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Abstract

Background Clinicians are interested in better understanding complex diseases, such as cancer or rare diseases,

so they need to produce and exchange data to mutualize sources and join forces. To do so and ensure privacy, a
natural way consists in using a decentralized architecture and Federated Learning algorithms. This ensures that data
stays in the organization in which it has been collected, but requires data to be collected in similar settings and
similar models. In practice, this is often not the case because healthcare institutions work individually with different
representations and raw data; they do not have means to normalize their data, and even less to do so across centers.
For instance, clinicians have at hand phenotypic, clinical, imaging and genomic data (each individually collected)
and want to better understand some diseases by analyzing them together. This example highlights the needs and
challenges for a cooperative use of this wealth of information.

Methods We designed and implemented a framework, named I-ETL, for integrating highly heterogeneous
healthcare datasets of hospitals in interoperable databases. Our proposal is twofold: (i) we devise two general and
extensible conceptual models for modeling both data and metadata and (i¢) we propose an Extract-Transform-Load
(ETL) pipeline ensuring and assessing interoperability from the start.

Results By conducting experiments on open-source datasets, we show that I-ETL succeeds in representing various
health datasets in a unified way thanks to our two general conceptual models. Next, we demonstrate the importance
of blending interoperability as a first-class citizen in integration pipelines, ensuring possible collaboration between
different centers.

Conclusion As a framework, I-ETL contributes to integrate and improve interoperability between healthcare
institutions. When used in a decentralized federated platform, it eases the federated analysis of the different hospital
databases and helps clinicians to obtain insights and knowledge on medical conditions of interest.
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Background
The overall recent digitization of the healthcare sector has
led to new opportunities for researchers and clinicians to
access, integrate, analyze, share, and reuse medical data
[1]. An example of this is the emergence of self-tracking
tools, which are source of plenty of healthcare data for
various profiles of citizens [2]. Plenty of other initiatives
have been conducted and deployed at different levels,
from city- and national-, to European- and world-wide
platforms, and on diverse healthcare major open issues
(access to healthcare, cancer, genetic rare diseases, etc).
For instance, the World Health Organization (WHO)
collects world-wide data in their data hub [3] on vari-
ous healthcare domains, including COVID-19, mortality
and access to healthcare, and computes yearly reports [4]
after integrating and analyzing it. Another example is the
European Union, which heavily invests in rare diseases
investigation [5] since 2007, notably to develop new tools
to decipher them, as they remain largely poorly under-
stood. As of today, around 6,000 rare diseases are known
and 80% of them are of genetic origin, most of which have
no effective treatment or allow for easy diagnosis. Con-
ducting data-driven research in the context of rare dis-
eases is evidently challenging, as assembling a sufficiently
large dataset would require aggregating medical and
genetic data from patients across numerous geographi-
cally distributed clinical institutions; however, current
regulations, such as the General Data Protection Regula-
tion (GDPR), impede the aggregation of sensitive data in
a centralized repository. In response to this, the scientific
community is developing tools and solutions to analyze
medical and genetic data in a federated and secure man-
ner. These tools do not require the exchange of real data
but solely aggregate extracted information (e.g., statistics
or partial models) computed from local datasets. Per-
forming federated analyses allows the study of larger sets
of patients, potentially with heterogeneous types of data,
thus obtaining more accurate results and insights.
However, from a data perspective, federated analyses
require a significant effort in standardization and har-
monization to ensure interoperability among distributed
datasets. It is clear that manual curation and cleaning are
not feasible or scalable. Therefore, collaborating hospitals
crucially need tools to automatically integrate heteroge-
neous and sensitive datasets with interoperability as a
first-class citizen.

Conceptual models for healthcare data

Several large projects have proposed instruments for
modeling and enforcing interoperability of distributed
heterogeneous healthcare datasets, intending to facili-
tate federated analyses. Notably, the EHDEN project [6,
7] safely integrates hundreds of relational (tabular) data-
sets across Europe to provide clinicians a single endpoint
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where they can select datasets of interest for observa-
tional studies, define protocols and run analyses. For
unifying the different concepts across tables, they used
the OMOP [8] (Observational Medical Outcomes Part-
nership) conceptual model as a Common Data Model
(CDM). Similarly, [9] converts European healthcare data
to the FHIR [10] data model in order to define Deep
Learning models for early-diagnosis of children and teen-
agers regarding non-communicable chronic diseases.
There exist many widely-adopted CDMs with the same
intent of OMOP and FHIR; the most significant are i2b2
[11] for precision medicine, GCM [12, 13] for genomic
data (developed within the GeCo ERC AdG project [14])
and the Human Cell Atlas [15] for human cells, but also
general ones such as openEHR [16], and SMART [17].

To fit the input data into a CDM of choice, it is common
to rely on an ETL pipeline (Extract-Transform-Load).
This is a three-step process where data is extracted from
input sources, transformed/cleaned, and loaded into a
target data container, usually a database, whose schema is
the CDM. D-ETL [18] is a dynamic ETL pipeline partially
automating the process by providing data harmonization
techniques and simplifying the transformation process.
In turn, experts specify “ETL structured rules” for map-
ping the actual input data to the CDM. Then, these rules
are transformed into SQL statements and data is loaded
into the target database. For the more general FHIR stan-
dard, [19] proposes a 6-step workflow to help healthcare
scientists to model their data with FHIR entities — this is
a more conceptual approach of the ETL process.

Metadata for better interoperability
To allow interoperability among datasets situated at dif-
ferent institutions, it is crucial to accurately describe
each piece of information using unambiguous metadata.
Metadata is supplementary information that allows the
assignment of meaning to both the type of data and its
associated value. While metadata can be of multiple
forms, in clinical and biomedical settings it is a best
practice to (re)use existing ontologies that describe data
concepts. Many specialized ontologies exist, such as
SNOMED-CT [20] for general-purpose healthcare terms,
LOINC [21, 22] for clinical measurements, or OrphaNet
[23] for disease classification. By using ontologies, data
points can be mapped to unique ontology resources, thus
enabling interoperability among datasets of interest.
Moreover, metadata are essential to interoperability,
which is part of the “I” prescription of the FAIR princi-
ples [24], a set of guidelines to make data and its accom-
panying metadata Findable, Accessible, Interoperable,
and Reusable. In general, FAIR principles encourage IT
experts to identify their resources with unique and reus-
able identifiers (e.g., URIs), use widely used standards and
protocols, and provide rich metadata by reusing existing
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ontologies. They are, by definition, general enough to
allow their adoption by very heterogeneous projects.
Therefore, many healthcare integration systems have
been designed with FAIR principles in mind; this is the
case of UMG-MeDIC [25] and Scaleus-FD [26].

Although the principles of FAIRness are applied during
dataset processing, it is also important to assess whether
the dataset (or other digital object, such as a database)
itself meets the FAIR criteria. According to a recent
survey [27], existing assessment tools are often tied to a
given context, may involve manual assessment, and often
focus solely on data FAIRness, not considering metadata
and semantics FAIRness. A possible solution to over-
come these limitations is to integrate FAIRness assess-
ment from the start and provide explainable metrics to
users, to let them improve the quality (and FAIRness) of
their data and metadata.

Limitations and contributions

As illustrated before, many approaches have been pro-
posed to model healthcare datasets that are very het-
erogeneous (in their model and content) and to enforce
interoperability. Nevertheless, they exhibit some
limitations.

First, many of them are tied to a single data model
(e.g., EHDEN [6, 7] only integrates tabular data) or lever-
age a CDM tied to an healthcare domain (e.g., OMOP
[8] models observational data only and is hardly exten-
sible to other domains like genomic or imaging data).
Second, they all exhibit entities with specific attributes
(see, for instance, the FHIR Observation entity with its
24 attributes, including reason, status, subject,
and value). In turn, these models lead to hand-made
integration workflows (to map data concepts with those
in the model and to adapt to specific attributes) or very
abstract workflows. As an example, Dynamic-ETL [18]
(a data integration pipeline) requires experts to write
rules expressing how to match source models to OMOP.
On the contrary, [19] proposes a FHIR-based workflow
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to transform existing medical data to FHIR. However, it
does not include practical steps to realize the data inte-
gration part. The above reasons and examples emphasize
why existing models are not convenient for the transfor-
mation of existing data to those models (while we note
that they are suited for collecting new data). The main
limitations include the attribute-based models leading to
specific pipelines that are hardly reusable, and the techni-
cal barriers (e.g., map input and target models, and write
corresponding data rules) that experts may not be able to
surpass. Finally, FAIR metrics must be computed along
ETL pipelines to ensure high findability, accessibility,
interoperability, and reusability, while most works focus
on assessing the interoperability on the obtained data
[27].

In this work, we propose I-ETL, a novel framework
to enforce interoperability among heterogeneous dis-
tributed healthcare datasets. It ensures privacy, requires
moderate input from clinical experts, and computes a
holistic interoperability assessment. Our main contribu-
tions are:

1. Two tightly linked, extensible, conceptual models
for both metadata and data, based on experts’
knowledge, for achieving data interoperability within
and across hospitals’ data stores.

2. An ETL pipeline in which interoperability is a first-
class citizen, producing a target database to be used
in federated and distributed analytics contexts.

3. Guarantee of interoperability using a set of metrics
that are progressively assessed during I-ETL.

Methods

I-ETL approach and concepts

The proposed I-ETL approach is a 5-step data science
pipeline (see Fig. 1). Starting from the left side, medical
experts decide collaboratively on a specific topic to study,
e.g., pediatric intelligence disability or kidney cancer, and
select a set of datasets relevant to their chosen topic. A

Database with
CDM as schema

report

select define

ﬁll
a set of relevant
datasets features metadata

apply yield
the interoperability
ETL metrics

data
metrics

metadata
metrics

metrlcs

Across-pipeline interoperability metrics

Fig. 1 I-ETL, the framework building interoperable databases for federated analyses from heterogeneous healthcare data. Large arrows represent steps in
the framework; dashed edges connect a step to its corresponding (intermediate) result. Interoperability metrics are shown below the task during which

they are computed
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dataset is any sort of file containing data about patients;
it may be, for instance, a CSV file containing the clinical
measures obtained from blood samples, a DICOM file
obtained from an eye MRI scan, a VCF file comprising
patients’ genomic variants, etc.

Next, after inspecting the selected datasets, practitio-
ners define a set of relevant features I in those datasets.
In this work, a feature is a specific attribute of data, e.g.,
the birth date of a patient, the size of the dark regions in
MRI eye scans, etc.

Keeping F' in mind, practitioners fill the metadata M
of the chosen datasets. We define metadata as any infor-
mation providing the context to understand and interpret
a feature. Metadata typically includes the feature name,
its data type, possibly an ontology resource that could be
associated with it, etc. (details on our metadata model are
given in Sect. 2.2).

The fourth step in the global pipeline is the ETL pro-
cess (later described in Sect. 2.4). In a nutshell, this aims
at transforming the input datasets into a target data-
base whose schema is our general conceptual model for
healthcare datasets (presented in Sect. 2.3), enabling
interoperability between the ingested datasets, but also
with the other databases used in the federated analy-
sis task. During the pipeline, interoperability metrics
are collected (see Sect. 3.4) and are then reported to
practitioners.

Metadata model
After picking relevant datasets for a use case of interest,
practitioners have to select or extract a set of relevant
features in their datasets. However, simply selecting
(or extracting) a set of relevant features is not sufficient
because individual datasets, or hospitals, may encode
similar features with different names, thus prohibit-
ing interoperability. To overcome this semantic issue,
we ask experts to specify which ontology resource may
be used to represent each feature. This mapping of fea-
tures to existing ontology resources, done during the
metadata creation, improves interoperability and align-
ment between hospitals. Unmapped features can still be
referred to by their original names, even though this con-
siderably hinders interoperability.

The following list depicts our one-entity metadata
model for describing datasets with interoperability as a
first-class citizen:

+ Name: the name of the feature;

+ Ontology: the name of the ontology chosen to
represent the feature concept where ontologies can
be selected in well-known portals like BioPortal [28];

+ Code: the code of the resource in the selected
ontology that represents the feature;
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+ Kind: the type of feature, i.e., phenotypic, clinical,
genomic, image, etc;

+ DataType: the expected value type (among string,
integer, numeric, boolean, category,
date, or datetime);

« Unit: the unit to interpret the values when the
feature data type is integer or numeric;

+ Categories: when the feature is categorical, each
value is paired to an ontology resource (a pair of the
ontology name and a code).

+ Visibility: whether the values for that feature can
be shown publicly (public), after anonymization
(anonymized), or cannot be shown at all
(private), depending on their sensitivity.

Example instances. Assume we have two phenotypic
features selected from datasets for the kidney disease sce-
nario, namely age and sex:

+ The first feature is instantiated with the following
values: name is “calc_age’, ontology and code are
SNOMED-CT and “397669002”, dataType is
integer, unit is “years” while categories is null
(the feature is not categorical), and the visibility is
anonymized to prevent the access to the original
patient age (the age could be deduced if the patient is
younger or older than the average).

+ The second feature, about the sex, is instantiated
with name “sex’, ontology is SNOMED-CT with the
code “734000001”. The dataType is category, there
will be no unit and the visibility would be public.
For categories, we have two pairs: (Female,

(SNOMED-CT 248152002)) and (Male,
(SNOMED-CT 248153007)).

Common data model

After describing features with metadata, we run the ETL
pipeline to transform the input datasets in a homog-
enized, interoperable target database. This relies on a
common data model (CDM in short), which is a con-
ceptual model for representing homogeneously and mak-
ing all the selected data interoperable. Each database
included in a federated scenario, implements the same
CDM so that all databases can cooperate, be accessed,
and queried in a unified way, regardless of the heteroge-
neous datasets they carried in origin.

Our CDM is illustrated in Fig. 2; it promotes two
important characteristics. First, it isolates medical
knowledge and concepts specified in the metadata from
the actual data instances by distinguishing two con-
cepts: features and records. These two concepts are
abstractions of how any dataset can be represented and
make our model a common data model (as opposed to
a project-based data model). As previously defined, a
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Fig. 2 The interoperable conceptual model instantiated at each medical center database. Rectangles are entities, rounded boxes are relationships and
triangles are specializations. Primary keys are underlined, and optional attributes are marked with a*(star). Our cardinalities adopt the notation in [29],
e.g, a record instantiates exactly one feature, is associated with exactly one patient, and is registered by exactly one hospital. Features can be instantiated

in 0 to n record entities

FEATURE is an attribute of the data, e.g., the birth date
of a patient. Instead, a RECORD is the actual value that a
patient has for a certain feature, as produced by an hos-
pital. For instance, according to hospital H1, for patient
P1 and a feature whose name is “birth_date” the value is
“01/01/2000” Second, it describes six different kinds of
data (phenotypic, clinical, medicine, diagnosis, genomic,
and imaging), while being easily extensible to new types
of data, e.g., administrative data or patient history. This
also contributes to make our model general enough to
be considered as a common data model, possibly reused
by many other diverse projects whose goals are to model
very heterogeneous healthcare datasets in various
settings.

In our conceptual model (Fig. 2), we follow the typical
notation of Entity-Relationship diagrams [29] established
in [30]. The central entity is the RECORD; each record has
a unique identifier, a value, and the name of the dataset
to which it belongs. The value is of type any as records
may capture not only atomic values, such as integer or
boolean, but also complex ones, e.g., categories. The
value can be further anonymized depending on its sensi-
tivity (see Sect. 2.4). The attribute dataset allows to keep
track of the provenance, i.e., from where individual val-
ues come from.

Since clinicians need various kinds of data when study-
ing a research matter, the RECORD entity is specialized
in 6 entities, namely phenotypic, clinical, medicine,

diagnosis, genomic, or imaging, each of which inherits
the RECcORD attributes. Note that this set of data kinds
can be easily extended or modified for different scenarios.

When a patient has an appointment, practitioners
first collect phenotypic data, i.e., information about the
patient, the environment and habits, each value lead-
ing to a PHENOTYPICRECORD. Next, patients usually go
through a series of tests in laboratories, including blood
tests, breathing tests, skin tests, etc. For each test, cap-
tured values become CLINICALRECORD instances. If
the clinical record is associated with a sample, the sam-
ple identifier is stored in the optional attribute baseld.
Genome sequences of patients are aligned on a default
genome to obtain genomic variants. Those variants and
their associated information, such as the chromosome on
which it appears or the confidence, are represented with
the GENOMICRECORD entity. The genomic record also
saves the VCF file path from which the value has been
extracted with the attribute v¢f. Moreover, some patients
are also asked to go for MRI scans to better visualize
areas of interest. Each MRI scan is an image, from which
a set of features are extracted and each value is stored as
an IMAGINGRECORD. As for genomic records, imaging
records save the image file path from which the value has
been extracted using the attribute scan. For patients tak-
ing medicines, each information in a prescription is seen
as a MEDICINERECORD. Finally, patients may obtain a
diagnosis, leading to a DIAGNOSISRECORD.
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Each RecoRD is registered by exactly one HospPIiTAL,
i.e., a clinical institution contributing to the federated
analysis task. It has an identifier and a name. A RECORD
has for subject exactly one PATIENT, i.e., an individual
included in the studied cohort. Patients only have an
identifier because they are totally anonymized for privacy,
thus, no further personal information can be included.

Each RECORD entity instantiates exactly one FEATURE
of the same kind, e.g., a phenotypic record instantiates
a phenotypic feature. Those features are specializations
of the FEATURE entity, carrying all the attributes. Each
feature has an identifier; other attributes come from
the metadata model. In turn, each feature has a name, a
dataType, a unit, a set of categories, and a visibility. The
last four attributes are optional because: the dataType
and the visibility may not be specified by medical experts
(visibility defaults to private for privacy reasons), the
unit exists only for numerical features, and the list of cat-
egories only exists for categorical features.

A FEATURE is represented by zero or one ONTOLO-
GYRESOURCE. Sometimes, features cannot be formalized
in any ontology (hence the cardinality 0. . 1). It contains
a system, i.e., the endpoint URL to access the ontology, a
code, i.e., a unique identifier for the represented concept
in that ontology, and a label, a human-friendly name for
that concept. All of them are strings, only system and
code are mandatory (in order to identify the represented
concept).

A PHENOTYPICFEATURE captures any variable about
the factors that may affect the patient, such as the envi-
ronment, daily routine, habits, etc. A CLINICALFEATURE
may be about any chemical or clinical measurement. A
GENOMICFEATURE typically concerns the chromosomes
carrying variants, the exact position of the variant, the
type of variation (addition, deletion, mutation), etc.
IMAGINGFEATURE instances can represent diverse fea-
tures depending on the patient’s disease. For instance, if
the patient is affected by a brain tumor, the features may
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include the coordinates of the tumor in the MRI scan,
the darkness of the tumor in the scan, etc. Additional
features about the scanner and software can be included
too, e.g., the software version, the scanner name, etc. A
MEDICINEFEATURE captures variables such as the name
of the medication, the start and length of the prescrip-
tion, whether the patient took the medicine, etc. Finally,
a DIAGNOSISFEATURE captures a characteristic of the
diagnosis attributed to a patient. Diagnosis character-
istics include the diagnosis name, but also the affected
gene, whether the patient is a carrier or affected, etc.

ETL pipeline and target database

Our three-step ETL pipeline leverages the CDM for inte-
grating the input data in the target database, as shown in
Fig. 3. It takes as input the selected datasets D;, ..., D,
and their accompanying metadata M. Next, the three
steps Extract, Transform and Load are performed, as
detailed in the following. While performing them, a num-
ber of metrics for assessing interoperability are computed
to keep track of interoperability from the start to the very
end of the process.

Extract step. The input data, i.e., the metadata M spec-
ified by clinical experts and the datasets Dy, ..., D,, is
read and stored in memory. No normalization is applied
at this stage (postponed to the Transform step).

Transform step. This step creates new objects
(instances) that will fit the CDM, i.e., the conceptual
model of the target database. While creating the objects,
it also ensures that they are interoperable with each
other, e.g., by applying interoperability implementation
techniques to values. We proceed as follows:

1. A set of PATIENT instances is created as the union
of all the patients in the input datasets. Each patient
is anonymized by assigning an identifier with the
scheme (HospitalName: counter), where
HospitalName is the hospital name and counter

The ETL pipeline

Extract
1. read M

2. read D1,...,Dn

The datasets
Dy,....D,

Transform

1. create anonymized Patient instances
2. create Feature instances

Database
— with CDM

sorjewt TIH

The metadata| || 3. create Record instances with as schema
M interoperable and anonymized values
Load

1. insert all instances
2. index instances

Fig. 3 The ETL pipeline for integrating diverse and heterogeneous datasets, keeping interoperability as a first-class citizen
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is an auto-incremented number. No further personal
information is stored for patients in the CDM for
privacy reasons.

2. Each feature f € F is created based on the available
information in the metadata M and is specialized
based on its kind. An identifier of the form (
Feature:counter) is assigned to each of them.
If a feature presents both ontology name and code
in its metadata, then an ONTOLOGYRESOURCE is
created, respectively with the ontology name and
code in attributes system and code. A query asking
for the ontology resource label is sent to the ontology.
If a non-empty result is returned, it is stored in
the attribute label, otherwise the attribute remains
empty. Next, the attributes dataType, unit and
visibility are directly obtained from the metadata.
Finally, the attribute categories is computed as a map
containing pairs of a categorical value (a string) and
the associated ONTOLOGYRESOURCE instance (if it
exists).

3. REcCORD instances are created out of the input
datasets D1, ..., D,,. For each patient having a
non-empty value v for a given feature of kind &, a k
RECORD is created, and the attribute value stores v.
The dataset attribute is set to the examined
dataset D;. A unique identifier is assigned
to the new instance, namely an identifier of
the form (Record:counter). The created
record also includes three foreign keys: register,
associate, and instantiate, which are identifiers
of existing HosPITAL, PATIENT, and FEATURE
instances. Specific attributes (e.g., the baseld for
CLINICALRECORD instances) are extracted from the
dataset while creating the records.

Finally, before setting the value with v, we make the
value as interoperable and secure as possible by
proceeding as follows.

Table 1 Functions used on record values to enhance their
interoperability. If the technique does not succeed on the input
value, the function returns the value as is
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Data type Function to enable interoperability

string Normalize v (trim spaces and lower
case v)

category Yield the associated OntologyRe-
source in categories

date Cast v to an ISO format

datetime Cast v to an ISO format

boolean Castvto True orFalse

integer/numeric and
funit = Vunit = 0
integer/numericand
funit = Vunit
integer/numeric and
funit 7é Vunit

Castwvtoan integer, respectively
anumeric

Remove the unit and cast v (to int .,

resp. num.)
Yield v
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Interoperable. Each value v undergoes
transformations to enhance its interoperability, as
detailed in Table 1. Each technique depends on v’s
data type; when not applicable, the related functions
return the initial value (e.g., string “tru” cannot be
cast to a boolean, thus the function yields “tru”).
Secure. Then, we secure the interoperable (or initial)
value based on the feature visibility and dataType
attributes. When the visibility equals anonymized,
date and datetime values are deprived from their
day, respectively minutes and seconds. Otherwise
(the visibility is private or public, or the
dataType is not date nor datetime), the value v is
returned as is.

Load step. The last step of the ETL process is to load the
instances created in memory into the target database.
This includes: the HospiTAL, PATIENT, FEATURE, and
RECORD instances. After insertion, instances are indexed
to ensure fast access and querying.

Interoperability assessment

The I-ETL framework finally reports a set of interoper-
ability metrics that are computed across the integra-
tion pipeline. Concerning databases that are created
using I-ETL, interoperability can be measured at three
levels: the database is compared with itself (we call this
self-interoperability); with other databases in the same
institution (termed intra-institution interoperability);
and with the databases of other institutions (termed
inter-institution interoperability). For databases gener-
ated through I-ETL that received high metrics scores,
we ensure interoperability on all three levels. These three
levels of interoperability can be ensured both from a syn-
tactic and semantic point of view. All data providers use
the same data model (the one presented in Sect. 2.3) and
this guarantees syntactic interoperability. For semantic
interoperability, we favor it by allowing experts to map
the features of interest to well-known and widely adopted
ontologies.

We derived a set of interoperability metrics, which
-respectively- target the selected data, the created meta-
data, and the ETL process. Specifically, data metrics are
computed to assess the completeness of datasets selected
for a specific federated scenario; metadata metrics
assess the coherence and completeness of the metadata
created for the selected datasets; and ETL metrics assess
to what extent interoperability and anonymization have
been achieved during the ETL process, as well as the
coherence of the target database.

It is crucial that FAIR principles (specifically, interop-
erability) are put from the beginning of the process that
achieves the database creation. Table 2 lists our metrics,
which are computed from the start to the end to evaluate
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Table 2 The set of metrics recorded through I-ETL to assess
interoperability across the pipeline

Step Metric

Data (A1) Ratio of selected features

(A2) Ratio of datasets that do not require dedicated
extraction

Metadata (M1) Features with both non-empty ontology name

and code
(M2) Features with non-empty datalype
(M3) Features with non-empty visibility
(M4) Categorical features with non-empty set of
categories
(M5) Numerical features with non-empty unit
ETL (E1) Presence of non-empty label in Ontology Resource

(E2) Values for which interoperability implementation
has succeeded

(E3) Correspondence of numerical values unit and
Feature unit

(E4) Presence of categorical value in the Feature
categories

(E5) Records with known Hospital references
(E6) Records with known Patient references
(E7) Records with known Feature references

self-, intra-institution and inter-institution interoperabil-
ity. The next sections detail the three sets of metrics.

Data metrics

Data metrics are computed on the selected features F' for
datasets D1, ..., D,; we defined two. (A1) represents how
many features have been retained for the selected datas-
ets, providing insight of the extent to which the datasets
are mapped to metadata. Small subsets of (well-crafted)
features are generally preferable in federated scenarios,
even if possible information loss must be taken into
account. (A2) represents the number of datasets that
do not require extraction using dedicated tools. Dedi-
cated data extraction, defined as the process of identi-
fying and retrieving information using external tools, is
often needed with complex data types such as images
and genomic files. For instance, MRI scans are images for
which dedicated extraction is needed in order to obtain
data from the image itself. Examples of data extracted
from lung MRI scans include the size of dark regions in
the scan, whether abnormalities can be seen, etc. In gen-
eral, using dedicated tools may lead to an overall decrease
in interoperability, e.g., when different versions or pipe-
lines are used and/or if images are of low quality.

Metadata metrics

For metadata metrics, we evaluate the features F
described by the clinicians in the metadata M (Fig. 1,
step 3). For all features, we count how many have (M1)
both ontology and code, (M2) non-empty dataType, and
(M3) non-empty visibility. While these three attributes
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are not mandatory, they are important to achieve high
intra- and inter-institution interoperability, crucial for
the federated analysis of the datasets within an institu-
tion and with other institutions.

Next, only for categorical features, we count how many
of them have at least one associated category (M4). Val-
ues that cannot be mapped to the specified categories
decrease interoperability. Finally, we count numerical
features that are equipped with a valid unit (M5); note
that features without this information hinder the inter-
pretation of values (consider, as an example, the ambigu-
ity in determining whether age is expressed in weeks or
months).

ETL metrics

ETL metrics are computed during the Transform step
while making features and values as interoperable as
possible. We compute (E1) as the number of ontology
resources (whether they represent a Feature or a cat-
egorical value) having a non-empty label. (E1) captures
the interoperability of both features and categorical val-
ues because it is of the same importance if one of them
carries an empty label (both hinder interoperability).
The label is empty if the ontology is not provided with a
query interface or if the request sent to the ontology fails
for any reason. For instance, the LOINC resource, whose
code is L14034-6, does exist at URL https://loinc.org/
LL4034-6, but the query asking for information about this
resource returns an empty result, because the LOINC
query interface does not access the latest release of the
ontology. At this point of the ETL, failing queries affect
only the OntologyResources’ label; however, if one wants
to retrieve more information for that specific resource, it
will not be possible, thus limiting interoperability.

Next, (E2) counts the ratio of Record values for which
interoperability implementation has succeeded (recall
Table 1); (E3) counts the ratio of numerical Record values
having the same unit as the Feature they instantiate; with
(E4), we assess the quality of categorical values by check-
ing how many of them were declared in the Feature cat-
egories list that they instantiate. Overall, (E2), (E3), and
(E4) measure the coherence between metadata and data.

Finally, (E5), (E6), and (E7) ensure that all created
instances refer to (other) objects existing in the database.
This is achieved by counting how many references to
hospitals, patients, and features point to instances in the
database, preventing broken references.

Anchoring metrics to FAIR principles

To legitimate our metrics w.r.t. the FAIR principles, we
recall the three sub-principles of Interoperability and
explain how our proposed pipeline and metrics conform
to them.
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I1. Data and wmetadata use a formal, accessible,
shared, and broadly applicable language for knowledge
representation.

Our conceptual common data model is designed in a
way such that it can be implemented within any type of
database (relational, NoSQL, etc). Moreover, metadata
can be easily specified using a tabular file, such as an
Excel or CSV file, while following our metadata model.
The selected datasets can be of any machine-readable
format and dedicated extraction is applied for datasets
necessitating pre-processing.

I2. Data and metadata use vocabularies that follow
FAIR principles.

While specifying metadata, experts are asked to assign
an ontology resource to each feature of interest. Despite
not mandatory, it is highly recommended in order to
achieve good interoperability. Experts are also advised
to use well-known and recognized ontologies in their
domain. At best, the ontology is publicly accessible; oth-
erwise, it may need to be accessed under authentication,
but should not be hospital-dependent. The ETL pipeline
will reuse these ontologies to encode categorical values,
thus increasing interoperability both for metadata and
data. This aspect is tracked by ETL metrics assessing
ontology resources and categorical values.

13. Data and metadata include qualified references to
other data and metadata.

Each Record instance comprises a reference to a
patient, a hospital, and a Feature (qualified references to
the database instances), and the dataset from which the
value comes (qualified reference to the data).

Results

Implementation and scenario

I-ETL is implemented as a Python software built upon
v3.12 and the well-known, scalable, and flexible Mon-
goDB [31] database management system (v7.0.12). The
source code is available on GitHub at https://github.co
m/DEIB-GECO/i-etl. It can be easily deployed within
medical centers, possibly having various software and
hardware setups, employing its Docker image [32]. The
software includes a template CSV file for the metadata
definition, the ETL, and the computation of interoper-
ability metrics. It produces the target MongoDB data-
base. Our software needs to be set up once for each data
provider (e.g., each hospital) and can be re-run to add/
update data or metadata.

The selection of relevant datasets and features is left to
clinicians. To support them in the definition of the fea-
tures of interest, the metadata model is provided as a
pre-defined CSV file whose header corresponds to the 8
attributes of our one-entity metadata model. Then, clini-
cians gather information for each feature of interest and
fill the metadata file accordingly. The interoperability
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score of the target database highly depends on the quality
and quantity of the provided metadata.

To showcase and evaluate our approach and its imple-
mentation, we consider the study of patients with end-
stage kidney disease (ESKD) affected by COVID-19 [33].
ESKD is the last stage (stage 5) of chronic kidney disease;
this causes kidneys to be at 1/10 of their normal capac-
ity, incapable of effectively removing waste or excess
fluid from blood. Due to their renal impairment, ESKD
patients are at high risk of severe COVID-19, thus neces-
sitating extra care. From this study, we consider a sce-
nario where two hospital centers collaborate and share
their different kinds of data to run a precise federated
analysis. Here, clinicians are interested in the following
two questions:

+ “Which set of ESKD-related genes favor the
development of severe forms of COVID-19?”

+ “Which COVID symptoms are amplified due to the
renal impairment of ESKD patients?”.

We selected the open and real-life datasets provided by
[33] at [34], containing 111 patients for which pheno-
typic, diagnosis, imaging, clinical, and genomic data is
provided. We allocate datasets to our two hospitals as
follows:

+ The first hospital H; processes only genomic data.
Genomic data corresponds to RNA sequence counts
for a panel of 60,649 genes.

+ The second one, Hy, processes phenotypic,
clinical, imaging, and diagnosis data. Clinical data
comes from flow cytometry for 45 general cells,
while imaging data is about radiology evidence of
COVID-19 in patient lungs. Diagnosis data provides
information about the possible causes of ESKD as
well as its severity.

Metadata creation

Starting from the above-mentioned datasets, we defined
the set of relevant features F' and described them accord-
ing to our metadata model. The metadata has been col-
lected and mapped to existing ontologies manually.

Hospital 1 metadata

In Table 3, we report an excerpt of metadata regarding
genomic data. Original data contains RNA sequence
counts computed for a panel of 60,649 genes for all the
patients. In this panel, not all genes are relevant whilst
they are costly to process. Therefore, we filtered the
panel to keep the subsets of genes that are the 1,000 most
expressed genes for each patient. The reason is that a
high sequence count typically indicates that many reads
are associated with a gene, suggesting a higher level of
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Table 3 The metadata obtained from RNA sequence counts,
leading to genomic features. For all features, visibility = public,
unit=0

ontology code name dataType
loinc 57723-9 Sample_ID string
hgnc ENSG00000250433  ENSG00000250433.1 integer
hgnc ENSG00000258591 ENSG00000258591.2 integer
hgnc ENSG00000115902  ENSGO0000115902.11 integer
hgnc ENSG00000130234  ENSG00000130234.13  integer

gene expression. The union of the top 1,000 genes-sets
of each patient corresponds to a set of 2,382 genes, each
leading to a feature in the metadata. Next, the code asso-
ciated with each of them corresponds to the gene name
without its version (the number after the dot); this has
been computed automatically for the 2k genes. All gene
codes can be found in the HGNC [35] ontology. In the
dataset, values correspond to RNA sequence counts and
thus are integers.

Hospital 2 metadata
Metadata for phenotypic data, presented in Table 4, has
been collected by gathering personal information for
each patient. It contains nine variables, each mapped to
a SNOMED-CT code'. 77% of them are categorical, each
of them being associated with up to five categories (col-
umn categories; each value here has been mapped to a
SNOMED-CT code). The feature calc age is kept pri-
vate because patient privacy could be violated by look-
ing at young outliers (note that few patients are much
younger than the mean age of 68 years old).

For metadata about diagnoses, four public features are
retained (Table 5) and mapped to a SNOMED-CT code.

ITables 4, 5, 6, and 7 exhibit code values composed of several individual
codes, joined with operators such as : or =. The process of joining several
codes is referred to as post-coordination and is helpful when a concept/vari-
able cannot be described with a single code (mainly because it does not exist
in any ontology). We further discuss this point in Section 4.1.
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Table 5 The diagnosis metadata. For all
features, ontology = SNOMED-CT, visibility = public and unit = ®

code name dataType categories

422549004 individual_id string -

46177005 cause_eskd category DN,
Unknown,
other, GN,
HTN, Genetic

405162009: WHO_severity category ~ moderate,
mild, severe,
critical

47429007 =840539006

419620001 fatal_disease boolean -

Table 6 The metadata obtained from the imaging datasets. For
all features, ontology=SNOMED-CT, visibility = public and unit =
0]

code name dataType categories
422549004  individual_id string -
840539006: radiology_evi-  category cxr, no, not.done, yes,
dence_covid yes:CVCX1
363589002= yes:extensiveBilateralAirspa
ceConsolidation,
363680008 yes:extensiveConsolidation,

yes:leftBasallnfiltrate, yes:pa
tchyBilateralConsolidation,

yes:patchyOpacificationBot
hLungFields

The two categorical features have a reasonable number of
associated categories, each mapped to a SNOMED-CT
code.

Metadata for imaging data (Table 6) leads to two fea-
tures: the patient id and the observed anomaly in the
radiology scans (radiology evidence covid).
The latter feature has been associated with ten catego-
ries of evidence, each extracted from original imaging
scans using dedicated image processing techniques and
mapped to a SNOMED-CT code.

Finally, metadata of clinical data comes from the flow
cytometry analyses of patients. It leads to 47 features;

Table 4 The metadata obtained from the patient personal information, leading to phenotypic features. For all features,

ontology=SNOMED-CT

code name visibility dataType unit categories

422549004 individual_id public string - -

397731000 ethnicity public category - asian, white, black, other
734000001 sex public category - M, F

397669002 calc_age private integer years -

307294006: ihd public category - no, yes.stent, unknown,
246454002="IHD" yes.no.intervention, yes.cabg
307294006: 246454002 =111293003 previous_vte public category - yes.dvt, yes.pe, yes.other, no
13645005 copd public category - yes, no, copd, bi

73211009 diabetes public category - yes.T1,yesT2, no
365981007 smoking public category - never, not.current, ex

unknown, current
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Table 7 The metadata obtained from flow cytometry analyses, leading to clinical features. For all features, visibility = public, unit = ®©

ontology code name dataType
snomed ct 422549004 individual_id string
loinc 57723-9 sample_id string
snomed ct 117400003:260864003 = 732272000 CDé6b+ CD45+ numeric
snomed ct 115412003:260864003 = 732272000 CD4+T CD45+ numeric
0} (0] Siglec-1+ NKG2D-HLA-DR+ numeric

Table 8 Statistics of the databases obtained in experiments

H;y H

Feature Record Feature Record
Phenotypic - - 8 888
Clinical - - 45 748
Diagnosis - - 3 251
Imaging - - 1 70
Genomic 2,382 250,103 - -

Table 9 Interoperability assessment for the databases located
inH, and H,. Interoperability levels are: full (F: S=1), high (H: 0.8< s
< 1), low (L:s<0.8)

Metric total score total score

Al 60,650 0.04 (L) 65 0.92 (H)
A2 5 1.00 (F) 5 1.00 (F)
M1 2,382 1.00 (F) 62 0.87 (H)
M2 2,382 1.00 (F) 62 1.00 (F)
M3 2,382 1.00 (F) 62 1.00 (F)
M4 N/A N/A 10 1.00 (F)
M5 2,382 0.00 (L) 46 0.02 (L)
E1 2,382 0.99 (H) 46 1.00 (F)
E2 250,103 1.00 (F) 1,957 1.00 (F)
E3 N/A N/A 1 0.00 (L)
E4 N/A N/A 1,028 1.00 (F)
E5 250,103 1.00 (F) 1,957 1.00 (F)
E6 250,103 1.00 (F) 1,957 1.00 (F)
E7 250,103 1.00 (F) 1,957 1.00 (F)

a subset of them is shown in Table 7. Eight features
out of 47 could not be mapped to any SNOMED-CT
code because one or several of the specified acronyms
are not included in the ontology (this can be captured
by interoperability metrics, see Sect. 3.4). This is, for
instance, the case of Siglec-1 and NKG2D. All the 45
flow cytometry measures lead to numeric values, do not
present units, and are all accessible without restriction
(visibility=public).

ETL execution

When run on the initial datasets from the two hospitals
considered in our scenario, two databases H; and Hs are
consolidated — see Table 8 for numbers of corresponding
features and records grouped by kind of data. Both H;
and H; contain 111 Patients and one Hospital instance.

Interoperability assessment

Finally, I-ETL reports on the overall interoperability
of the target database by computing and displaying our
set of metrics (described in Sect. 2.4). This final step is
highly important to check that obtained databases (as
described in Table 8) are complete and sound, especially
when running federated analyses over several databases.
Table 9 lists the scores achieved for our metrics on the
databases of H; and Hs. It also provides the total num-
ber of objects accounted for the score. The score s ranges
from 0 to 1 (included), with higher values indicating bet-
ter performance.

In general, we appreciate that I-ETL created two highly
interoperable databases from the ESKD-COVID patient
data. In detail, full interoperability (s = 1.00) is achieved
for 8 metrics in H; and 10 metrics in H». High interoper-
ability (0.8 < s < 1.00) is achieved for 1 metric in H; and
2 in Hy. Low interoperability (s < 0.8) is achieved for 2
metrics in H; and 2 in Hy. Finally, 3 metrics lead to null
scores in H; (N/A values in Table 9). This is because they
were not applicable to the hospital data. For instance,
there is no categorical feature for H;, thus (M4) could not
been computed. By analyzing in more detail the achieved
interoperability scores, we observe the following:

+ The ratio of selected features (A1) is low for Hy
because only 2,382 genes were selected among
the large panel of 60,649 genes. This drastic gene
selection was necessary to run I-ETL in a reasonable
time, while not relaxing important ones for federated
analyses. In Hy, a high score is achieved because
almost all phenotypic, clinical, diagnosis, and
imaging features have been retained. Examples
of excluded features are WHO temp severity
(a duplicate of WHO severity), time from
first symptoms and time from first
positive swab (the former containing the hour
at which COVID symptoms appeared, the latter
being the hour at which the nasal test has been done
— both are not useful for understanding correlation
between ESKD and COVID).

» Assessment of (M1) in H» leads to a score of 0.87
because 8 features out of 62 could not be mapped
to existing ontology concepts. This is, for instance,
the case of the last feature shown in Table 7 because
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Siglec-1,NKG2D, HLA and DR are not associated
with any SNOMED-CT code.

+ (Mb5) leads to very low scores for both H; and
Hj, respectively 0 and 0.02. This arises because
most of the described features have no associated
unit in the metadata, e.g., only calc_age hada
unit in Hy. Empty units cover two cases (without
distinction): there is no unit for the feature (as for a
ratio), and there is one but it has not been specified.
To distinguish them and improve interoperability,
experts should explicitly specify in the metadata
when a feature has no unit. Unfortunately, this did
not happen for our experimental datasets, leading to
mostly empty units for numeric features, thus low
scores.

+ (E1) scores are very high for both H; and
Hj, meaning that almost all ontology resources
(associated with features or categorical values) carry
a label. This ensures interoperability and shows
that ontologies can provide information about their
resources.

+ (E3) leads to a null score for H; and a 0-score for
H> for the same reason mentioned above for (M5).
In Hi, no numeric value has a unit, thus leading to
the N/A score. In H», only the feature calc_age
has a unit specified in the metadata, but no unit was
provided in the data (as in the value “3years”): thus,
the score of 0.

Discussion

Challenges and limitations

The primary challenge we faced was to design a con-
ceptual data model that could fit the various kinds of
data brought by hospitals and clinical centers. Reusing
existing CDMs was deemed not possible, because many
of them are tied to entities of particular use cases, e.g.,
OMOP [8] allows to represent observational data and
is hardly extensible to model genomic information. The
more general ones, e.g., FHIR [10], lift the above limita-
tion by exhibiting entities of various kinds. This makes
them well suited to initiatives where new data needs to
be collected, processed, and stored. However, they are
not yet general enough to design automatic integration
workflows for existing data (as opposed to hand-made
ETL pipelines), notably due to they reliance on specific
attributes. Following those observations, we propose a
novel common data model based on the notions of fea-
tures and records — abstract concepts of how any data-
set can be represented. It currently represents six kinds
of healthcare-related data, but is easily usable with other
kinds, e.g., administrative or surgery-related data. This
makes our conceptual model general enough to be used
as a CDM in a wide variety of healthcare projects. In a
broader scope, our framework could be utilized in many
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other contexts, e.g., journalistic sources, spatial databases
or social human sciences sources, while only requir-
ing to design a new CDM (such as the one presented in
Fig. 2) reflecting entities of the domain and leveraging the
notions of feature and record.

For what concerns metadata creation — a crucial step to
achieve high interoperability — the main challenge lies in
the contribution of clinicians, who often do not have the
time and/or knowledge to create it. So far, experts need
to manually define all the features they are interested in,
specify their related information and map each of them
to an ontology code. Creating metadata may represent
considerable manual work, especially for federated analy-
ses where several datasets are joined. Nonetheless, this is
the only part where experts are required to do a techni-
cal work, supported by our easy-to-fill metadata model.
Even though each ontology is tailored to a particular type
of healthcare data, e.g., HGNC is for genes and LOINC
is for clinical measurements, finding appropriate ontolo-
gies and then searching them for suitable concepts is
very time-consuming. Also, some concepts are very spe-
cific, thus are not represented in any well-known -com-
monly adopted- ontology. They can be created through
post-coordination, a process to join several exiting codes.
For instance, the feature previous vte (whether
the patient already had a venous thromboembolism)
does not exist in SNOMED-CT but can be represented
with the following association of codes: “307294006:
246454002 =111293003” (meaning that there is an occur-
rence of venous thrombosis in the patient’s personal
history). Creating post-coordinated codes is even more
time-consuming.

Manual mapping also suffers from being error-prone,
especially when the number of features is large. To limit
experts’ manual efforts and errors, we envision semi-
automatic support that (i) proposes a set of ontologies in
which the concept is likely to appear (e.g., with BioPortal
Recommender [36, 37]); (ii) lets experts select the most
appropriate one; (i74) automatically proposes a set of
codes that fit the concept in the selected ontology (e.g.,
by integrating BioPortal Search [38, 39]); and (iv) lets
the expert select the most appropriate term code. Such
methods should be used in a human-in-the-loop pro-
cess. Indeed, they do rely on various metrics, including
semantic similarity measures, but have very vague or no
context about the scenario, thus may return inappropri-
ate codes. Moreover, it is crucial that medical experts are
provided user-friendly support to share their knowledge
on the context, so that accurate domain-specific informa-
tion can be ensured.

Concerning FAIR principles, the sub-principle I3, stat-
ing that qualified references to the data and metadata are
necessary, is only partially implemented so far. Indeed,
qualified references to the data are already included
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because each entity in the conceptual data model has an
identifier. However, qualified references to the metadata
are not yet included, but will be in subsequent work by
providing a catalog to browse and search datasets based
on their metadata.

Outlook

Our I-ETL framework has been developed in the context
of a large European project called BETTER [40], whose
overarching objective is to develop a decentralized and
federated analysis of healthcare data. In this project,
seven clinical centers are involved and they all work on
the general domain of genetic rare diseases. Yet, they
derived three use cases of interest, namely, pediatric
intellectual disability, retinal dystrophies, and self-harm
behaviors for autistic patients. While all of them rely
on genomic data (at least), they also use different kinds
and forms of data, thus highlighting the need for a gen-
eral and easy-to-use framework to integrate and process
them. In practice, each center provides datasets from a
plethora of different kinds for the use case they are inter-
ested in. Starting from this, we discussed with them the
healthcare research questions raised by their use cases,
their available data (clinical measurements, genomic
variants, MRI scans, etc.) and their ideas in terms of Fed-
erated Learning analyses. Next, we designed I-ETL and
our two conceptual models (for metadata and data). In
parallel, clinical experts discussed the metadata to be
considered and filled out the metadata for each of their
datasets by leveraging our metadata model. At this stage,
hospitals have agreed on common and specific features
to include in the metadata. By doing so, they ensure that
their databases can be joined for further analyses (other-
wise, each hospital would end up with a unique feature
set). This is where most of the work happens for medical
experts (formulate questions, find datasets, specify meta-
data); the rest of the pipeline is automatic and leads to a
ready-to-use database.

We are currently deploying our framework inside each
partner hospital and collecting feedback on this deploy-
ment as well as the usage of our tool. The I-ETL pipeline
has been well-received by all the different stockholders
involved in the BETTER project. Even if the overhead
in the data integration pipeline is costly and demanding,
all the actors found that the overall process of creating
an interoperable database on their server is worth the
effort as long as it allows them to later create Al federated
algorithms for medical decision making. Our next task
is to discuss with them to finalize their FL scenarios and
implement corresponding algorithms.

As future developments, BETTER aims at providing
(7) a catalog for browsing metadata and aggregated data
of target databases, as well as (i7) a platform for running
decentralized and federated analyses of the data.
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The catalog will be a website listing all the accessible
databases and providing aggregated views of the data
for each of them — we already initiated this work in [41].
For instance, the clinicians of the BETTER project may
browse the metadata of different hospitals to check which
other institutions they can join forces with. They may also
take a deeper look at the aggregated data (while original
data and the target database are never accessible outside
of centers). For instance, they can investigate the patient
age distribution as well as the set of diseases of patients
of another institution to understand whether a federated
analysis combining their data would make sense.

After deciding which datasets and which institutions
can be joined, federated analysis will be run on a plat-
form based on the Personal Health Train (PHT [42]) par-
adigm. This platform will include statistical and Al-based
models for analyzing various data stored in the underly-
ing I-ETL-based databases. In the end, clinicians will be
able to explore the results of the federated computations
and gain insights toward solving their research health-
care questions.

Conclusions
In this paper, we presented I-ETL, a framework for inte-
grating heterogeneous healthcare datasets with interop-
erability as a first-class citizen. Our contributions are the
following. First, we proposed a general data model for a
large set of health datasets, including clinical, pheno-
typic, genomic, diagnosis, imaging, and medication data.
This conceptual model serves as a common data model
for various healthcare settings. Its main strengths are to
take into consideration experts’ knowledge (metadata)
and to be easily extensible/tunable for other scenarios.
Next, we proposed and implemented an ETL pipeline
for transforming the input data into a database designed
on our conceptual model. Incidentally, I-ETL also allows
for resource savings (personnel and servers) because
it is easy to put in place and does not require a large-
scale centralized server. Finally, I-ETL provides a set of
across-pipeline metrics for assessing the interoperabil-
ity level throughout the whole process of integrating the
input data into a target database. Ensuring and assessing
interoperability also goes into the direction of data qual-
ity; well-conceptualized and homogenized datasets will
be easily used for FL analyses. Experiments on a small
open-data-based scenario with two hospitals have shown
that I-ETL can achieve high interoperability scores,
thereby enabling effective collaboration between differ-
ent medical centers, notably via federated analysis of the
target databases.

Several research directions arise from the present work
— some of which are already ongoing. First, we are now
working on the querying of the interoperable databases
(available at each center) through the catalog. This task is
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complex because, for privacy reasons, the catalog relies
on aggregated data only and the real data in the hospi-
tal servers cannot be accessed. Therefore, the challenge
here is to find the right balance between super-aggre-
gated data (very safe but not very useful due to the high
information loss) and low-aggregated data (more useful
but with privacy concerns). A subsequent direction is the
design of a human-in-the-loop recommendation mod-
ule for metadata. This would automatically recommend
ontologies and codes for a given set of features (recall
Sect. 4.1), allowing experts to save time and reduce errors
while keeping control of the obtained metadata. Another
interesting addition would be to add more context to the
records, e.g., to know whether a value has been observed
before or after surgery. This would contribute to a richer
common data model while remaining as general as pos-
sible. In parallel with these three directions, the BETTER
partners work on the implementation of the federated
analysis platform to enable the design and secure execu-
tion of Federated Learning tasks.

With this project, we learned that there is no “one-
size-fits-all” solution, especially when working in large
consortium and projects. Despite these challenges, bring-
ing computer science methods and developments to the
healthcare sector opens the road to better health systems,
improving citizens’ global health.
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