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Abstract 

Background  Genome Wide Association Studies (GWAS) are based on the observation of genome-wide sets of 
genetic variants – typically single-nucleotide polymorphisms (SNPs) – in different individuals that are associated with 
phenotypic traits. Research efforts have so far been directed to improving GWAS techniques rather than on making 
the results of GWAS interoperable with other genomic signals; this is currently hindered by the use of heterogeneous 
formats and uncoordinated experiment descriptions.

Results  To practically facilitate integrative use, we propose to include GWAS datasets within the META-BASE reposi-
tory, exploiting an integration pipeline previously studied for other genomic datasets that includes several hetero-
geneous data types in the same format, queryable from the same systems. We represent GWAS SNPs and metadata 
by means of the Genomic Data Model and include metadata within a relational representation by extending the 
Genomic Conceptual Model with a dedicated view. To further reduce the gap with the descriptions of other signals 
in the repository of genomic datasets, we perform a semantic annotation of phenotypic traits. Our pipeline is demon-
strated using two important data sources, initially organized according to different data models: the NHGRI-EBI GWAS 
Catalog and FinnGen (University of Helsinki). The integration effort finally allows us to use these datasets within multi-
sample processing queries that respond to important biological questions. These are then made usable for multi-
omic studies together with, e.g., somatic and reference mutation data, genomic annotations, epigenetic signals.

Conclusions  As a result of the our work on GWAS datasets, we enable 1) their interoperable use with several other 
homogenized and processed genomic datasets in the context of the META-BASE repository; 2) their big data process-
ing by means of the GenoMetric Query Language and associated system. Future large-scale tertiary data analysis may 
extensively benefit from the addition of GWAS results to inform several different downstream analysis workflows.
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Background
Genome-wide association studies (GWAS) aim to find 
statistical associations between genetic variants and traits 
of interest using data from a large number of individu-
als [1, 2]. They have brought a revolution to the study of 
genetics and complex diseases, identifying more than 50k 
associations between variants – typically single-nucleo-
tide polymorphisms (SNPs) – and complex traits and dis-
eases. These results are used to augment predictions for 
a variety of human “phenotypes”, an umbrella term that 
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includes a large range of semantically distinct concepts 
such as traits, diseases, medical signs, and symptoms 
(e.g., body mass index, hair color, type 2 diabetes, and 
Alzheimer’s disease [3, 4]).

Several data sources provide open access to limited 
amounts of summary-level GWAS, including the GWAS 
Atlas [5] (with a wide range of species), GWASdb v2 [6] 
(offline as of May 26th, 2022), GWAS Central  [7] (a 
toolkit for integrative access), the Open Access Database 
of Genome-wide Association Results  [8], and PheGenI 
(GWASs with NCBI databases such as Gene, dbGap, and 
OMIM). Other resources are only available for specific 
phenotypes (such as the Amyotrophic Lateral Sclero-
sis online Database [9]), for specific species (such as the 
AraGWAS Catalog [10]), or for specific purposes (such as 
DistiLD [11], checking the linkage disequilibrium blocks 
onto which SNPs and genes are mapped).

In this work, we focus on human GWAS, in par-
ticular from the NHGRI-EBI GWAS Catalog  [12] and 
FinnGen [13]. GWAS Catalog is a collection of published 
genome-wide association studies that enable investi-
gations to identify causal variants, understand disease 
mechanisms, and establish targets for novel therapies. A 
team of curators manually add metadata about publica-
tion, study design, sample, and trait information. Many 
information from GTEx  [14] are also integrated. The 
FinnGen project [13] was launched in Finland in 2017, to 
collect biological samples from 500K participants (about 
10% of the overall Finland population) in a span of time of 
six years with the aim of informing diagnostics and new 
therapies through genetic research. The University of 
Helsinki is responsible for the study, to which the nation-
wide network of Finnish biobanks participates, having 
the Helsinki Biobank coordinating the sample collection.

Currently, the several mentioned efforts are directed 
to systematize and enrich the quantity of knowledge 
available for GWAS, with attempts to 1) homogenize 
the use of different ontologies that describe phenotypic 
observations across databases  [7]; 2) make GWAS sum-
mary statistics more and more FAIR  [15]. All efforts 
conducted thus far appear to be focusing on GWAS as a 
data type that is isolated, or at most paired with anno-
tations  [16]. Unfortunately, data from different sources 
and types are typically made available using different 
protocols, expressed using heterogeneous data models 
and formats, hampering the inter-operation of GWAS 
information with other (epi)genomic signals. To address 
the lack of solutions for integrating GWAS with diverse 
genome-related datasets in a unique format, we pro-
pose to include GWAS summary-level datasets within a 
repository by adopting a set of models and frameworks 
that have been previously applied successfully. First, we 
model GWAS datasets using the Genomic Data Model 

(GDM [17]), which explicitly separates region data (sets 
of regions described by a chromosome number, start-
stop coordinates and other attributes) from metadata 
(experiment descriptions). Then, we use and extend the 
Genomic Conceptual Model (GCM  [18]) for represent-
ing the descriptions of GWAS datasets, allowing to cor-
rectly locate them in the context of large databases. We 
process GWAS datasets within the structured integration 
META-BASE framework  [19], downloading them from 
arbitrary sources (in this article we consider GWAS Cata-
log and FinnGen), transforming them into the desired 
GDM-based format, mapping the relevant information 
within a GCM-based relational database, where a seman-
tic enrichment is performed to link phenotypes to rec-
ommended or user-specified ontologies. The potential of 
our integration approach is finally illustrated by means of 
four biologically-relevant queries with the GenoMetric 
Query Language (GMQL  [20]), operating upon aligned 
Next Generation Sequencing genomic data from a vari-
ety of data sources. GMQL provides parallel computation 
in the cloud  [21], supporting queries over thousands of 
samples at the same time, taking into account region-rel-
ative positions and distances.

Methods
We employ a structured data integration process, which 
allows to retrieve GWAS datasets from their sources and 
import them in our systems. The pipeline is summarized 
in Fig. 1, representing the GWAS-specific instance of the 
META-BASE framework [19] of the GeCo project [22]1. 
The original META-BASE pipeline has been extended 
with specific modules for handling GWAS sources. The 
Downloader module has the ability to integrate rel-
evant GWAS sources (here we restrict to two example 
sources). The Transformer module transforms data into 
a shared format – employing the Genomic Data Model 
on which the output format is based. The two following 
modules only act on metadata, leaving genomic region 
data unchanged: the Mapper module is in charge of the 
extraction of selected information and its representation 
within an extended version of the Genomic Conceptual 
Model, where heterogeneity is addressed at the schema 
level; the Enricher is in charge of the integration at the 
value semantics level. Finally, the Flattener is reused 
as is to handle the conversion back to the original file-
based representation for processing within the GMQL 
system [21].

The execution of the overall process, composed of the 
five mentioned steps, is driven by an XML configuration 

1  The META-BASE Scala  [23] implementation is publicly available on the 
GitHub repository https://​github.​com/​DEIB-​GECO/​Metad​ata-​Manag​er.

https://github.com/DEIB-GECO/Metadata-Manager
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file, selecting which phase to execute, URLs of API/FTP 
servers through which data are downloaded, local paths 
to the source-specific classes, and the local path to reach 
the source-specific GDM schemata (a list of fields and 
their data types).

Download
The Downloader module connects to the endpoints 
of selected genomic data sources and produces files - 
both for the genomic data and its metadata - in original 
source-specific format, at the processing site hosting 
our repository. We build a collection of protocol-spe-
cific modules with few parameters to adapt them to new 
sources; tunings for each specific source may be neces-
sary. For the scope of this project, we focused on two 
sources, detailed next.

The GWAS Catalog  [12] started in 2015 within a col-
laborative project between EMBL-EBI (European Bio-
informatics Institute) and NHGRI (National Human 
Genome Research Institute). New studies are found 
through weekly PubMed searches and new data are man-
ually extracted from literature by domain experts, lev-
eraging an automatic pipeline that annotates SNPs with 
external knowledge. Phenotypic traits are mapped to the 
Experimental Factor Ontology (EFO [24]). The repository 
of summary statistics contains three tab-separated files 
Ancestry, Studies and Associations, which can 
be downloaded from the dedicated FTP server (https://​
ftp.​ebi.​ac.​uk). New versions of the repository are released 
monthly. In this work, we focus on the stable release of 
May 6th, 2021 that includes 16,854 studies, correspond-
ing to 257,352 associations between SNPs and related 

traits. The Studies file contains one entry for each trait 
analysed in a study on PubMed; studies regarding mul-
tiple traits are split in multiple entries. The Ancestry 
file contains information about the cohorts of patients 
who participated to the studies (including cohort’s size 
and geographical provenance). The Associations 
file contains one row for each association (i.e., relation 
between an SNP and the study-targeted trait), equipped 
with statistical properties about the found correlations 
(e.g., p-value). The three files can be merged by means 
of a number of shared attributes, including the ‘STUDY 
ACCESSION’. Additional file 1 reports the complete list 
of the attributes of the Catalog with their description and 
indication of which file contains them as well as three 
tables with example content.

The FinnGen project  [13] was born from the collabo-
ration between private and public Finnish institutes, 
started in Autumn 2017. It aims to improve human health 
through genetic research, paving the road to personal-
ized medicine with ad-hoc treatments. The project aims 
to reach a cohort of 500,000 participants by 2023: every 
Finnish person can join the project and become part of 
study cohorts by giving appropriate consent. All individ-
uals are genotyped using GWAS. The outcome of these 
studies are the SNPs found relevant for the phenotypes 
under consideration, called ‘endpoints’ in the FinnGen 
context. Data can be accessed through different channels, 
both programmatically or via a web browser. The reposi-
tory is updated twice a year and it becomes publicly avail-
able one year after it is produced. For our purposes, we 
consider the release 5, published in May 2021, containing 
the SNPs associated to 2,804 endpoints. The repository 

Fig. 1  Data extraction and integration pipeline including Download, Transform (based on the Genomic Data Model), Map (based on an extended 
version of the Genomic Conceptual Model), Enrich, and Flatten steps

https://ftp.ebi.ac.uk
https://ftp.ebi.ac.uk
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is composed by two main modules: summary statistic 
(including all the SNPs associated to the relative phe-
notype and statistical properties of the SNPs) and fine-
mapping, not considered here (including the outcomes of 
the fine-mapping process with the SuSiE  [25] and FIN-
EMAP [26] softwares). In Additional file 2, we report the 
complete list of the attributes of the FinnGen summary 
statistics and three tables with example content. We 
download the manifest (made available for each project’s 
release), which contains a list of endpoints, one for each 
considered trait. We then call each trait endpoint, down-
loading the corresponding summary statistics file and 
saving all of them in the specified local folder.

Transformation
The Transformer deals with the lack of agreement 
towards a standard data unit for genomic tertiary analy-
sis. We propose to use the “sample” of the Genomic Data 
Model (GDM [17]), in contrast with other more complex 
or hierarchical solutions. The module takes, as its input, 
the data and metadata files resulting from the Down-
load phase and transforms them into a GDM-compliant 
format, resolving two kinds of heterogeneity of genomic 
files: 1) the different data units; 2) the different data sche-
mata within each unit. GDM is based on the notions of 
datasets and samples; datasets are collections of samples. 
Samples are the basic unit of information, containing 
experimental data that corresponds to a given individual 
and preparation (e.g., cell line and antibody used) that 
first undergoes sequencing (producing “raw data”), then 

alignment and calling steps (producing “processed data”). 
Each sample includes DNA segments or regions (called 
region data) and it is associated with information about 
the performed experiment, i.e., metadata describing 
the general properties of the sample. Genomic region 
and feature data can describe many molecular aspects, 
which are measured individually; the resulting variety of 
formats hampers their integration and comprehensive 
assessment. GDM provides a schema to the genomic fea-
tures of DNA/RNA regions, making heterogeneous data 
self-describing and interoperable.

The original files are translated into the GDM format, 
which has a fixed part – representing the genomic coor-
dinates – that guarantees the comparability of regions 
produced by different kinds of processing, and a vari-
able part, i.e., data-type-specific attributes, describing 
region properties, reflecting the process of feature calling 
that produced the regions with their features specific of 
the particular processing experiment. GDM represents 
metadata using a free arbitrary semi-structured attrib-
ute-value pairs structure.

Figure  2 shows how a GWAS data genome track is 
modeled as a GDM sample. Each blue rectangle becomes 
a region following the schema indicated in bold, where 
id is unique for each sample, chr, start, stop, 
strand are the fixed part, and REGION, REPORTED 
GENE(S), etc. are the variable one. Each region data file 
is tightly linked to its metadata file (with the same identi-
fier). A typical GDM dataset (including the GWASs ones) 
contains thousands of samples like the one represented 

Fig. 2  The Genomic Data Model [17] applied to GWAS data
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here. For GWAS Catalog, the transformation of the 
region data concerns only the four coordinate attrib-
utes; other attributes in the schema are reported as they 
are in Associations. The attribute chrom is derived 
from the original attribute CHR_ID when present, else 
from STRONGEST SNP-RISK ALLELE. The start is 
derived from CHR_POS, and end is the start+1. The 
strand information is not available, thus is set to ‘*’ by 
default. For FinnGen, the transformation phase only con-
cerns coordinate attributes: chrom is called ‘#chrom’; 
start is derived from ‘pos’ and end is start+1 as we 
only represent SNPs; the strand is unknown (set to ‘*’). 
The remaining attributes in the schema are copied as is. 
Additional file 3 shows the correspondences between the 
region attributes of the two genomic sources GWAS Cat-
alog and FinnGen.

Mapping
The Mapper module is in charge of the integration at the 
schema-level of a set of transformed metadata produced 
for each source. The method applies local-to-global map-
pings using a syntax inspired to Datalog  [27]. Mapping 
rules build relational rows from the key-value pairs out-
put by the Transformer step to achieve the integration 
of different local schemata into a unique local one, i.e., 
an extended GWAS-compliant version of the Genomic 
Conceptual Model [28].

For supporting metadata search in a semantic-aware 
way, the Genomic Conceptual Model (GCM  [18]) was 
previously proposed. The GCM is centered on the 
concept of item (i.e., typically a sample file contain-
ing genomic regions and their properties), described by 
four metadata views that explain its characteristics from 
the biological, technical, organizational, and computa-
tional perspectives. We map the concept of “study” on 
the existing Item entity; a GWAS “publication” maps to 
the GCM CaseStudy entity; a “trait” has a strong cor-
respondence with the GCM BioSample’s disease 
attribute. Samples of typical sources integrated within 
the GCM are assigned to single individuals; for each bio-
logical sample we can retrieve the information about the 
donor(s) who provided it. However, GWASs are based 
on cohorts of patients, so the considered granularity is 
coarser with respect to already integrated datasets. The 
existing GCM biological view cannot capture the con-
cept of “cohort” (a population that is divided into case 
and control individuals, either exhibiting or not a certain 
trait) and “ancestry” (of donor individuals) that are rel-
evant for GWAS. For each GWAS sample (correspond-
ing to summary statistics) we only know the cohort size 
and limited ancestral information, while detailed infor-
mation about each single component of the cohort is 
not available. To meet the constraints of the considered 

class of studies, we have extended the GCM introducing 
a new GWAS-specific view; the resulting schema, called 
Extended Genomic Conceptual Model, can be appreci-
ated in [28].

According to this view, the central entity Item is 
interpreted as a GWAS study, i.e., a file that contains 
all the SNPs associated with the phenotype under con-
sideration; each study has a corresponding Cohort, 
which includes the information about the groups of 
people from which the biological sample is collected, 
gathered to study a specific phenotypic trait (trait_
name attribute). Specifically, the regions represented 
within the Item are obtained by comparing the DNA 
sequences of cases (people affected by the pheno-
type) with controls (people not showing that phe-
notype). An Item may represent a sample at different 
stages (initial or replication); each study may 
be based upon groups of individuals or on trios. 
The Cohort entity stores the cardinalities of the cases, 
controls, individuals or trios that provide the corre-
sponding item, both of the initial stage or replicate 
stage(s). A Cohort can reference many Ancestries, 
each containing given ancestral information about the 
represented partition, e.g., the country of origin, the 
ancestral category or the country from which the par-
ticipants are selected.

This module required an ad-hoc implementation to 
create the computational structure for the novel GWAS 
view of the model. Note that each GWAS study has one 
cohort, but can have more than one ancestry; to indicate 
this, we append an ordinal number to all the attributes 
referring to ancestries (e.g., broad_ancestral_category_
[0_9]). As an example, let us consider the metadata file 
of the GCST007269 study; as its cohort is linked to seven 
different Ancestries, we will include the metadata 
pairs: 〈broad_ancestral_category_1, European〉 , 
〈broad_ancestral_category_2, Asian unspeci-
fied〉 , ..., 〈broad_ancestral_category_7, Euro-
pean〉 . This allows us to create, correspondingly, seven 
referenced rows in the Ancestry table.

Semantic Enrichment
During this step, the trait_name of the Cohort table 
(extracted from the output of the Mapper) is associated 
with controlled terms, lists of synonyms and hyperonyms, 
and external links to reference ontologies. The result of 
this phase complements the information contained in the 
database of metadata. The adoption of a specific knowl-
edge base for this attribute provides us with value nor-
malization. Using external knowledge bases is essential 
in the biomedical domain, where specialized ontologies 
are already available and well-recognized. This process 
is supervised and requires a preliminary selection of the 
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most suitable ontologies to describe the attribute (as pre-
viously applied to other attributes [19, 29]).

Ontological access to genomic data is currently well-
supported by several search services, which are capable 
to integrate a high number of ontologies. As a broker 
search service to the underlying ontologies, we chose 
the Ontology Lookup Service (OLS  [30]) by EMBL-
EBI2. OLS provides ontology search, visualization, and 
ontology-based services. The accepted input is a key-
word, the provided result is a list of annotations. In the 
API request, a fieldList parameter can be used to specify 
the specific elements to be included in the output along 
with other formatting preferences.

For each distinct value of the relational database 
trait_name field, resulting from the union of all the 
traits from GWAS Catalog and FinnGen, we perform one 
call to OLS API whose results is stored in the following 
form: the original value (called raw); possible parsed 
values deriving from a simple syntactic pre-processing 
of raw (e.g., removal of punctuation, split of long expres-
sions...); the 〈ontology,ontology_id〉 pair, uniquely 
identifying an ontological term within a service; pref_
label and synonym, respectively the primary textual 
expression used for the term and its alternative version; 
score, information regarding the goodness of a match: 
10, when there is a perfect match with a pref_label, 9 
with a synonym.

In total, from OLS, we were able to retrieve 4,694 
original trait_name raw values to be enriched, 
which resulted into 5,145 distinct parsed values (a 
portion of original values were split by comma). Out 
of   120K API calls performed on OLS, about one half 
found partial/exact matches with terms in 232 differ-
ent ontologies. Such matches were used for calculat-
ing more advanced scores. An excerpt of the results is 
shown in Table 1. We calculate the match_score as a 
measure of how well a term from the ontology matches 
a value: we subtract from the initial score (10 or 9) the 
distance between the raw value and the label retrieved 
from the services (either pref_label o synonym).

The distance is computed using the principle of 
the Needleman-Wunsch algorithm  [34]; in the origi-
nal algorithm, the input is represented by two strings 
whose letters need to be aligned. We adapted the 
algorihm to ‘align’ words rather than letters. The total 
distance is calculated as a sum of distances between 
words where a match contributes 0 distance; a swap 
(when two consecutive words trade places) 0.5 dis-
tance; an insertion 1 distance; a deletion 2 distance; and 
a mismatch 2.5 distance. The algorithm minimizes the 

number of deletions and prefers swaps to indels or mis-
matches (Table 1).

Each ontology is scored from two perspectives: i) 
the onto_acceptance, i.e., how well-known and 
trusted the ontology is by the biomedical community 
(retrieved through Recommender Web Services [32]3); 
ii) the onto_suitability, i.e., how much the 
ontology is adequate for annotating traits. For a given 
ontology, suitability is calculated as the product of: 
a) the coverage (percentage of raw values success-
fully annotated by the ontology); b) the sum of the 
match_scores associated to all obtained annota-
tions, normalized by the number of total annotations. 
Intuitively, the score will be higher if the ontology 
annotates more terms with pref_labels rather than 
with synonyms.

Finally, for each annotation, i.e., the mapping between 
a parsed value and an ontology term (ontology_
id), we compute an overall annotation_score by 
multiplying each raw value’s match_score by a lin-
ear combination of onto_suitability and onto_
acceptance. Based on the annotation_scores 
obtained for each parsed value using different ontolo-
gies, we informed the service evaluation phase. Spe-
cifically, we aggregate results by grouping on specific 
ontologies, thereby computing the Coverage as the per-
centage of raw values that are found in each ontology; 
the Score as the average match_score of all the anno-
tated attribute values weighted by the onto_accept-
ance; the Suitability as the measure of the adequacy 
of the ontology to annotate the attribute values. Since 
most of the times only one ontology does not provide 
an acceptable coverage for all the attribute values, we 
also compute a small set of ontologies to annotate val-
ues. Our algorithm first tries to match values only with 
the first (most appropriate) ontology, then tries to match 
only the values left unmatched with the following ontol-
ogies, until a fixed point is found for coverage. As a con-
sequence, we compute the SetCoverage, SetScore, and 
SetSuitability metrics, corresponding to these small sets 
of ontologies.

Flattening
Results of the transformation, mapping, and enrichment 
stages are fed back to the file-based representation of 
metadata (in GDM format), so that the pipelines that use 
this representation can exploit the understanding, mod-
eling, and integration efforts that have been applied on 
GWAS information.

2  Details on this choice are provided in [29]; considered alternatives are Bio-
Portal [31], Recommender [32], and Zooma [33].

3  The Recommender Web Services calculate it from the number of visits to 
the ontology page in BioPortal and the presence or absence of the ontology in 
UMLS [35].
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Table 1  We collect the results of each call to OLS API in a table that contains: raw value (input value to the program, before parsing—
not shown here); parsed value (input value after parsing the raw value); ontology (used to annotate the input value—not shown 
here); ontology_id (id of the term in the ontology used for annotating the parsed value); pref_label (preferred label of the 
ontological term used for the annotation); synonym (a list of synonyms associated to the term corresponding to the ontology id); 
match_score (where (P) and (S) respectively indicate that the score was calculated subtracting a penalty from the 10 or 9 initial 
match scores); onto_suitability; onto_acceptance; annotation_score. The table shows an excerpt of our results, 
ordered by descending annotation score

parsed ontology pref match onto onto annot.
value id label synonyms score suit. acc. score

creatinine meas. NCIT_C64547 Creatinine Measurement Creatinine, Creatinine Level, ... 10 (P) 4.39 0.86 5.23

creatinine meas. NCIT_C61048 Urine Creatinine Measurement Urine Creatinine Measurement 9 (P) 4.39 0.86 4.71

mean arterial pressure NCIT_C120935 Mean Pulmonary Arterial 
Pressure

MPAP, Mean Pulmonary Arterial 
Pressure

9 (P) 4.39 0.86 4.71

diverticulitis EFO_1001460 diverticulitis digestive tract diverticulum 
inflammation, ...

10 (P) 3.40 0.32 3.36

survival time EFO_0000714 survival time survival, time of survival 10 (P) 3.40 0.32 3.36

diastolic blood pressure EFO_0006336 diastolic blood pressure DIABP, diastolic pressure 10 (P) 3.40 0.32 3.36

viral load EFO_0010125 viral load viral titer, viral titre, viral burden 10 (P) 3.40 0.32 3.36

mean corpuscular hemoglobin EFO_0004527 mean corpuscular hemoglobin MCH, mean corpuscular hae-
moglobin

10 (P) 3.40 0.32 3.36

calcium measurement EFO_0004838 calcium measurement calcium levels 10 (P) 3.40 0.32 3.36

autoimmune disease EFO_0005140 autoimmune disease autoimmunity 10 (P) 3.40 0.32 3.36

moderate albuminuria HP_0012594 Moderate albuminuria High urine albumin levels, 
Microalbuminuria

10 (P) 3.40 0.32 3.36

glomerular filtration rate EFO_0005208 glomerular filtration rate GFR 10 (P) 3.40 0.32 3.36

anxiety EFO_0005230 anxiety 10 (P) 3.40 0.32 3.36

diaphragmatic hernia EFO_0007216 congenital diaphragmatic 
hernia

CDH, congenital diaphragmatic 
hernia, ...

9 (P) 3.40 0.32 3.02

sarcoidosis EFO_0010723 ocular sarcoidosis 9 (P) 3.40 0.32 3.02

sneeze EFO_0007887 autosomal dominant compel-
ling helio...

photic sneeze reflex, Peroutka 
sneeze

8 (S) 3.40 0.32 2.69

anorexia nervosa HP_0002039 Anorexia Anorexia 8 (P) 3.40 0.32 2.69

lean body mass NCIT_C139219 Lean Body Mass to Total Body 
Mass Ratio

Lean Body Mass to Total Body 
Mass Ratio, ...

5 (P) 4.39 0.86 2.62

fasting blood insulin meas. EFO_0004465 fasting blood glucose meas. fasting glucose-related traits, ... 7.5 (P) 3.40 0.32 2.52

protozoal diseases MONDO_0001955 protozoal dysentery 7.5 (P) 3.40 0.26 2.43

primary sclerosing EFO_0004268 sclerosing cholangitis fibrosing cholangitis, cholangi-
tis, sclerosing, ...

7 (P) 3.40 0.32 2.35

event free survival time EFO_0004919 metastasis free survival metastasis free survival time 6.5 (S) 3.40 0.32 2.18

response to vancomycin NCIT_C76312 Vancomycin Resistant Entero-
coccus

Vancomycin-Resistant Entero-
coccus, VRE, ...

4 (P) 4.39 0.86 2.09

fish oil supplement exposure 
meas.

EFO_0009116 vitamin supplement exposure 
measurement

vitamin use exposure measure-
ment

5.5 (P) 3.40 0.32 1.85

magnesium:creatinine ratio 
meas.

EFO_0007635 concentration dose ratio CDR measurement 4.5 (S) 3.40 0.32 1.51

other and unspecified EFO_0009734 unspecified juvenile idiopathic 
arthritis

unspecified JIA, ... 4 (S) 3.40 0.32 1.34

pre-eclampsia DOID_10591 pre-eclampsia gestational hypertension, ... 10 (P) 0.14 0.39 0.89

bipolar disorder DOID_3312 bipolar disorder bipolar depression, manic 
disorder, ...

10 (P) 0.09 0.39 0.85

binocular movement MP_0006148 binocular blindness 7.5 (P) 0.59 0.28 0.77

asthma HP_0002099 Asthma Bronchial asthma, Asthma 10 (P) 0.16 0.31 0.75

stroke SYMP_0000734 stroke cerebral accident, brain attack, 
apoplexy, ...

10 (P) 0.10 0.25 0.58

schizophrenia OMIT_0013465 Schizophrenia, Paranoid 9 (P) 0.27 0.18 0.52

schizophrenia OMIT_0013464 Schizophrenia, Disorganized 9 (P) 0.27 0.18 0.52
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Results
The Methods have presented all the steps to reach a 
complete integration of the datasets of two selected data 
sources within the META-BASE repository. Measurable 
results are produced at the end of the Semantic Enrich-
ment and of the Flattening. In this section, we provide 
a preliminary measurement of how the proposed steps 
contributed to resolving two main needs: i) the lack of 
interoperability between phenotypic traits among GWAS 
sources and cross-data-type source; ii) the lack of solu-
tions for processing GWAS studies with other genomic 
signals. To address the first point, we propose a systema-
tization of the enrichment process, allowing GWAS phe-
notypic traits to be connected to arbitrary ontologies, 
either selected through an automatic evaluation process 
or specified by users; to address the second point, we 
enable the possibility to query GWAS datasets by means 
of the GenoMetric Query Language (GMQL [20]), over-
coming heterogeneity between GWAS sources and other 
kinds of genomic sources.

Semantic Enrichment
Ontology Selection
The results of our selection, based on the calculations 
presented in the Methods ‘Semantic Enrichment’ sec-
tion, are shown in Table  2, where we indicate the pre-
ferred ontology sets with three indicators: SetCoverage, 
SetScore, and SetSuitability. Note that a second preferred 
ontology is added when the first one did not reach 0.85 
coverage; in such case, indicators refer to the union of the 
ontologies. Additional file 4 contains the complete table 

with the scores associated to all the computed sets of one, 
two, and three ontologies.

As a final outcome, we choose the Experimental Fac-
tor Ontology (EFO) and the National Cancer Institute 
Thesaurus (NCIT [36]) to annotate the trait values of our 
sources. Note that we sacrificed coverage (by not choos-
ing the triplet of ontologies EFO, NCIT, SNOMED [37]) 
to prefer a minimal set of ontologies that already reaches 
acceptable results. Note that the choice of EFO and NCIT 
is also consistent with the history of the data sources (i.e., 
GWAS Catalog traits are originally curated with EFO), 
and also guarantees interoperability with the GCM dis-
ease field, which is also enriched using the NCIT.

Enrichment Process
After selecting the ontology set, we proceed with the 
enrichment of the trait values. The process is supported 
by an interactive tool4 that annotates values with con-
cepts from the chosen ontologies and allows to han-
dle expert user feedback when annotations have a low 
matching score: users can either accept one of the pro-
posed solutions, or manually specify new annotations.

The result of the enrichment is contained within the 
relational database described in the logical schema of 
Fig.  3, whose blue part represents the tables from the 
GCM (of which we only show in detail the ones which 
have ontological attributes), and whose orange part 
(called Knowledge Base) is populated from ontologies 

Table 1  (continued)

parsed ontology pref match onto onto annot.
value id label synonyms score suit. acc. score

creatinine measurement MAXO_0000832 serum creatinine measurement 9 (P) 0.31 0.13 0.46

bipolar disorder NBO_0000258 bipolar disorder BD, manic depression, bipolar 
affective disorder

10 (P) 0.08 0.19 0.44

postydysenteric arthropathy MPATH_684 arthropathy 8 (P) 0.05 0.19 0.34

inflammatory biomarker meas. MAXO_0000554 interleukin-1 beta biomarker 
measurement

IL-1 beta assessment 6.5 (P) 0.31 0.13 0.33

Table 2  Results of ontology evaluation and selection process

Preferred ontologies SetCoverage SetScore SetSuitability

Best for coverage EFO 0.801 1.430 3.405

Best for score/suit. NCIT 0.777 2.947 4.387

Best pair for coverage EFO, NCIT 0.928 1.638 3.540

Best pair for score/suit. NCIT, ENM 0.875 2.624 3.919

Best triplet for coverage EFO, NCIT, SNOMED 0.969 1.694 3.576

4  The GitHub repository of the Enricher tool is https://​github.​com/​DEIB-​
GECO/​Metad​ata-​Enric​her.

https://github.com/DEIB-GECO/Metadata-Enricher
https://github.com/DEIB-GECO/Metadata-Enricher
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and referenced from the trait_name attribute; it 
stores all the information retrieved from OLS services 
and relevant to annotate our values. The main tables of 
the Knowledge Base are: Vocabulary, Synonym, con-
taining alternative labels that can be used as synonyms 
of the preferred label, Reference, containing references 
to equivalent terms from other ontologies, Ontology, 
a table presenting details on the specialized ontolo-
gies; Relationship, containing ontological hierarchies 
between terms and the type of the relationships.

The GCM attribute trait_name is equipped with 
a companion-attribute trait_name_tid that refer-
ences the ontological term in the vocabulary table. Value 
enrichment is a supervised procedure: for each value 
associated to a trait_name, the system initially looks 
for a suitable term in the Knowledge Base; if a match is 
available the procedure is completed. Else, a match is 
searched on the specified ontologies (EFO and NCIT) 
on OLS. Once the term has been selected, we populate 
the tables of the Knowledge Base with all the informa-
tion derived from OLS regarding the term: description, 
iri, synonyms, xrefs, hyperonyms and hyponyms (both 
of is_a and part_of kinds). The depths of ancestors and 
descendants retrieved from the ontology are configurable 
by constant specification.

With the current implementation and data, the auto-
matic enrichment process successfully annotates the 
63% of original raw values, meaning that this fraction 
of the input values is annotated with ontological terms 
that reach a match_score of at least 5 (out of 10, i.e., 

perfect match with a preferred label). The remaining non-
annotated values can be handled using a manual curation 
procedure, which supports the expert user by providing 
suggestions (e.g., terms for which a low match score was 
found). In any case, a manual annotation can always be 
provided. So far, we enriched attribute values by linking 
them to 3,004 terms, 1,877 from EFO and 1,127 from 
NCIT. In addition to terms that directly annotate values, 
we included all terms that could be reached by traversing 
up to three ontology levels from the base term.

Semantic overlap across data sources
By means of the semantic enrichment process, which 
took in input 3,276 distinct traits from the GWAS Cata-
log and 2,778 traits (endpoints) from FinnGen, we were 
able to find 90 common concepts (i.e., ontological terms 
that are referenced by – possibly several – distinct data-
sets both in GWAS Catalog and FinnGen); see their list 
in Additional file  5. Interestingly, the NCIT terms used 
for annotation allowed us also to make connection with 
diseases present in the metadata of other data sources 
present in the META-BASE repository. Namely, we had 
4 matches with ENCODE [38] datasets, regarding ‘colo-
rectal carcinoma’, ‘hepatocellular adenocarcinoma’, ‘hepa-
tocellular carcinoma’, and ‘squamous cell carcinoma; 
mesothelioma’. Similarly, we had 5 matches with The 
Cancer Genome Atlas  [39] datasets, regarding ‘Cholan-
giocarcinoma’, ‘Esophageal Carcinoma’, ‘Head and Neck 
Squamous Cell Carcinoma’, ‘Liver Hepatocellular Carci-
noma’, ‘Lung Adenocarcinoma’, showing potential for our 

Fig. 3  Logical schema of the database for handling GWAS datasets
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approach and indicating the possibility to use the new 
GWAS datasets together with processed data describing 
other genomic signals.

Figure  4 shows the possibility to process together the 
SNPs from three FinnGen endpoints and two GWAS 
Catalog studies as they all refer to phenotype concepts 
that concern the general concept of ‘appendicitis’, cap-
tured by the C35145 term of the NCI Thesaurus.

Datasets interoperability
Genome-wide association studies inform on the correla-
tions between many phenotypes and their corresponding 
mutations of DNA. The exact interpretation of that SNPs 
is not trivial for two reasons: 1) the outputs of GWASs 
are often large clusters of SNPs in linkage disequilibrium, 
making it difficult to distinguish causal SNPs from neu-
tral variants in linkage; 2) even assuming that the causal 
variants can be identified, interpretation is limited by 
incomplete knowledge of non-coding regulatory ele-
ments, their mechanisms of action and the cellular states 
and processes in which they function. For the aforemen-
tioned reasons, it becomes important to further inves-
tigate GWAS data by merging and analyzing different 
genomic datasets.

In this section, we show examples of application of 
the GenoMetric Query Language (GMQL  [20]) on the 
GWAS standardized data, highlighting the advantages of 
our data representation in terms of information retrieval 
and integrative processing. GMQL is a closed algebra 
over datasets with the ability of computing distance-
related queries along the genome, seen as a sequence 
of positions. GMQL is capable of expressing high-level 
queries for genomic computations and executes them 
on big datasets over a cloud computing system  [21] 
(employing Apache Spark [40] as its backbone), specific 
for genomic data processing. The GMQL system  [41] 
contains a multiplicity of public genomic datasets from 

a variety of sources, ready to be used within tertiary 
analysis pipelines; it features datasets from sources such 
as ENCODE, The Cancer Genome Atlas [39], Roadmap 
Epigenomics  [42], and 1000 Genomes  [43], among oth-
ers. GWAS Catalog and FinnGen datasets (available 
at http://​gmql.​eu/​gwas/) can be easily uploaded in the 
GMQL system private space of any user and processed 
together with the ones in the GMQL repository (as 
shown, e.g., in [44]).

In the following, we propose four use cases along 
with their GMQL queries (which can be alternatively 
expressed using the Python [45] or R [46] packages); we 
focus on query aspects, acting on both region data and 
metadata, which highlight the strengths of the datasets 
produced by our work. For further details about the 
reported GMQL operators, the interested readers can 
refer to [47].

Breast cancer GWAS SNPs on relevant genes
The Cancer Genome Atlas (TCGA [39]) gathers multiple 
genomic datasets related to 37 different types of cancer; 
these include gene expression profiling, copy number 
variation profiling, SNP genotyping, genome wide DNA 
methylation profiling, microRNA profiling, and exon 
sequencing. TCGA has been converted to GDM-compli-
ant format in OpenGDC [48], then imported within the 
GMQL repository. Mapping SNPs indentified by GWAS 
onto TCGA profiles of gene expression for a given type 
of cancer can support a better understanding of given 
cancer types’ risk factors. For breast cancer data, we map 
highly expressed genes from TCGA dataset onto SNPs 
from GWAS, we focus on the genes BRCA1 and BRCA2, 
as germline mutations in those genes are the main part of 
genetic and hereditary factors for breast cancer [49]; we 
finally extract only regions having at least one overlap-
ping SNP taken from GWAS studies mapped to the same 
trait.

Fig. 4  Enrichment of different Cohorts trait names’ values

http://gmql.eu/gwas/


Page 11 of 20Bernasconi et al. BMC Genomic Data           (2023) 24:13 	

Code snippet 1  GMQL query extracting highly expressed regions of BRCA1 and BRCA2 genes harbouring GWAS SNPs associated to breast carcinoma

The GMQL query in the Code snippet 1 loads the stud-
ies from GWAS Catalog mapped to the trait ‘breast car-
cinoma’ (line 2) and the data referred to genes BRCA1 
and BRCA2 from the GRCh38_TCGA_gene_expression 
dataset (line 4), which are merged within a single sample 
grouping all the regions from the TCGA samples (line 
6). Then, the metadata of such sample are extended with 
an additional attribute that represents the third quartile 
of FPKM5 (i.e., the value above which only 25% regions 
fall), line 8. Such value is used as a threshold to extract 
only regions that are highly expressed (line 9). Line 11 
presents the core operation of the query: MAP compares 
the regions of the GENE_EXP dataset (called reference) 
with the GWAS dataset of SNPs (called experiment). The 
result reports all the regions of the dataset GENE_EXP, 
equipped with counts of how many SNPs they overlap 
with (when the count is positive, see line 12).

A typical row of the result materialized by line 13 has 
the following form: 〈 chr, left, right, gene, fpkm, count_
snps, quart3 〉 = 〈 chr13, 32315473, 32400266, BRCA2, 
347792385, 1, 283041330.3 〉 . This example query takes 
about 7 minutes and returns 5 samples with a total 
of 440 regions (17.24 MB). All the regions in the out-
put are referred to the gene BRCA2; no overlapping 
SNPs are found for gene BRCA1. The resulting regions 

can be further processed using bioinformatics pipe-
lines or computational approaches that combine them 
with the results of other studies, for instance allowing 
to prioritize positions of interest for a more complete 
explanation of breast cancer mechanisms (e.g., distant 
metastasis [50], cancer predisposition [51], or promoter 
activity [52]).

GWAS SNPs occurring on untranslated regions
The GENCODE consortium [53] provides manual anno-
tations of the human genome and it is the reference for 
annotations adopted by most large international con-
sortia including ENCODE and TCGA. Among other 
annotations (comprising protein-coding genes, pseu-
dogenes, long non-coding RNAs, and small non-cod-
ing RNAs), we focus on untranslated regions (UTRs). 
Genetic variants in the coding sequence of a gene 
(exons) have often been given priority (because of their 
easier interpretation). Nevertheless, it has been known 
for long that coding sequence variants per se are insuf-
ficient for mapping complex diseases. Variants in the 
intervening sequences (introns) or in the untranslated 
regions (UTRs) – although not changing the predicted 
protein sequence – may instead be pivotal in the regula-
tion of gene expression  [54]. The UTRs are the mRNA 
sequences flanking the beginning and end of the coding 
sequences; as their name suggests, UTRs are part of the 
mRNA but are not translated into proteins. Mutations 
occurring in UTRs are difficult to interpret and associ-
ated with consequences.5  FPKM stands for Fragments Per Kilobase of transcript per Million mapped 

reads values of its regions.
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Code snippet 2  GMQL query that extracts UTR regions on which SNPs associated to the “primary biliary cirhosis” trait occur.

With GMQL we can contribute to explore this issue by 
allowing, for arbitrary GWAS traits, to quickly map all 
SNPs onto UTRs, as they are annotated in GENCODE. 
The GMQL query reported in the Code snippet 2 selects 
GWAS Catalog studies mapped to the “primary biliary 
cirrhosis” trait (line 2) and the UTR regions from the lat-
est release of the GENCODE dataset (line 4). The MAP 
operation (line 6) extracts, for each region in the UTR 
dataset, the overlapping SNPs (which are listed in a new 
region attribute called snps_bag); Line 7 statement 
selects in the output dataset only the SNPs that occur in 
UTR regions. Finally line 9 extracts the UTRs only pro-
jecting their useful attributes (i.e., gene_name and the 
just calculated snps_bag). Figure  5 captures visually 
the operations performed by the query. For “primary bil-
iary cirrhosis” we materialized (line 10) 21 UTR regions 

(distributed over 3 samples) with significant SNPs. The 
query can be iterated on different traits, e.g., “coronary 
artery disease” (135 UTRs, 18 samples), “Alzheimer’s 
disease” (36 UTRs, 10 samples), or “bipolar disorder” 
(30 UTRs, 9 samples). Query processing takes times that 
vary from a few minutes to over an hour, depending on 
the size of the samples.

Note that the MAP operation at line 6 could have been 
used for the dual purpose of extracting SNPs falling 
within UTRs, instead of extracting UTRs hosting at least 
one SNP. This can be easily achieved by using the state-
ment MAP  ()  CIR  UTR​, where the two datasets are 
swapped. When executed in this way, the query extracts 
SNPs that deserve further analysis. Indeed, genetic vari-
ation happening in UTRs could impact regulatory ele-
ments that affect the interaction of the UTRs with 

Fig. 5  Visual representation of the GMQL query for SNPs occurring in untranslated regions. Green rectangles represent UTRs from GENCODE 
dataset, while the red stripes are the SNPs mapped to a GWAS trait. The query extracts only those UTRs that have at least one overlapping SNP
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proteins or microRNAs. Among the consequences on 
functions, there are the change of mRNA transcription, 
translation, and access to regulators. Alterations of these 
regulatory mechanisms are known to modify molecular 
pathways and cellular processes, potentially leading to 
disease processes  [54, 55]. It is thus very important to 
allow for a systematic identification of such SNPs, which 
can then be linked to the affected functionalities, e.g., as 
done in [56] for the specific case of polyadenylation sig-
nals. In our demonstrative example result set, we found 
the rs2189521 mutation, occurring in gene IL21R: Qiu 
et  al.  [57] reported that the risk allele for primary bil-
iary cirrhosis regulates differential IL21R expression; this 
variant is also highly correlated with multiple SNPs in the 
IL21R region, suggesting that variation in IL21R expres-
sion may explain this signal. By applying several histo-
chemical experiments, they showed that the enhanced 
expression in PBC livers (in the hepatic portal tracks) 
of IL21R and of its ligand, IL21, support an involvement 
of IL21 signalling pathway deregulation in the disease 
mechanism.

Match GWAS mutations with variants from 1000 Genomes 
Project
Genome-wide association studies can discover new 
loci that contribute to common human diseases. For 
each locus, it is currently necessary to sequence the 
newly discovered region to define all common and rare 
variants. GWASs carried on so far explained a modest 

fraction of all the disease risks; part of these unexplained 
risks are due to alleles with lower frequencies but prob-
ably larger effects. If such alleles are in genes that were 
already localized by GWAS, then targeted sequencing 
may find them. Similarly, some of the unexplained risks 
are due to the effects of structural variants that are not 
in linkage disequilibrium with common SNPs. Thus, a 
more complete understanding of the role of genetic 
variation in disease requires a deeper catalog of genetic 
variation.

GWAS data can be usefully compared with refer-
enced data, e.g., 1000 Genomes  [43], a project born in 
2008 as an international research effort to establish the 
most detailed catalogue of human genetic variations by 
far [58]. The genomes sequenced in the 1000 Genomes 
Projects are not categorized with regard to phenotype, 
but provide a resource of variants to support deeper 
understanding of newly discovered loci influencing 
human disease. The META-BASE repository contains 
the full 1000 Genomes biallelic SNP and indel variants 
aligned to the reference genome GRCh38. The projects 
include SNPs with allele frequencies as low as 1% across 
the genome and 0.1-0.5% in gene regions, as well as 
structural variants like CNVs. It includes genomes from 
26 different populations, comprising the Finnish one. 
We thus formulate our GMQL query as the one that 
finds, for each relevant SNP from the FinnGen study 
associated to Schizophrenia, the closest deletion from 
the 1000 Genomes dataset referred to Finnish people.

Code snippet 3  GMQL query that extracts deletions typical of the Finnish population that are close to significant Schizophrenia SNPs

The GMQL code is reported in the Code snippet 3: line 
2 selects the samples from 1000 Genomes dataset referred 
to the Finnish population. For those samples, it filters only 
regions that represent deletions. Line 4 selects the samples 
from FinnGen dataset referring to Schizophrenia phe-
notype. From the resulting sample, it filters the regions 
based on a reasonably low p-value. Line 6 uses the JOIN 

operator to find, for each pair of samples – one from the 
FIN dataset and one from the OKG dataset – the closest 
deletion from each FinnGen SNP only if its distance is 
less than 1000 base pairs from the SNP. Line 7 exploits the 
operator PROJECT to remove superfluous region attrib-
utes, keeping only the relevant ones. The query process is 
visually represented in Fig. 6.
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A typical row of the result materialized by line 8 has 
the following form: 〈 chr, left, right, F.ref, F.alt, F.rsids, 
O.ref, O.m_type 〉 = 〈 chr2, 150880920, 150881373, G, 
A, rs149379995, AGT, DEL 〉 . The attributes F.ref, F.alt 
and F.rsids derive from FinnGen dataset while O.ref and 
O.m_type are from 1000 Genomes.

Note that if a user alternatively requested instead vari-
ations that are overlapping relevant SNPs, a different 
JOIN condition may be used: JOIN(distance<1; output: 
BOTH). In this way we would find, for each variation 
from 1000 Genomes dataset, the overlapping SNPs from 
FIN dataset. Then, only variation of SNP type should be 
selected: SELECT(region: OKG.mut_type == “SNP”) 
RES. Note that similar queries may be iterated on other 
populations/cohorts, such as the japanese one (1000 
Genomes: population “JPT”; GWAS Catalog: country_
of_recruitment “Japan”); the chinese one (1000 Genomes: 
population == “CHB”, “CHS”, and “CDX”; GWAS Cata-
log: country_of_recruitment “China”); or the United 
Kingdom one (1000 Genomes population: “GBR”, “ITU”, 
and “STU”; GWAS Catalog country_of_recruitment: 
“U.K.”), allowing to process thousands of regions at the 
same time. This query demonstrates the possibility to 
systematically compare locations of GWAS and refer-
ence panels of variation in healthy populations. GWAS-
derived SNPs have – to date – been used to impute about 
2.5 million SNPs in the HapMap Project (HapMap) [59]. 
However, it has been observed that low-frequency and 

rare variants are not well covered in the HapMap panel, 
whereas recently released versions of the 1000 Genomes 
Project are more comprehensive  [60]. Our repository 
includes both GWAS information and 1000 Genomes 
Project in the same format, thereby allowing position-
based reduction of the space of search, possibly to be 
exploited for later imputation tasks.

Mutations occurring in cell‑specific enhancers
In  [61] the authors developed a new fine-mapping algo-
rithm to identify candidate causal variants for 21 autoim-
mune diseases from genotyping data. They found out that 
about 60% of likely causal variants map to enhancer-like 
elements, with preferential correspondence to stimulus 
dependent CD41 T-cell enhancers that respond to immune 
activation by increasing histone acetylation and transcrib-
ing non-coding RNAs. Unfortunately, it is not trivial to 
associate the enhancer with its corresponding gene, since 
it is situated within some hundreds of kilobases from the 
gene that it regulates. The study can be extended to many 
different human cell lines, attempting to verify whether 
mutations that occur in cell specific enhancers are related 
with any particular disease or trait.

The computational experiment can be formulated as a 
GMQL query that exploits GWAS mutations and enhancer 
regions from ENCODE. Pinoli’s experiment  [62] focuses 
on a particular histone modification, i.e., the acetylation at 
the 27th lysine residue of the histone protein 3 (H3K27Ac), 

Fig. 6  Visual representation of the GMQL query that evaluates the distance between regions of two samples, applying a genometric condition. 
The green regions are the deletions identified from 1000 Genomes Projects while the red ones are the SNPs taken from FinnGen dataset. For each 
deletion, the query considers the closest SNP, which is kept only when falling within 1000 base pairs from the considered deletion
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which can be captured by a ChIP-seq experiment. The 
modification H3K27Ac is defined as active enhancer mark 
since it is known to encourage enhancer activation. The 
query workflow outlined in Fig. 7 aims to find the mutations 

occurring in cell-specific enhancers and to understand the 
resulting disease or phenotypic trait. We employ both data-
sets integrated in this work; for demonstration purposes, we 
here focus only on schizofrenia-related traits.

Code snippet 4  GMQL query extracting mutations occurring in cell-specific enhancers

The GMQL code is reported in Code snippet  4: lines 
2–3 hold the instructions to upload the studies mapped 
to schizophrenia from GWAS Catalog and FinnGen data-
sets. Line 5 loads the GRCh38_ENCODE_NARROW 
dataset, selecting DNA regions that are enriched by 
H3K27Ac. Line 7 allows to update the coordinates of the 
previously selected ENCODE regions, enlarging them by 
3000 base pairs around the peaks; this operation defines 
the enhancer regions. Line 9 applies the operator COVER 
over the ENCODE samples, using the groupby option. 
It computes the result grouping the input dataset samples 
by the values of their biosample__ontology__name meta-
data attribute. Lines 11, 12 and 13 filter the regions that 
are cell type-specific enhancers. To distinguish cell type-
specific enhancers from shared ones, we considered their 
frequency; we are looking for those peaks of H3K27Ac 
that occur in no more than two cell lines among all the 
samples that we considered. The COVER (1, 2) opera-
tion considers all areas defined by a minimum of one 

overlapping region up to two of them; output region 
attributes include only region coordinates. The opera-
tion MAP () allows to retrieve the original regions with 
all their region attributes, adding the information of 
their frequency. Finally, using the SELECT operator we 
extract only the regions identified in line 12. Lines 15 and 
16 exploit the operator PROJECT to add the new region 
attribute trait_name in each region (copied from the 
homonymous metadata attribute). Line 18 creates a data-
set called UNI containing all the samples from GWAS_
trait and FINN_trait datasets. Lines 20–21 contain the 
core operations of the query. The MAP operator adds to 
each region of the ENCODE dataset a counter corre-
sponding to the number of overlapping regions of UNI 
dataset. The option bag adds a further region attribute 
with a list of values of the attribute trait_name of the 
mapped GWAS regions. The operator SELECT extracts 
only those ENCODE regions that have at least one corre-
sponding GWAS mutation. Line 22 allows to keep in the 
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output regions only the coordinates and two relevant col-
umns. As last operation, the dataset P is materialized so 
it can be downloaded and explored. Approximately, this 
complex query takes about 8h running time and outputs 
39008 regions distributed over 318 samples (about 4GB 
of memory).

The GMQL query has two main purposes: i) filtering out 
only the truly causal variants (alternatively performed with 
fine-mapping algorithms); ii) identifying the variants that 
occur in non-coding regions, in particular the enhancer 
regions where the H3K27Ac modification occurred. It 
can be repeated on all the traits in GWAS Catalog and 
FinnGen, allowing to study whether mutations that occur 
in cell-specific enhancers are related with any particular 
disease or trait  [62]. The list of traits from GWAS Cata-
log and FinnGen mapped onto common terms on EFO or 
NCIT ontologies (Additional file 5) may be used for per-
forming a cross-source application of this study.

Discussion
As genomic data continues its exponential growth [63], 
data management techniques must continuously be 
adapted to correctly handle the growing amounts and 

related heterogeneity. Many works exploit the concep-
tual modeling to capture the diverse biological objects 
and to interpret their relationships (see  [64–68]). How-
ever, such works only contribute to the conceptual clari-
fication of genomic entities, while they do not provide 
practical frameworks to extract novel knowledge from 
data. The Genomic Conceptual Model [18] goes further 
the entity description and proposes feasible data organi-
zation for complex biological integrated repositories; it 
poses the bases for an architecture that drives the inte-
gration of new genomic repositories [19]. The work pre-
sented in this article exemplifies how the architecture 
can be exploited to integrate new datasets, mapping 
them to a shared conceptual model. Here – expanding 
on  [28] – we have presented the Extended Genomic 
Conceptual Model, holding a novel GWAS view ready 
to accommodate datasets that represent Genome-Wide 
Association Studies. GWAS are of great importance, 
being the widely-accepted means to discover genetic risk 
factors for common disease and other phenotypic traits. 
Towards a broader use of GWAS for genomic tertiary 
analysis, we have shown three main outputs, discussed 
next.

Fig. 7  Execution flow of the proposed GMQL query. The three datasets are first pre-processed separately. The studies from GWAS Catalog and 
FinnGen are unified into a single dataset and then enhancer regions from ENCODE dataset are mapped into regions from the unified one
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Data integration. We designed an integration process 
to include GWAS within META-BASE. This strategy can 
be re-applied with small effort on all GWAS datasets, 
even when organized in a structure different from the 
NHGRI-EBI GWAS Catalog and FinnGen. With refer-
ence to our pipeline (Fig. 1) it must be noted that while 
Downloader and Transformer are source-specific (requir-
ing the implementation of ad-hoc modules for each 
incoming source), Mapper and Enricher only require 
small configuration changes in order to be reapplied to 
new sources; finally, Flattener is completely automatized. 
Integration workflows for genomic datasets have been 
previously proposed (a broad review has been conducted 
in [69]); a number of genomic actors have built integra-
tion efforts  [70–73], but – to the best of our knowledge 
– this work is the first that expresses GWAS in the same 
format as diverse datasets such as the ones used for can-
cer genomics or epigenomics. The proposed solution 
work has only been possible thanks to the exploitation 
of a previous solid stream of research on data modeling 
and integration through a systematic approach  [18, 19]. 
At the moment, the main bottleneck of our approach 
remains the time required to run the integration pipe-
lines. Both FinnGen and GWAS Catalog regularly output 
updated datasets, thus requiring to rerun our workflow 
to obtain newly GDM-compliant datasets.

Semantic Enrichment. We proposed a method to 
semantically annotate traits with an automatic pro-
cess. Semantic enrichment of metadata with appro-
priate ontologies  [74] has been tackled both with 
source-independent methods  [75, 76] and with source-
specific ones [77, 78]. Several GWAS sources are already 
working in the direction of homogenizing their values 
and linking them to existing ontologies. However, we 
claim that until a shared standard is imposed, differ-
ences will not be overcome. Thus, it is important to 
expose methods that allow to automatically annotate 
(and re-annotate) traits following the indication of a set 
of ontologies that are deemed appropriate by the user. In 
this way, even traits coming from different sources can 
converge to same ontological representations. We do 
not modify original values; in fact, we make explicit their 
relationship with existing ontological terms. This choice 
allows to exploit a semantic search at different levels: by 
original values (returning only results from one source) 
or by common values (returning all the results from dif-
ferent sources that are mapped into the same terms). 
This strategy has been successfully applied in the Geno-
Surf [79] semantic search engine.

Cross-data type processing. Analysing together differ-
ent signals of the genome (tertiary data analysis) is very 
powerful but is still mostly performed through ad hoc 

scripts (e.g., with BEDTools [80] or BEDOPS [81]). More 
sophisticated systems have been proposed (GROK [82], 
GORpipe  [83], STQL  [84]), but none of these allows to 
directly analyse the genomic sites identified by GWAS 
in the context of other genomic signals is important 
and paves the way to larger multi-omic studies. Our 
example queries in the context of the GMQL system, a 
cloud-based multi-sample processor, go in this direction, 
showing interesting biological findings. Note that the 
shown examples are of small scale to allow reproduction 
in short times: queries run on multiple traits and chro-
mosomes may require long computational times. Note 
that we chose an orthogonal set of examples to show the 
possibility of using different GWAS datasets together or 
using (possibly multiple) GWAS datasets with other sig-
nals (TCGA, 1000 Genomes, ENCODE, and annotation 
data).

Conclusion
GWASs bring important insights and outputs to the cur-
rent genomic research. Their identified genomic regions 
have, however, rarely been analyzed in the context of 
other genomic information, including other mutations, 
epigenomic regions, or gene expressions. Being able to 
analyze GWAS data from multiple sources together with 
other processed genomic datasets is of high importance. 
We thus proposed to express GWAS datasets in the GDM 
format, compliant with the other sources included in the 
META-BASE repository. A purely model-driven integra-
tion effort achieves the inclusion GWAS datasets within 
a repository of other tertiary analysis processed datasets. 
We download, transform and map GWAS information 
within the integrated repository, also enriching the traits 
descriptions by means of several information from exist-
ing specialized biomedical ontologies, shortening the 
distance of different GWAS datasets; this process can be 
generalized to all kinds of genomic experiment descrip-
tions that benefit from bio-ontology mapping  [29, 85]. 
We demonstrated the proposed approach on two impor-
tant GWAS data sources, organized according to hetero-
geneous data models, namely the NHGRI-EBI GWAS 
Catalog and FinnGen, while several other datasets can be 
added in the future with minimal effort.

For fully exploiting the achieved integration result, we 
make GWAS datasets usable together with other pro-
cessed datasets (e.g., representing somatic and reference 
mutation data, genomic annotations, epigenetic signals) 
embedding them within a multi-sample processing system 
called GMQL [41]. This system allows to pursue important 
genomic tertiary data analysis tasks, able to respond to bio-
logical questions regarding positional properties of GWAS 
identified mutations.
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