
instances. Specific attributes (e.g., the baseId for 
ClinicalRecord instances) are extracted from the 
dataset while creating the records.

	 Finally, before setting the value with v, we make the 
value as interoperable and secure as possible by 
proceeding as follows.

	 Interoperable. Each value v undergoes 
transformations to enhance its interoperability, as 
detailed in Table 1. Each technique depends on v’s 
data type; when not applicable, the related functions 
return the initial value (e.g., string “tru” cannot be 
cast to a boolean, thus the function yields “tru”). 

	 Secure. Then, we secure the interoperable (or initial) 
value based on the feature visibility and dataType 
attributes. When the visibility equals anonymized, 
date and datetime values are deprived from their 
day, respectively minutes and seconds. Otherwise 
(the visibility is private or public, or the 
dataType is not date nor datetime), the value v is 
returned as is.

Load step. The last step of the ETL process is to load the 
instances created in memory into the target database. 
This includes: the Hospital, Patient, Feature, and 
Record instances. After insertion, instances are indexed 
to ensure fast access and querying.

Interoperability assessment
The I-ETL framework finally reports a set of interoper-
ability metrics that are computed across the integra-
tion pipeline. Concerning databases that are created 
using I-ETL, interoperability can be measured at three 
levels: the database is compared with itself (we call this 
self-interoperability); with other databases in the same 
institution (termed intra-institution interoperability); 
and with the databases of other institutions (termed 
inter-institution interoperability). For databases gener-
ated through I-ETL that received high metrics scores, 
we ensure interoperability on all three levels. These three 
levels of interoperability can be ensured both from a syn-
tactic and semantic point of view. All data providers use 
the same data model (the one presented in Sect. 2.3) and 
this guarantees syntactic interoperability. For semantic 
interoperability, we favor it by allowing experts to map 
the features of interest to well-known and widely adopted 
ontologies.

We derived a set of interoperability metrics, which 
-respectively- target the selected data, the created meta-
data, and the ETL process. Specifically, data metrics are 
computed to assess the completeness of datasets selected 
for a specific federated scenario; metadata metrics 
assess the coherence and completeness of the metadata 
created for the selected datasets; and ETL metrics assess 
to what extent interoperability and anonymization have 
been achieved during the ETL process, as well as the 
coherence of the target database.

It is crucial that FAIR principles (specifically, interop-
erability) are put from the beginning of the process that 
achieves the database creation. Table 2 lists our metrics, 
which are computed from the start to the end to evaluate 

Table 1  Functions used on record values to enhance their 
interoperability. If the technique does not succeed on the input 
value, the function returns the value as is
Data type Function to enable interoperability
string Normalize v (trim spaces and lower 

case v)
category Yield the associated OntologyRe-

source in categories
date Cast v to an ISO format
datetime Cast v to an ISO format
boolean Cast v to True or False
integer/numeric and 
funit = vunit = ∅

Cast v to an integer, respectively 
a numeric

integer/numeric and 
funit = vunit

Remove the unit and cast v (to int., 
resp. num.)

integer/numeric and 
funit ̸= vunit

Yield v
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self-, intra-institution and inter-institution interoperabil-
ity. The next sections detail the three sets of metrics. 

Data metrics
Data metrics are computed on the selected features F  for 
datasets D1, ..., Dn; we defined two. (A1) represents how 
many features have been retained for the selected datas-
ets, providing insight of the extent to which the datasets 
are mapped to metadata. Small subsets of (well-crafted) 
features are generally preferable in federated scenarios, 
even if possible information loss must be taken into 
account. (A2) represents the number of datasets that 
do not require extraction using dedicated tools. Dedi-
cated data extraction, defined as the process of identi-
fying and retrieving information using external tools, is 
often needed with complex data types such as images 
and genomic files. For instance, MRI scans are images for 
which dedicated extraction is needed in order to obtain 
data from the image itself. Examples of data extracted 
from lung MRI scans include the size of dark regions in 
the scan, whether abnormalities can be seen, etc. In gen-
eral, using dedicated tools may lead to an overall decrease 
in interoperability, e.g., when different versions or pipe-
lines are used and/or if images are of low quality.

Metadata metrics
For metadata metrics, we evaluate the features F  
described by the clinicians in the metadata M  (Fig.  1, 
step 3). For all features, we count how many have (M1) 
both ontology and code, (M2) non-empty dataType, and 
(M3) non-empty visibility. While these three attributes 

are not mandatory, they are important to achieve high 
intra- and inter-institution interoperability, crucial for 
the federated analysis of the datasets within an institu-
tion and with other institutions.

Next, only for categorical features, we count how many 
of them have at least one associated category (M4). Val-
ues that cannot be mapped to the specified categories 
decrease interoperability. Finally, we count numerical 
features that are equipped with a valid unit (M5); note 
that features without this information hinder the inter-
pretation of values (consider, as an example, the ambigu-
ity in determining whether age is expressed in weeks or 
months).

ETL metrics
ETL metrics are computed during the Transform step 
while making features and values as interoperable as 
possible. We compute (E1) as the number of ontology 
resources (whether they represent a Feature or a cat-
egorical value) having a non-empty label. (E1) captures 
the interoperability of both features and categorical val-
ues because it is of the same importance if one of them 
carries an empty label (both hinder interoperability). 
The label is empty if the ontology is not provided with a 
query interface or if the request sent to the ontology fails 
for any reason. For instance, the LOINC resource, whose 
code is LL4034–6, does exist at URL https://loinc.org/
LL4034-6, but the query asking for information about this 
resource returns an empty result, because the LOINC 
query interface does not access the latest release of the 
ontology. At this point of the ETL, failing queries affect 
only the OntologyResources’ label; however, if one wants 
to retrieve more information for that specific resource, it 
will not be possible, thus limiting interoperability.

Next, (E2) counts the ratio of Record values for which 
interoperability implementation has succeeded (recall 
Table 1); (E3) counts the ratio of numerical Record values 
having the same unit as the Feature they instantiate; with 
(E4), we assess the quality of categorical values by check-
ing how many of them were declared in the Feature cat-
egories list that they instantiate. Overall, (E2), (E3), and 
(E4) measure the coherence between metadata and data.

Finally, (E5), (E6), and (E7) ensure that all created 
instances refer to (other) objects existing in the database. 
This is achieved by counting how many references to 
hospitals, patients, and features point to instances in the 
database, preventing broken references.

Anchoring metrics to FAIR principles
To legitimate our metrics w.r.t. the FAIR principles, we 
recall the three sub-principles of Interoperability and 
explain how our proposed pipeline and metrics conform 
to them.

Table 2  The set of metrics recorded through I-ETL to assess 
interoperability across the pipeline
Step Metric
Data (A1) Ratio of selected features

(A2) Ratio of datasets that do not require dedicated 
extraction

Metadata (M1) Features with both non-empty ontology name 
and code
(M2) Features with non-empty dataType
(M3) Features with non-empty visibility
(M4) Categorical features with non-empty set of 
categories
(M5) Numerical features with non-empty unit

ETL (E1) Presence of non-empty label in Ontology Resource
(E2) Values for which interoperability implementation 
has succeeded
(E3) Correspondence of numerical values unit and 
Feature unit
(E4) Presence of categorical value in the Feature 
categories
(E5) Records with known Hospital references
(E6) Records with known Patient references
(E7) Records with known Feature references

https://loinc.org/LL4034-6
https://loinc.org/LL4034-6
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I1. Data and metadata use a formal, accessible, 
shared, and broadly applicable language for knowledge 
representation.

Our conceptual common data model is designed in a 
way such that it can be implemented within any type of 
database (relational, NoSQL, etc). Moreover, metadata 
can be easily specified using a tabular file, such as an 
Excel or CSV file, while following our metadata model. 
The selected datasets can be of any machine-readable 
format and dedicated extraction is applied for datasets 
necessitating pre-processing.

I2. Data and metadata use vocabularies that follow 
FAIR principles.

While specifying metadata, experts are asked to assign 
an ontology resource to each feature of interest. Despite 
not mandatory, it is highly recommended in order to 
achieve good interoperability. Experts are also advised 
to use well-known and recognized ontologies in their 
domain. At best, the ontology is publicly accessible; oth-
erwise, it may need to be accessed under authentication, 
but should not be hospital-dependent. The ETL pipeline 
will reuse these ontologies to encode categorical values, 
thus increasing interoperability both for metadata and 
data. This aspect is tracked by ETL metrics assessing 
ontology resources and categorical values.

I3. Data and metadata include qualified references to 
other data and metadata.

Each Record instance comprises a reference to a 
patient, a hospital, and a Feature (qualified references to 
the database instances), and the dataset from which the 
value comes (qualified reference to the data).

Results
Implementation and scenario
I-ETL is implemented as a Python software built upon 
v3.12 and the well-known, scalable, and flexible Mon-
goDB [31] database management system (v7.0.12). The 
source code is available on GitHub at ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​
m​/​​D​E​I​B​​-​G​​E​C​O​/​i​-​e​t​l. It can be easily deployed within 
medical centers, possibly having various software and 
hardware setups, employing its Docker image [32]. The 
software includes a template CSV file for the metadata 
definition, the ETL, and the computation of interoper-
ability metrics. It produces the target MongoDB data-
base. Our software needs to be set up once for each data 
provider (e.g., each hospital) and can be re-run to add/
update data or metadata.

The selection of relevant datasets and features is left to 
clinicians. To support them in the definition of the fea-
tures of interest, the metadata model is provided as a 
pre-defined CSV file whose header corresponds to the 8 
attributes of our one-entity metadata model. Then, clini-
cians gather information for each feature of interest and 
fill the metadata file accordingly. The interoperability 

score of the target database highly depends on the quality 
and quantity of the provided metadata.

To showcase and evaluate our approach and its imple-
mentation, we consider the study of patients with end-
stage kidney disease (ESKD) affected by COVID-19 [33]. 
ESKD is the last stage (stage 5) of chronic kidney disease; 
this causes kidneys to be at 1/10 of their normal capac-
ity, incapable of effectively removing waste or excess 
fluid from blood. Due to their renal impairment, ESKD 
patients are at high risk of severe COVID-19, thus neces-
sitating extra care. From this study, we consider a sce-
nario where two hospital centers collaborate and share 
their different kinds of data to run a precise federated 
analysis. Here, clinicians are interested in the following 
two questions:

 	• “Which set of ESKD-related genes favor the 
development of severe forms of COVID-19?”

 	• “Which COVID symptoms are amplified due to the 
renal impairment of ESKD patients?”.

We selected the open and real-life datasets provided by 
[33] at [34], containing 111 patients for which pheno-
typic, diagnosis, imaging, clinical, and genomic data is 
provided. We allocate datasets to our two hospitals as 
follows:

 	• The first hospital H1 processes only genomic data. 
Genomic data corresponds to RNA sequence counts 
for a panel of 60,649 genes.

 	• The second one, H2, processes phenotypic, 
clinical, imaging, and diagnosis data. Clinical data 
comes from flow cytometry for 45 general cells, 
while imaging data is about radiology evidence of 
COVID-19 in patient lungs. Diagnosis data provides 
information about the possible causes of ESKD as 
well as its severity.

Metadata creation
Starting from the above-mentioned datasets, we defined 
the set of relevant features F  and described them accord-
ing to our metadata model. The metadata has been col-
lected and mapped to existing ontologies manually.

Hospital 1 metadata
In Table 3, we report an excerpt of metadata regarding 
genomic data. Original data contains RNA sequence 
counts computed for a panel of 60,649 genes for all the 
patients. In this panel, not all genes are relevant whilst 
they are costly to process. Therefore, we filtered the 
panel to keep the subsets of genes that are the 1,000 most 
expressed genes for each patient. The reason is that a 
high sequence count typically indicates that many reads 
are associated with a gene, suggesting a higher level of 

https://github.com/DEIB-GECO/i-etl
https://github.com/DEIB-GECO/i-etl
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gene expression. The union of the top 1,000 genes-sets 
of each patient corresponds to a set of 2,382 genes, each 
leading to a feature in the metadata. Next, the code asso-
ciated with each of them corresponds to the gene name 
without its version (the number after the dot); this has 
been computed automatically for the 2k genes. All gene 
codes can be found in the HGNC [35] ontology. In the 
dataset, values correspond to RNA sequence counts and 
thus are integers. 

Hospital 2 metadata
Metadata for phenotypic data, presented in Table 4, has 
been collected by gathering personal information for 
each patient. It contains nine variables, each mapped to 
a SNOMED-CT code1. 77% of them are categorical, each 
of them being associated with up to five categories (col-
umn categories; each value here has been mapped to a 
SNOMED-CT code). The feature calc_age is kept pri-
vate because patient privacy could be violated by look-
ing at young outliers (note that few patients are much 
younger than the mean age of 68 years old).

For metadata about diagnoses, four public features are 
retained (Table 5) and mapped to a SNOMED-CT code. 

1 Tables 4, 5, 6, and 7 exhibit code values composed of several individual 
codes, joined with operators such as : or =. The process of joining several 
codes is referred to as post-coordination and is helpful when a concept/vari-
able cannot be described with a single code (mainly because it does not exist 
in any ontology). We further discuss this point in Section 4.1. 

The two categorical features have a reasonable number of 
associated categories, each mapped to a SNOMED-CT 
code.

Metadata for imaging data (Table 6) leads to two fea-
tures: the patient id and the observed anomaly in the 
radiology scans (radiology_evidence_covid). 
The latter feature has been associated with ten catego-
ries of evidence, each extracted from original imaging 
scans using dedicated image processing techniques and 
mapped to a SNOMED-CT code.

Finally, metadata of clinical data comes from the flow 
cytometry analyses of patients. It leads to 47 features; 

Table 3  The metadata obtained from RNA sequence counts, 
leading to genomic features. For all features, visibility = public, 
unit = ∅
ontology code name dataType
loinc 57723–9 Sample_ID string
hgnc ENSG00000250433 ENSG00000250433.1 integer
hgnc ENSG00000258591 ENSG00000258591.2 integer
hgnc ENSG00000115902 ENSG00000115902.11 integer
hgnc ENSG00000130234 ENSG00000130234.13 integer
... ... ... ...

Table 4  The metadata obtained from the patient personal information, leading to phenotypic features. For all features, 
ontology = SNOMED-CT
code name visibility dataType unit categories
422549004 individual_id public string - -
397731000 ethnicity public category - asian, white, black, other
734000001 sex public category - M, F
397669002 calc_age private integer years -
307294006: ihd public category - no, yes.stent, unknown,
246454002=“IHD” yes.no.intervention, yes.cabg
307294006: 246454002 = 111293003 previous_vte public category - yes.dvt, yes.pe, yes.other, no
13645005 copd public category - yes, no, copd, bi
73211009 diabetes public category - yes.T1, yes.T2, no
365981007 smoking public category - never, not.current, ex

unknown, current

Table 5  The diagnosis metadata. For all 
features, ontology = SNOMED-CT, visibility = public and unit = Φ
code name dataType categories
422549004 individual_id string -
46177005 cause_eskd category DN, 

Unknown, 
other, GN, 
HTN, Genetic

405162009: WHO_severity category moderate, 
mild, severe, 
critical

47429007 = 840539006
419620001 fatal_disease boolean -

Table 6  The metadata obtained from the imaging datasets. For 
all features, ontology = SNOMED-CT, visibility = public and unit = 
Φ
code name dataType categories
422549004 individual_id string -
840539006: radiology_evi-

dence_covid
category cxr, no, not.done, yes, 

yes:CVCX1
363589002= yes:extensiveBilateralAirspa

ceConsolidation,
363680008 yes:extensiveConsolidation, 

yes:leftBasalInfiltrate, yes:pa
tchyBilateralConsolidation, 
yes:patchyOpacificationBot
hLungFields
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a subset of them is shown in Table 7. Eight features 
out of 47 could not be mapped to any SNOMED-CT 
code because one or several of the specified acronyms 
are not included in the ontology (this can be captured 
by interoperability metrics, see Sect. 3.4). This is, for 
instance, the case of Siglec-1 and NKG2D. All the 45 
flow cytometry measures lead to numeric values, do not 
present units, and are all accessible without restriction 
(visibility = public).

ETL execution
When run on the initial datasets from the two hospitals 
considered in our scenario, two databases H1 and H2 are 
consolidated – see Table 8 for numbers of corresponding 
features and records grouped by kind of data. Both H1 
and H2 contain 111 Patients and one Hospital instance.

Interoperability assessment
Finally, I-ETL reports on the overall interoperability 
of the target database by computing and displaying our 
set of metrics (described in Sect.  2.4). This final step is 
highly important to check that obtained databases (as 
described in Table 8) are complete and sound, especially 
when running federated analyses over several databases. 
Table 9 lists the scores achieved for our metrics on the 
databases of H1 and H2. It also provides the total num-
ber of objects accounted for the score. The score s ranges 
from 0 to 1 (included), with higher values indicating bet-
ter performance.

In general, we appreciate that I-ETL created two highly 
interoperable databases from the ESKD-COVID patient 
data. In detail, full interoperability (s = 1.00) is achieved 
for 8 metrics in H1 and 10 metrics in H2. High interoper-
ability (0.8 ≤ s < 1.00) is achieved for 1 metric in H1 and 
2 in H2. Low interoperability (s < 0.8) is achieved for 2 
metrics in H1 and 2 in H2. Finally, 3 metrics lead to null 
scores in H1 (N/A values in Table 9). This is because they 
were not applicable to the hospital data. For instance, 
there is no categorical feature for H1, thus (M4) could not 
been computed. By analyzing in more detail the achieved 
interoperability scores, we observe the following:

 	• The ratio of selected features (A1) is low for H1 
because only 2,382 genes were selected among 
the large panel of 60,649 genes. This drastic gene 
selection was necessary to run I-ETL in a reasonable 
time, while not relaxing important ones for federated 
analyses. In H2, a high score is achieved because 
almost all phenotypic, clinical, diagnosis, and 
imaging features have been retained. Examples 
of excluded features are WHO_temp_severity 
(a duplicate of WHO_severity), time_from_
first_symptoms and time_from_first_
positive_swab (the former containing the hour 
at which COVID symptoms appeared, the latter 
being the hour at which the nasal test has been done 
– both are not useful for understanding correlation 
between ESKD and COVID).

 	• Assessment of (M1) in H2 leads to a score of 0.87 
because 8 features out of 62 could not be mapped 
to existing ontology concepts. This is, for instance, 
the case of the last feature shown in Table 7 because 

Table 7  The metadata obtained from flow cytometry analyses, leading to clinical features. For all features, visibility = public, unit = Φ
ontology code name dataType
snomed ct 422549004 individual_id string
loinc 57723–9 sample_id string
snomed ct 117400003:260864003 = 732272000 CD66b+ CD45+ numeric
snomed ct 115412003:260864003 = 732272000 CD4+ T CD45+ numeric
Φ Φ Siglec-1+ NKG2D-HLA-DR+ numeric
… … … …

Table 8  Statistics of the databases obtained in experiments
H1 H2

Feature Record Feature Record
Phenotypic - - 8 888
Clinical - - 45 748
Diagnosis - - 3 251
Imaging - - 1 70
Genomic 2,382 250,103 - -

Table 9  Interoperability assessment for the databases located 
inH1 and H2. Interoperability levels are: full (F: S=1 ), high (H: 0.8≤ s 
< 1), low (L: s < 0.8)
Metric  total  score  total  score
A1 60,650 0.04 (L) 65 0.92 (H)
A2 5 1.00 (F) 5 1.00 (F)
M1 2,382 1.00 (F) 62 0.87 (H)
M2 2,382 1.00 (F) 62 1.00 (F)
M3 2,382 1.00 (F) 62 1.00 (F)
M4 N/A N/A 10 1.00 (F)
M5 2,382 0.00 (L) 46 0.02 (L)
E1 2,382 0.99 (H) 46 1.00 (F)
E2 250,103 1.00 (F) 1,957 1.00 (F)
E3 N/A N/A 1 0.00 (L)
E4 N/A N/A 1,028 1.00 (F)
E5 250,103 1.00 (F) 1,957 1.00 (F)
E6 250,103 1.00 (F) 1,957 1.00 (F)
E7 250,103 1.00 (F) 1,957 1.00 (F)
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Siglec-1, NKG2D, HLA and DR are not associated 
with any SNOMED-CT code.

 	• (M5) leads to very low scores for both H1 and 
H2, respectively 0 and 0.02. This arises because 
most of the described features have no associated 
unit in the metadata, e.g., only calc_age had a 
unit in H2. Empty units cover two cases (without 
distinction): there is no unit for the feature (as for a 
ratio), and there is one but it has not been specified. 
To distinguish them and improve interoperability, 
experts should explicitly specify in the metadata 
when a feature has no unit. Unfortunately, this did 
not happen for our experimental datasets, leading to 
mostly empty units for numeric features, thus low 
scores.

 	• (E1) scores are very high for both H1 and 
H2, meaning that almost all ontology resources 
(associated with features or categorical values) carry 
a label. This ensures interoperability and shows 
that ontologies can provide information about their 
resources.

 	• (E3) leads to a null score for H1 and a 0-score for 
H2 for the same reason mentioned above for (M5). 
In H1, no numeric value has a unit, thus leading to 
the N/A score. In H2, only the feature calc_age 
has a unit specified in the metadata, but no unit was 
provided in the data (as in the value “3 years”): thus, 
the score of 0.

Discussion
Challenges and limitations
The primary challenge we faced was to design a con-
ceptual data model that could fit the various kinds of 
data brought by hospitals and clinical centers. Reusing 
existing CDMs was deemed not possible, because many 
of them are tied to entities of particular use cases, e.g., 
OMOP [8] allows to represent observational data and 
is hardly extensible to model genomic information. The 
more general ones, e.g., FHIR [10], lift the above limita-
tion by exhibiting entities of various kinds. This makes 
them well suited to initiatives where new data needs to 
be collected, processed, and stored. However, they are 
not yet general enough to design automatic integration 
workflows for existing data (as opposed to hand-made 
ETL pipelines), notably due to they reliance on specific 
attributes. Following those observations, we propose a 
novel common data model based on the notions of fea-
tures and records – abstract concepts of how any data-
set can be represented. It currently represents six kinds 
of healthcare-related data, but is easily usable with other 
kinds, e.g., administrative or surgery-related data. This 
makes our conceptual model general enough to be used 
as a CDM in a wide variety of healthcare projects. In a 
broader scope, our framework could be utilized in many 

other contexts, e.g., journalistic sources, spatial databases 
or social human sciences sources, while only requir-
ing to design a new CDM (such as the one presented in 
Fig. 2) reflecting entities of the domain and leveraging the 
notions of feature and record.

For what concerns metadata creation – a crucial step to 
achieve high interoperability – the main challenge lies in 
the contribution of clinicians, who often do not have the 
time and/or knowledge to create it. So far, experts need 
to manually define all the features they are interested in, 
specify their related information and map each of them 
to an ontology code. Creating metadata may represent 
considerable manual work, especially for federated analy-
ses where several datasets are joined. Nonetheless, this is 
the only part where experts are required to do a techni-
cal work, supported by our easy-to-fill metadata model. 
Even though each ontology is tailored to a particular type 
of healthcare data, e.g., HGNC is for genes and LOINC 
is for clinical measurements, finding appropriate ontolo-
gies and then searching them for suitable concepts is 
very time-consuming. Also, some concepts are very spe-
cific, thus are not represented in any well-known -com-
monly adopted- ontology. They can be created through 
post-coordination, a process to join several exiting codes. 
For instance, the feature previous_vte (whether 
the patient already had a venous thromboembolism) 
does not exist in SNOMED-CT but can be represented 
with the following association of codes: “307294006: 
246454002 = 111293003” (meaning that there is an occur-
rence of venous thrombosis in the patient’s personal 
history). Creating post-coordinated codes is even more 
time-consuming.

Manual mapping also suffers from being error-prone, 
especially when the number of features is large. To limit 
experts’ manual efforts and errors, we envision semi-
automatic support that (i) proposes a set of ontologies in 
which the concept is likely to appear (e.g., with BioPortal 
Recommender [36, 37]); (ii) lets experts select the most 
appropriate one; (iii) automatically proposes a set of 
codes that fit the concept in the selected ontology (e.g., 
by integrating BioPortal Search [38, 39]); and (iv) lets 
the expert select the most appropriate term code. Such 
methods should be used in a human-in-the-loop pro-
cess. Indeed, they do rely on various metrics, including 
semantic similarity measures, but have very vague or no 
context about the scenario, thus may return inappropri-
ate codes. Moreover, it is crucial that medical experts are 
provided user-friendly support to share their knowledge 
on the context, so that accurate domain-specific informa-
tion can be ensured.

Concerning FAIR principles, the sub-principle I3, stat-
ing that qualified references to the data and metadata are 
necessary, is only partially implemented so far. Indeed, 
qualified references to the data are already included 
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because each entity in the conceptual data model has an 
identifier. However, qualified references to the metadata 
are not yet included, but will be in subsequent work by 
providing a catalog to browse and search datasets based 
on their metadata.

Outlook
Our I-ETL framework has been developed in the context 
of a large European project called BETTER [40], whose 
overarching objective is to develop a decentralized and 
federated analysis of healthcare data. In this project, 
seven clinical centers are involved and they all work on 
the general domain of genetic rare diseases. Yet, they 
derived three use cases of interest, namely, pediatric 
intellectual disability, retinal dystrophies, and self-harm 
behaviors for autistic patients. While all of them rely 
on genomic data (at least), they also use different kinds 
and forms of data, thus highlighting the need for a gen-
eral and easy-to-use framework to integrate and process 
them. In practice, each center provides datasets from a 
plethora of different kinds for the use case they are inter-
ested in. Starting from this, we discussed with them the 
healthcare research questions raised by their use cases, 
their available data (clinical measurements, genomic 
variants, MRI scans, etc.) and their ideas in terms of Fed-
erated Learning analyses. Next, we designed I-ETL and 
our two conceptual models (for metadata and data). In 
parallel, clinical experts discussed the metadata to be 
considered and filled out the metadata for each of their 
datasets by leveraging our metadata model. At this stage, 
hospitals have agreed on common and specific features 
to include in the metadata. By doing so, they ensure that 
their databases can be joined for further analyses (other-
wise, each hospital would end up with a unique feature 
set). This is where most of the work happens for medical 
experts (formulate questions, find datasets, specify meta-
data); the rest of the pipeline is automatic and leads to a 
ready-to-use database.

We are currently deploying our framework inside each 
partner hospital and collecting feedback on this deploy-
ment as well as the usage of our tool. The I-ETL pipeline 
has been well-received by all the different stockholders 
involved in the BETTER project. Even if the overhead 
in the data integration pipeline is costly and demanding, 
all the actors found that the overall process of creating 
an interoperable database on their server is worth the 
effort as long as it allows them to later create AI federated 
algorithms for medical decision making. Our next task 
is to discuss with them to finalize their FL scenarios and 
implement corresponding algorithms.

As future developments, BETTER aims at providing 
(i) a catalog for browsing metadata and aggregated data 
of target databases, as well as (ii) a platform for running 
decentralized and federated analyses of the data.

The catalog will be a website listing all the accessible 
databases and providing aggregated views of the data 
for each of them – we already initiated this work in [41]. 
For instance, the clinicians of the BETTER project may 
browse the metadata of different hospitals to check which 
other institutions they can join forces with. They may also 
take a deeper look at the aggregated data (while original 
data and the target database are never accessible outside 
of centers). For instance, they can investigate the patient 
age distribution as well as the set of diseases of patients 
of another institution to understand whether a federated 
analysis combining their data would make sense.

After deciding which datasets and which institutions 
can be joined, federated analysis will be run on a plat-
form based on the Personal Health Train (PHT [42]) par-
adigm. This platform will include statistical and AI-based 
models for analyzing various data stored in the underly-
ing I-ETL-based databases. In the end, clinicians will be 
able to explore the results of the federated computations 
and gain insights toward solving their research health-
care questions.

Conclusions
In this paper, we presented I-ETL, a framework for inte-
grating heterogeneous healthcare datasets with interop-
erability as a first-class citizen. Our contributions are the 
following. First, we proposed a general data model for a 
large set of health datasets, including clinical, pheno-
typic, genomic, diagnosis, imaging, and medication data. 
This conceptual model serves as a common data model 
for various healthcare settings. Its main strengths are to 
take into consideration experts’ knowledge (metadata) 
and to be easily extensible/tunable for other scenarios. 
Next, we proposed and implemented an ETL pipeline 
for transforming the input data into a database designed 
on our conceptual model. Incidentally, I-ETL also allows 
for resource savings (personnel and servers) because 
it is easy to put in place and does not require a large-
scale centralized server. Finally, I-ETL provides a set of 
across-pipeline metrics for assessing the interoperabil-
ity level throughout the whole process of integrating the 
input data into a target database. Ensuring and assessing 
interoperability also goes into the direction of data qual-
ity; well-conceptualized and homogenized datasets will 
be easily used for FL analyses. Experiments on a small 
open-data-based scenario with two hospitals have shown 
that I-ETL can achieve high interoperability scores, 
thereby enabling effective collaboration between differ-
ent medical centers, notably via federated analysis of the 
target databases.

Several research directions arise from the present work 
– some of which are already ongoing. First, we are now 
working on the querying of the interoperable databases 
(available at each center) through the catalog. This task is 
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complex because, for privacy reasons, the catalog relies 
on aggregated data only and the real data in the hospi-
tal servers cannot be accessed. Therefore, the challenge 
here is to find the right balance between super-aggre-
gated data (very safe but not very useful due to the high 
information loss) and low-aggregated data (more useful 
but with privacy concerns). A subsequent direction is the 
design of a human-in-the-loop recommendation mod-
ule for metadata. This would automatically recommend 
ontologies and codes for a given set of features (recall 
Sect. 4.1), allowing experts to save time and reduce errors 
while keeping control of the obtained metadata. Another 
interesting addition would be to add more context to the 
records, e.g., to know whether a value has been observed 
before or after surgery. This would contribute to a richer 
common data model while remaining as general as pos-
sible. In parallel with these three directions, the BETTER 
partners work on the implementation of the federated 
analysis platform to enable the design and secure execu-
tion of Federated Learning tasks.

With this project, we learned that there is no “one-
size-fits-all” solution, especially when working in large 
consortium and projects. Despite these challenges, bring-
ing computer science methods and developments to the 
healthcare sector opens the road to better health systems, 
improving citizens’ global health.
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