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Abstract 

Background: Population variant analysis is of great importance for gathering insights 
into the links between human genotype and phenotype. The 1000 Genomes Project 
established a valuable reference for human genetic variation; however, the integra-
tive use of the corresponding data with other datasets within existing repositories and 
pipelines is not fully supported. Particularly, there is a pressing need for flexible and 
fast selection of population partitions based on their variant and metadata-related 
characteristics.

Results: Here, we target general germline or somatic mutation data sources for their 
seamless inclusion within an interoperable-format repository, supporting integra-
tion among them and with other genomic data, as well as their integrated use within 
bioinformatic workflows. In addition, we provide VarSum, a data summarization service 
working on sub-populations of interest selected using filters on population metadata 
and/or variant characteristics. The service is developed as an optimized computational 
framework with an Application Programming Interface (API) that can be called from 
within any existing computing pipeline or programming script. Provided example 
use cases of biological interest show the relevance, power and ease of use of the API 
functionalities.

Conclusions: The proposed data integration pipeline and data set extraction and 
summarization API pave the way for solid computational infrastructures that quickly 
process cumbersome variation data, and allow biologists and bioinformaticians to eas-
ily perform scalable analysis on user-defined partitions of large cohorts from increas-
ingly available genetic variation studies. With the current tendency to large (cross)
nation-wide sequencing and variation initiatives, we expect an ever growing need for 
the kind of computational support hereby proposed.

Keywords: Population variant analysis, 1000 Genomes, Human genetic variation, Data 
integration, Data warehousing, Data wrangling
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Background
The introduction of Next-Generation Sequencing (NGS)  [1] brought a considerable 
increase of sequencing throughput, drastically reducing the cost and time for the acqui-
sition of genomic data. Subsequently, the number of genome sequencing initiatives 
exploded, following the path drawn by the Human Genome Project; the International 
HapMap Project (270 initial samples  [2]), the Cancer Genome Anatomy Project (7500 
samples  [3]), the 1000 Genomes Project  [4], and the 100,000 Genomes Project  [5] are 
only a few examples. Not only the number of datasets but also their quality and volume 
increased: for instance the 270 genomes of the International HapMap Project quickly 
reached almost 100K units.

In this context, the bioinformatics community is concerned with supporting research 
advances through the so-called tertiary analysis  [6], i.e., the interpretation of genomic 
signals and evaluation of the clinical relevance of genomic features. Inferring knowledge 
from the collected data, however, remains a challenging task, requiring strong domain 
knowledge, the integration of multiple heterogeneous datasets, and the implementation 
of powerful querying tools dedicated to their comprehensive analysis. In particular, data 
integration is fundamental to interconnect such large amounts of available data—heter-
ogeneous both in the described information and in the representation formats; towards 
this goal, several solutions have been proposed in the last few years [7–10]. Along with 
the integration of data, it is essential to make available convenient and efficient instru-
ments to analyze and describe such data by means of meaningful measures (examples 
are [11–15]).

Considering genomic variation data, the ability to summarize extensive collections 
of data (possibly originating from multiple sources) and to select samples with specific 
properties is extremely important. For example, in evolutionary studies, population vari-
ation investigations are relevant for finding the predominant DNA characteristics in spe-
cific populations; in case-control experiments, they may contribute control populations, 
whose members are required to meet specific criteria (e.g., genetic mutations, somatic 
traits, etc.).

Few remarkable solutions to achieve summarization of genomic populations have 
been proposed (e.g., [16, 17]); yet, at present they exhibit substantial limitations. A major 
pitfall regards the lack of powerful filtering options and combinations, especially for 
region data, i.e., on the characteristics of specific positions of the genome. This makes 
it impossible to select and analyze a genomic population through aggregated measures 
that satisfy precise requirements on a multitude of aspects. Additionally, the usage of 
such instruments as components of larger data processing pipelines is hindered by the 
general absence of helpful programmatic interfaces.

In this work, we intend to overcome some of the shortcomings observed in the cur-
rently available solutions, and practically support the mentioned challenges; towards 
this aim, we developed VarSum, a computational framework with an Application 
Programming Interface (API) allowing complex queries over an integrated collection 
of genome variation datasets. Any user-defined combination of metadata filters and 
fine-grained genome requirements can be applied to identify a population of interest 
for the user, and retrieve the related dataset. On top of the chosen population, our 
framework computes different kinds of aggregated statistics, highlighting the most 
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meaningful aspects of the metadata and genomic region data of the population data-
set. Finally, we also allow the seamless extraction and downloading of the selected 
data, to allow processing it with other applications.

VarSum applies to possibly any genomic variation collection of data. Here, we dem-
onstrate its application to the germline variants collected within the 1000 Genomes 
Project (1KGP)—currently the biggest public study of population variation data—and 
to the somatic mutations of The Cancer Genome Atlas (TCGA) [18]. We consider the 
data integration phase an essential preamble to the proper functioning of VarSum 
on top of multiple data sources. Thus, we describe the integration process of 1KGP 
into a repository of interoperable genomic resources [19, 20], which already provides 
the TCGA data in a convenient format. Such integration effort enables users to: (a) 
locate relevant genomic samples within a large repository of processed data, using the 
metadata-driven search browser GenoSurf [21], and (b) take advantage of the power-
ful capabilities of the GenoMetric Query Language (GMQL) [20], by means of a Web 
server that allows complex queries over the 1KGP genomic samples together with 
those of TCGA and other genomic catalogues. Moreover, our framework (comprising 
the integration module and the querying backend and API) meets also the following 
relevant requirements: (i) ease of integration into existing bioinformatics pipelines; 
(ii) capability to incorporate arbitrary and new genomic variation data or annotation 
data sources; (iii) fulfillment of privacy constraints possibly imposed by the organi-
zation owning the data—a desirable feature, given the increasing number of private 
large-scale genome sequencing projects.

Figure  1 illustrates our approach and computational framework: first a data inte-
gration module is built to feed a repository of genomic data with the 1000 Genomes 
Project information; then, the translation of data into a relational representation is 
implemented, serving as a basis to be queried by the VarSum system through its API. 
The components that are original of this work are shown in red.

Fig. 1 Overview of the proposed framework. Our approach involves developing two source-specific data 
integration modules for the download and transform stages of our pre-existing data integration framework. 
Integrating 1KGP into our genomic data repository extends the set of data sources supported by GenoSurf 
and GMQL, two exploratory and data querying software applications. Then, through its API VarSum provides 
easy summarization of extensive genomic variation data for user-defined populations; the API queries a novel 
relational database derived from the genomic data repository for improved efficiency. In red are the novel 
contributions of this work
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Related work and current limitations

A number of online tools provide statistics over the genomic variants of large popula-
tions, whose data are stored in an associated data source; their characteristics concern-
ing variant analysis are summarized in Table 1.

The Genome Aggregation Database (gnomAD)  [16] integrates 68 population sur-
veys of coding variation that have been reprocessed through homogeneous pipe-
lines and jointly variant-called. It is possible to explore the whole dataset or one of its 
seven pre-defined partitions based on the donors’ metadata. In particular, the “control” 
dataset partition includes only the healthy donors. Three other partitions are referred 
to as “non-neuro”, “non-cancer”, and “non-TOPMed”, as they contain all the donors of 
the dataset except the ones diagnosed with respectively a neurological condition or a 
cancer pathology, or the ones who are part of the Trans-Omics for Precision Medicine 
Program [22]. The three remaining partitions include only the samples respectively orig-
inating from the Human Genome Diversity Project, or the 1KGP, or belonging to the 
gnomAD Local Ancestry collection. The population of interest may be further specified 
by looking at the donors of an ethnic group, country (when available), or gender type. 
Once the user has chosen the reference population, the interface displays the count of 
mutated alleles, the total number of alleles, the number of homozygotes, and the allele 
frequency. The user can obtain the same information also for sub-populations defined 
by grouping the donors by ethnicity, country (when available) or gender. The analysis of 
a variant is then enriched with statistics about the read-quality, gene annotations and 
donors’ age distribution.

Ensembl [17], mostly known for its genome browser, provides additional Web tools 
to study variants and populations. Similarly to gnomAD, it allows users to compare 
the frequency of a variant in different populations according to the origin and gender 
of the samples. In general, the returned statistics are provided by external services. 
For target variants belonging to the 1KGP, a richer analysis is available, showing the 

Table 1 Comparison of the features of bioinformatics tools providing aggregated statistics over the 
variants of a population

The evaluation concerns (i) the availability of filters on metadata attributes to select a subset of the donors from the dataset, 
i.e., the population of interest; (ii) the availability of filters to consider only the donors showing particular genomic features 
(either precise variants or mutated genome regions) distinct from the genomic variant studied in the population; (iii) the 
possibility to look at the gene annotations and (iv) sequencing quality metrics information concerning a genomic region or 
variant; (v) the possibility to group the result statistics on the metadata; (vi) the availability of an API
a Analysis results are available considering all the donors or one of the seven predefined partitions. On top of the chosen 
partition, it is also possible to further limit the population to an ethnic group, country (when available), or gender type
b The statistics about the variant frequency can be grouped by ethnicity, gender, or geographical origin, if the population 
has not been already filtered on these attributes. In addition, it is possible to know the age distribution of the donors 
included in the population and of the variant carriers.
c Only for the groups identified by the original sequencing project and/or for the geographical origin of the donors

gnomAD Ensembl PGG.SNV EVS IGIB group

(i) Filters on population by metadata Limiteda – – – –

(ii) Filters on population by region data – – – – –

(iii) Gene annotations � � � � �

(iv) Quality metrics � - � � –

(v) Statistics grouped on metadata Limitedb Limitedc Limitedc Limitedc Limitedc

(vi) API – � – – –
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allele frequency, allele count and total alleles in all the 26 populations (and super-
groups) of the original study. For these subsets of donors, it reports also the list of 
samples included in each population and their genotype. Gene annotations are given 
as well, but read-quality metrics or other information on the donor’s age are not. 
Ensembl offers programmatic access to this data also via an Application Program-
ming Interface.

PGG.SNV [23] is another important tool for variant analysis; it integrates seventeen 
genome sequencing projects and provides a complete overview of single variants in 
terms of total number of alleles, allele count, frequency, gene annotations and read-
quality metrics. These values can be scaled to the level of sub-populations of donors, 
selected according to the study project or the geographical origin.

The Exome Variant Server (EVS) [24] collects somatic mutations from the US coun-
try for studying heart, lung, and blood disorders. For any variant available in the data-
base, it can display the allele count, the total allele number and the variant frequency, 
plus read-quality metrics and gene annotations computed on the whole dataset, or in 
its partitions. The partitions are only computed based on the geographical origin of 
the samples.

Finally, it is worth mentioning the contribution given by the Institute of Genomics 
& Integrative Biology (IGIB) group curating several online tools dedicated to variant 
analysis, i.e., Al mena [25], IndiGenomes [26] and SAGE [27]. As they share the same 
front-end design, we discuss them collectively. The type of analysis they provide for 
a variant includes the frequency, the totally available alleles, the allele count and the 
number of homozygous alleles for each separated sequencing project. The included 
datasets are focused on the study of South Asian genomes, which are under-repre-
sented in worldwide whole-genome sequencing projects. In addition, their interface 
provides annotations of the gene located at the variant coordinates.

Our review shows that most current tools provide poor filtering capabilities to 
choose the population of interest. In this regard, gnomAD stands out by making it 
possible to choose between one of the seven predefined partitions of the population 
(see Table 1) and filter on the donors’ gender, ethnicity, or country (when available). 
Still, it is impossible to focus on analysing a population satisfying arbitrary criteria 
like multiple countries or ethnic groups in combination with a gender category or 
specific pathology. The limitations on the selection criteria occur at the metadata 
level and especially at the region data level. Indeed, despite being possible to collect 
statistics such as allele count, total alleles and frequency of a variant inside a popula-
tion, none of the described tools allows specifying a genetic variation as a prerequi-
site of the population. Population variation data often provides the genotype for each 
donor, but this information is not employed or reported by any variant analysis tool. 
As such, it is also impossible to examine only the donors that carry an arbitrarily cho-
sen set of variants inherited from a single parental line. As far as concerns the pos-
sibility of comparing the statistics inside sub-populations, we observe that it is not 
possible to group by a generic combination of metadata provided by the data sources. 
Even considering gnomAD—which offer the most advanced features in this regard—it 
does not allow comparing the variant frequency in the sub-populations identified by 
the country and gender at the same time, nor to group by just the disease.
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Many bioinformaticians could benefit from using the above tools as a part of larger 
software pipelines, eliminating the need for building ad-hoc integrated datasets and sim-
plifying the analysis of large variant sets. Yet, most of the current tools does not support 
the programmatic use of the supporting integrated datasets, with the only exception 
being the Ensembl API, which exposes a relevant collection of genomic datasets. Nev-
ertheless, its practical usage is hindered by its complexity, as it requires a deep under-
standing of the internal data structure and schema, which comprises dozens of tables. 
With VarSum, we instead propose a simple and powerful API.

Implementation
Data integration implementation

The VarSum data integration module extends an already existing software called META-
BASE, by implementing a data transformation that is specific for the VCF format, 
addresses changes in the specific representation of variants, and supports the addition of 
relevant metadata.

Pre‑existing META‑BASE framework

Our work is built on top of the META-BASE framework [19], already integrating sev-
eral heterogeneous genomic data from multiple sources, including ENCODE  [28], 
The Cancer Genome Atlas (via Genomic Data Commons  [29]), Roadmap Epigenom-
ics [30], Reference Sequence (RefSeq) [31], and GENCODE [32]. Figure 2 visually sum-
marizes the META-BASE architecture main modules and data integration steps, which 
are configured through a modular Extensible Markup Language (XML) configuration 
file (documentation available at [33]). Data are downloaded from their original source, 
and transformed into a collection of genomic region data and metadata files according 
to the Genomic Data Model (GDM) [34]. Metadata files are cleaned, by simplifying the 

Fig. 2 The META-BASE architecture and workflow. Datasets are downloaded from the original source and 
transformed into a GDM-compliant format. Metadata are cleaned, mapped into the GCM relational integrated 
data structure, normalized and enriched with related ontological concepts. The homogenized information is 
checked for correctness, flattened to a file-based data structure and loaded within the META-BASE repository.
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output of the transformation (particularly useful in the case of deeply nested data in the 
original format). Then, their content is mapped into the Genomic Conceptual Model 
(GCM) [35], providing a unifying global schema for metadata of heterogeneous sources. 
Furthermore, metadata values are normalized/enriched, resolving synonyms and link-
ing them to ontological concepts (from well-accepted ontologies such as OBI  [36], 
NCIT  [37], and EFO  [38]) through a semi-automatic process  [39]. An integrity con-
straint checker validates the formal correctness of the obtained metadata values by 
checking that each attribute holds only acceptable values (e.g., if the species of a sample 
is “human”, then the assembly value must be one of “hg19”, “GRCh38”, or “hg38”). Finally, 
metadata are flattened back to a file-based data structure in GDM-compliant format and 
all metadata and region data GDM files are loaded into the META-BASE repository of 
integrated genomic data.

From VCF to BED format

While we reused the existing META-BASE infrastructure, the download and transform 
phases of the integration workflow required the development of source/format-specific 
modules. As far as genomic variation data is concerned, the existing META-BASE imple-
mentation already provided support for the Mutation Annotation Format (MAF)  [40] 
files and for the integration of public TCGA somatic mutation data [41], which are orig-
inally available in MAF format. We extended the META-BASE framework developing 
new modules for extracting data from Variant Call Format (VCF) [42] files and for the 
integration of 1KGP data.

Our extension allows downloading both VCF and metadata files of 1KGP into the local 
machine. The incremental design allows differentially adding new datasets, or updat-
ing old ones; each file local copy is used as a snapshot for detecting changes at the data 
origin. Datasets downloaded from 1KGP include chromosome-specific VCF files, each 
containing the variants of all the donors; differently, the chosen target format, based on 
the GDM (similar to the widely adopted Browser Extensible Data, i.e., BED format [43]), 

Fig. 3 Transformation process for 1000 Genomes Project files. The output sample GDM file-pairs are obtained 
by: (i) processing the 1KGP big VCF files dedicated to single chromosomes to extract single sample/individual 
GDM genomic region data files and (ii) distributing the 1KGP metadata information into single sample GDM 
metadata files
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requires a file for each donor, containing all donor’s variants, which in the original 
source are instead distributed over multiple VCF files. This scenario configures a many-
to-many file transformation, exemplified in Fig. 3.

We process all 25 VCF files available in 1KGP, each corresponding to one chromo-
some and representing a matrix of variants (indicated in rows) that are either present or 
absent in the donor individuals (as indicated in each corresponding column). In addi-
tion, we consider four 1KGP metadata files, organized as matrices where rows represent 
N individuals (identified by the same sample identifier used in region data file columns) 
and columns contain other information (e.g., regarding the population of the individu-
als, parent/child relationships, instrument platforms). The transformation algorithm 
finally builds N GDM file-pairs. The number of rows of each GDM genomic region file is 
typically smaller than M (the number of total variants represented in all the VCF input 
files), as clearly not every individual presents every variant.

Changing the variant region format

The transformation process also affects the way in which variants are described within 
files. Unlike VCF, in BED-like formats, variants become genomic regions requiring 
both start and stop coordinates: 

(1) for SNPs or multiple nucleotide polymorphism (MNPs), the stop position is calcu-
lated as the available start position plus the length of the substitution;

(2) for insertions, the stop position takes the same value of the start position;
(3) for deletions, the stop coordinate is equal to the start one plus the length of the 

deleted sequence.

To allow the alignment with the other genomic features integrated within the META-
BASE repository, we employ 0-based coordinates. As a consequence of these two 
transformations, nucleotide bases that are equivalent in reference and alternative 
alleles—necessary in VCF to represent indels (insertion-deletion variants) and SVs 
(structural variants) without ambiguity—become obsolete. Thus, they are removed 
from both the reference and alternative alleles, and coordinates are adjusted accord-
ingly. Finally, VCF and BED differ in the encoding of multi-allelic variants; these are 
jointly expressed as a single line combining two or more variants in VCF, while they 
are independent variants in BED.

Targeting code reusability, we developed a general module that is responsible only 
for a preliminary transformation, including the separation of multi-allelic variants 
into multiple bi-allelic variants and the identification of standard VCF attributes. We 
then implemented a complementary 1KGP-specific module that considers the speci-
ficity of the VCF files released by the 1KGP consortium and the International Genome 
Sampling Resource (IGSR)  [44]; it interprets the remaining attributes in these files 
and is in charge of the following steps: 

 (i) change of the variant original coordinate system (from 1-based into 0-based);
 (ii) simplification of variant definitions used in VCF files, by removing equal bases 

from reference and alternative alleles (adjusting coordinates appropriately); and
 (iii) computation of the variant length and stop coordinate.
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The schema of the GDM region files, defining their columns, comprises the 10 attrib-
utes characterizing the variants and reported in the Additional file 1; these are the chro-
mosome, the left-end and right-end coordinates, the strand, the original and alternative 
nucleotides, the mutation length and type information, and two more columns indicat-
ing which chromosome copy carries the mutation. An example of translation from VCF 
to GDM format for genomic region data is provided in Additional file 1.

Metadata transformation

Finally, the information included in each input metadata file is assigned to the individual 
samples (see Fig. 3) and additional metadata about the sample processing and manage-
ment (e.g., the source of the sample, its local Uniform Resource Identifier - URI, and 
its format) are appended (see Additional file 2). In order to better support queries on 
mixed data sources, i.e., over the 1KGP data and the data already present inside the inte-
grated genomic data repository, we computed the value of the ethnicity metadata attrib-
ute also for 1KGP data, as it is a common attribute in any sample described through 
the Genomic Conceptual Model. This was assigned based on the donor’s population as 

Table 2 Mapping 1KGP population values to ethnicity values

The ethnicity value, not specified in the original metadata of 1KGP samples, is assigned based on the available population 
value, thus enabling interoperability with other data sources.

Ethnicity Pop. Code Population In diaspora Super 
Population

White CEU Utah Residents (CEPH) with Northern/West-
ern Eur. Ancestry

Yes EUR

TSI Toscani in Italia No

FIN Finnish in Finland No

GBR British in England and Scotland No

IBS Iberian Population in Spain No

Black or african american YRI Yoruba in Ibadan, Nigeria No AFR

LWK Luhya in Webuye, Kenya No

GWD Gambian in Western Divisions in the Gambia No

MSL Mende in Sierra Leone No

ESN Esan in Nigeria No

ASW Americans of African Ancestry in SW USA No

ACB African Caribbeans in Barbados No

Latin american MXL Mexican Ancestry from Los Angeles USA No AMR

PUR Puerto Ricans from Puerto Rico No

CLM Colombians from Medellin, Colombia No

PEL Peruvians from Lima, Peru No

Asian GIH Gujarati Indian from Houston, Texas Yes SAS

PJL Punjabi from Lahore, Pakistan No

BEB Bengali from Bangladesh No

STU Sri Lankan Tamil from the UK Yes

ITU Indian Telugu from the UK Yes

CHB Han Chinese in Beijing, China No EAS

JPT Japanese in Tokyo, Japan No

CHS Southern Han Chinese No

CDX Chinese Dai in Xishuangbanna, China No

KHV Kinh in Ho Chi Minh City, Vietnam No
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shown in Table 2, and enables several additional queries that make use of the geographi-
cal origin to select similar sets of samples between multiple variation data sources.

Data querying implementation

The integration effort described in the previous section is justified by the perspective 
use of the population variation datasets within an integrative repository and the use of 
GMQL (or similar) language to flexibly querying the integrated data for any user need. 
For quickly computing data summarization on the integrated data, however, we deemed 
a relational database implementation more appropriate. Next, we describe the relational 
structure that we created to host the integrated data queried by the VarSum API, as well 
as the articulate architecture of the software application that embeds it, taking care of 
genomic region data reconciliation, choice of data sources, and query processing.

API‑targeted data structure

The VCF format was originally proposed within the 1000 Genomes Project Con-
sortium to describe the distribution of population-wide variants. Its data structure 
is not efficient for selecting a set of donors based on multiple genomic region data 
and metadata parameters. To improve the performances of such operations, in addi-
tion to the GDM format representation, we also built a parallel instance of the 1KGP 
and other integrated source datasets within a PostgreSQL  [45] relational database. 
Specifically, we employed the datasets resulting from the genomic data integration 
phase : the new database is created during the Mapper step and finalized during the 
Constraint Checker step of the META-BASE framework (see Fig. 2). Such a database 
holds one table for each GCM entity (i.e., Item, Replicate, BioSample, Donor, Experi-
mentType, Dataset, CaseStudy, and Project) for the metadata of all sources collec-
tively. Furthermore, to load the region data inside the database, we implemented 
a Python script that leverages the output of the META-BASE Flattener stage. The 
script receives in input the GDM region data files, the list of region attributes to 
load, and the name of the output region data table. By parsing the list, it loads every 
region data attribute to the corresponding column of the target table.

The script has been designed to be general enough to load different types of GDM 
datasets; indeed, we applied it for loading the newly generated GDM datasets of 
1KGP variants, as well as those of the TCGA somatic mutations and GENCODE 
gene annotations, resulting in a single database (illustrated in Fig.  4). For perfor-
mance reasons, a materialized view has been created to pre-compute the join of dif-
ferent entities of the GCM schema. Note that the region data tables generated in this 
stage include only a part of the region data attributes originally integrated in our 
main GDM repository and usable with GMQL; these attributes are indeed the most 
relevant for the purpose and functions exposed by VarSum.

Server software architecture

The VarSum client-server software architecture, implemented with Python program-
ming language [46], is accessible to users through a flexible API. As shown in Fig. 5, the 
server side is structured in five separate layers, with limited inter-layer interactions. The 
Presentation layer directly interacts with the user, by exposing the API endpoints. 
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The execution of the requests is delegated to the Orchestration layer, specifically to 
its Coordinator module; through a standardized interface, this interacts with the data 
sources available in the Source layer for executing the requests. The Data layer man-
ages the connection with the database holding the variants of the 1000 Genomes and 
TCGA projects, and the GENCODE gene annotations. Finally, the Interoperabil-
ity layer provides elements that facilitate the communication between the other layers; 

Fig. 4 Relational data model for VarSum. It is composed by a table for the region data of each data source 
(e.g., 1000 Genomes Project - KGENOMES, TCGA, GENCODE) and one materialized view (METADATA) 
providing fast access to the metadata of all sources. The materialized view is obtained as a selection of the 
most important attributes for VarSum from those comprehensively available in the tables of the database [21] 
based on the Genomic Conceptual Model [35], here represented only through their names
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for example, it explicitly defines the concepts of genomic variant and gene, and all the 
metadata and genomic region attributes recognised by the API.

Genomic region data value reconciliation

The API-targeted database inherits the metadata homogenization effort performed by 
the mapping and enrichment phases of the META-BASE framework. Genomic region 
data attributes, instead, are only uniform in the four mandatory fields (i.e., chromo-
some, strand, start and stop coordinates). Depending on the represented data type, every 
source may report schemata with additional attributes, with diverse syntax and seman-
tics, even using synonyms and homonyms, for their names and values. Within our spe-
cific focus on genomic variation data, we handled issues involving name reconciliation 
and value transformation/merging.

Moreover, we defined a minimal set of categories of region data attributes, considered 
essential for any variant definition. These extend the GDM mandatory genomic region 
attributes with variation data information about the reference and alternative alleles, 
a variant-ID referencing an external database (e.g., dbSNP), and the variant type. Each 
attribute is represented in the Vocabulary class of the server software Interoper-
ability layer (Fig.  5), as a general information category to which other classes can 
refer. The main advantage of this representation is the possibility to programmatically 
formulate data-agnostic queries using such categories. These queries are then translated 

Fig. 5 Overview of the server software architecture of VarSum
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into concrete Structured Query Language (SQL) queries by each Variation Source class 
in the Source layer, according to the specificity of the source table. In case multiple 
sources are involved in answering a request, multiple tables are queried; the outcome 
of every query is expressed using the Vocabulary attributes, which simplifies the merg-
ing of results. As a consequence, the architecture allows to incorporate into the data-
base new genomic variation data or annotation data sources, without constraining the 
schema of the region data tables.

Selection of the eligible data sources for answering a request

The Variation Source and Annotation Source classes of the server software Source 
layer employ the items of the Vocabulary class to communicate the maximum filtering 
capability over a source. For example, 1KGP data include the chromatid of the variants 
(stored in the chromosome_copy_1 and chromosome_copy_2 attributes of the 
KGENOMES table), making it possible to select variants occurring on the same chroma-
tid. The same information is not available in TCGA; then, only the 1KGP source may be 
used to answer queries asking for variants on same/opposite chromatids. Such possibil-
ity is reflected in the software because the classes 1KGP and TCGA  of the Source layer 
own different subsets of the information categories described in the Vocabulary. When 
an API endpoint is called, the Coordinator class determines the data sources that are 
eligible to answer the request (i.e., the ones that declare a set of available filters greater or 
equal to the one contained in the request).

Query computation

When the VarSum API receives a request, this is interpreted by the API Server class, 
which performs input validation and delegates the computation of the result to the 
Coordinator class. The Coordinator identifies the data sources that are eligible for sat-
isfying the filters indicated in the request, and asks the corresponding software classes 
to perform a query with the abstractions provided by the Vocabulary class. The query 
is translated into an actual SQL query by each of the Variation Source or Annotation 
Source classes involved, to account for the unique characteristics of the corresponding 
source region data. The formulated queries are executed when the Coordinator class 
retrieves the control; it assembles the received SQL instructions into a single query and 
finally computes the result. The outcome is then returned to the API Server class, which 
formats the result into a JavaScript Object Notation (JSON [47]) encoded table or list.

VarSum supports both (1) simple “exploratory-based” requests, returning information 
already explicit in the source and whose implementation is trivial; and (2) “aggregated 
measures” requests, computing their results as a transformation of the source data. In 
the following, we elaborate on the query computation for the main types of requests of 
the second kind: / donor_ group ing, / varia nt_ group ing, / most_ common_ varia nts, and / 
rarest_ varia nts.

http://www.gmql.eu/popstudy/api/donor_grouping
http://www.gmql.eu/popstudy/api/variant_grouping
http://www.gmql.eu/popstudy/api/most_common_variants
http://www.gmql.eu/popstudy/api/rarest_variants
http://www.gmql.eu/popstudy/api/rarest_variants
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Aggregation of  donors The endpoint / donor_ group ing considers in input the character-
istics of an arbitrary population and a grouping scheme; it finds the donors satisfying the 
requirements and counts the size of each group of donors. This request is satisfied by the 
Coordinator class using an SQL instruction in the form reported in Listing 1, where ATT_1 
and ATT_2 are generic placeholders for the metadata attributes (one or more), whose values 
are used to compute the groups. The FROM clause at lines 2–12 includes the definition of the 
data describing the population of interest, collected from the data sources; if there is more 
than one data source, the populations selected by each Variation Source class are merged 
together via a UNION clause (line 7), eliminating the duplicates. Comments at lines 5 and 
10 are placeholders for the query received by the involved Variation Source classes, whose 
purpose is to select the population according to the requirements. Their formulation can be 
very different as they are specific for each source.

Variant frequency inside a population The endpoint / varia nt_ group ing computes the fre-
quency of a variant inside a population. The Coordinator class issues a query as the one 
reported in Listing 2, where ATT_1 represents a generic metadata attribute (or a list of them) 
on which the population is grouped. The population is the union of what has been selected 
by each Variation Source class according to the requirements given in the request; every 
Variation Source participating to the request must return the DONOR_ID, the GENDER, 
the value of ATT_1, and how many times the variant is present—between 0 and 2—for each 
donor in the population. The last two attributes are necessary for computing the frequency 
of a variant within the population. Indeed, the frequency value depends on the number of 
occurrences of the variant (OCCURRENCE_OF_TARGET_VARIANT in the example) and 
the total number of alleles. However, the assembly used affects the location of pseudoautoso-
mal regions in sexual chromosomes; so, also the location of the variant (generically indicated 
as CHR and POS in Listing 2) as well as the gender become important to calculate the num-
ber of total alleles. The frequency formula is implemented in and computed by the functions 
MUTATION_FREQUENCY_HG19 and MUTATION_FREQUENCY_GRCH38 (depending 
on the reference genome indicated in the request) scripted in the PostgreSQL server.

http://www.gmql.eu/popstudy/api/donor_grouping
http://www.gmql.eu/popstudy/api/variant_grouping
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Ranking of  variants The endpoints / most_ common_ varia nts and / rarest_ varia 
nts are based on a query similar to the one shown in Listing 2. The ranking of vari-
ants requires the eligible data sources—and so the corresponding Variation Source 
classes—to return a query providing the list of mutations occurring within any genome 
of the population selected in the request. Every mutation must be indicated through 
the attributes CHROM, POS, REF and ALT, and annotated with the number of donors 
exhibiting the mutation, the total number of alleles in the population, and the number 
of occurrences of the variant inside the population. The Coordinator class embeds the 
queries provided by the sources into an outer query, which groups the mutations by 
their coordinates, reference and alternative alleles, and sums the numeric variables in 
each group; for each group, i.e., for each variant, it then computes the frequency as the 
ratio of occurrences over the total number of alleles.

Results
Integration of the 1000 Genomes Project population variation data

Two datasets of 1KGP data are publicly available. The oldest one, dated 2015, repre-
sents the original outcome of the project as joint work of the 1000 Genome Project 
Consortium and the Structural Variation Analysis Group. It comprises single nucleo-
tide polymorphisms (SNPs), indels and structural variants from the DNA or riboso-
mal DNA (rDNA) of 2535 samples/donors, whose genomes were aligned to the hg19 
reference human assembly. The International Genome Sampling Resource , which was 
established to expand and maintain the project after its conclusion, realigned these 

http://www.gmql.eu/popstudy/api/most_common_variants
http://www.gmql.eu/popstudy/api/rarest_variants
http://www.gmql.eu/popstudy/api/rarest_variants
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variants to the GRCh38 reference human genome two years later and added those of 
13 samples/donors; however, such more recent dataset only includes SNPs and bi-
allelic indels. The two datasets are stored at specific locations within a 1KGP FTP 
repository1. Each dataset contains a collection of 23 VCF files, one for each human 
chromosome from 1 to 22, plus chromosomes X; the hg19 dataset includes two more 
VCF files for the chromosomes Y and MT (i.e., mitochondrial). Each file represents 
a big set of variants that may or may not be present in each sample. Samples belong 
to control population individuals, i.e., healthy individuals’ genomes compared against 
the reference genome. Samples are further described by 4 single metadata files con-
taining different metadata types2.

By means of the META-BASE framework and the new software modules we devel-
oped for its extension, we generated two new GDM datasets of 1KGP data:

• HG19_1000GENOMES_2020_01, containing the full 1KGP outcome data aligned 
to the hg19 genome assembly;

• GRCh38_1000GENOMES_2020_01, including the 1KGP biallelic SNP and indel 
variants aligned to the GRCh38 genome assembly.

These are, to date, considered the most updated and stable versions of the 1KGP project. 
Details concerning the number of files transformed, the size of the datasets and the exe-
cution time for the entire process (including all the stages of the META-BASE pipeline) 
are reported in Table 3.

The transformation process was executed on a server machine equipped with an 
Intel(R) Xeon(R) CPU E5-2660 v4, 378 GB of RAM and an array of mechanical hard disk 
drives of a total size of 48 TB. The process is mainly input/output bound; so, despite the 
parallel implementation using 15 processors out of 28, it took a considerable amount of 
time; the difference between the processing time of the two datasets is a consequence of 
the different content of the two datasets: the GRCh38 dataset released by IGSR includes 
SNPs and bi-allelic variants, but lacks longer structural variants, resulting in a smaller 
number of variants and reduced complexity of the transformation overall.

Table 3 Statistics of the 1KGP input and output datasets

Dataset Region files Metadata files Size (.gz 
compressed)

Size 
(uncompressed)

Input hg19 25 4 17 GB 796 GB

GRCh38 23 4 13 GB 752 GB

Dataset Region files Metadata files Size Execution time

Output hg19 2535 2535 1.5 TB 217 h 7 min 40 s

GRCh38 2548 2548 1.1 TB 187 h 59 min 45 s

1 The FTP locations of the hg19 and GRCh38 datasets are reported at [48] and [49], respectively.
2 Metadata about the indexes of the alignment files  [50]; information on the 26 populations participating to the pro-
ject [51]; characteristics of the individuals donating the samples [52]; sequencing strategies [53].
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The two generated datasets are provided, together with several other genomic datasets 
previously available, in the GMQL system through its Web interface [54] or APIs (REST-
ful, Python and R/Bioconductor) as part of a large integrated genomic repository docu-
mented in [20]. They are also searchable in GenoSurf [21, 55], where both the original 
metadata and the transfomed metadata values—as resulting from the integration pro-
cess—can be used for filtering.

Already integrated sources: TCGA and GENCODE

The integration of 1KGP data inside our genomic data repository allows using the 1KGP 
data together with the datasets that were there previously integrated. For instance, a 
user may wish to combine multiple types of features and compare the 1KGP variants 
with other genomic regions, either variants or annotations. To exemplify this possibil-
ity, we selected another source of variation data from our repository, i.e., The Cancer 
Genome Atlas [18]. Similarly to the 1KGP, TCGA somatic mutations are organized into 
two datasets indicated in our repository respectively as HG19_TCGA_dnaseq, contain-
ing the variants of 6,914 samples aligned on the hg19 assembly, and GRCh38_TCGA_
somatic_mutation_masked_2019_10 for the variants of 10,187 samples aligned 
on the GRCh38 assembly.

Our integration of the two sources allows performing identical queries on both, com-
paring the results, and easily extracting their data through any of the discussed inter-
faces: the VarSum API here presented, GMQL, or GenoSurf. Note that not all region/
metadata attributes in 1KGP are available in TCGA. Available filters can be inspected in 
Table 4.

Table 4 Filtering capability for TCGA and 1KGP

Filter samples on Availability in 
source

TCGA 1KGP

Metadata Gender x x

Ethnicity x x

Population x

Super population x

Health status x x

Disease x x

Assembly x x

DNA source (i.e., LCL/blood) x

Region data Presence of a specific variant/multiple variants x x

Absence of a specific variant/multiple variants x x

Presence of any variant inside a specific genomic region x x

Presence of two or more specific variants on the same chrom. copy x

Presence of two specific variants on opposite chrom. copies x

Having any germline variant x

Having any somatic variant x
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In VarSum, we provide the annotations imported from the HG19_ANNOTATION_
GENCODE and GRCH38_ANNOTATION_GENCODE datasets, both already integrated 
into our genomic repository and available through its interfaces. The datasets originate 
from the GENCODE initiative [32], and describe the start and stop positions of genes, 
respectively aligned on hg19 and GRCh38 human assemblies.

While VarSum currently includes only 1KGP, TCGA and GENCODE data sources, 
several additional data sources can be easily integrated next, undergoing a necessary 
prior integration within the META-BASE repository, if not already performed.

VarSum API

The VarSum interface is implemented as a RESTful API, to facilitate the integration 
inside already existing pipelines. Its full corpus of the API POST and GET endpoints is 
listed in Table 5.

The first four endpoints (/ donor_ group ing, / varia nt_ group ing, / most_ common_ varia 
nts, / rarest_ varia nts) implement the main data querying functionalities of the API; for a 
group (i.e., population) of individuals, they respectively return the following measures:

• the donors’ counts for each partition of the population;
• the frequency of a variant inside each partition of the population;
• the most frequent variants in the population;
• the rarest variants in the population.

Query parameters can be set as JSON elements in the POST payload of the request to 
filter the requested population based on donors’ metadata and exhibited variants.

Four additional endpoints (/ values, / annot ate, / varia nts_ in_ region, / downl oad_ 
donors) are provided for data exploration, specifically to:

• extract all distinct values of a metadata attribute;
• annotate a genomic region by means of GENCODE gene annotations;
• list the variants appearing in a given genomic region of a population;
• download the metadata and genomic region data of the population of interest in 

GDM format.

Table 5 Endpoints available in the VarSum API

HTTP method Function Endpoint

POST Measure-based http:// www. gmql. eu/ popst udy/ api/ donor_ group ing

POST Measure-based http:// www. gmql. eu/ popst udy/ api/ varia nt_ group ing

POST Measure-based http:// www. gmql. eu/ popst udy/ api/ most_ common_ varia nts

POST Measure-based http:// www. gmql. eu/ popst udy/ api/ rarest_ varia nts

GET Exploratory http:// www. gmql. eu/ popst udy/ api/ values

POST Exploratory http:// www. gmql. eu/ popst udy/ api/ annot ate

POST Exploratory http:// www. gmql. eu/ popst udy/ api/ varia nts_ in_ region

POST Exploratory http:// www. gmql. eu/ popst udy/ api/ downl oad_ donors

http://www.gmql.eu/popstudy/api/donor_grouping
http://www.gmql.eu/popstudy/api/variant_grouping
http://www.gmql.eu/popstudy/api/most_common_variants
http://www.gmql.eu/popstudy/api/most_common_variants
http://www.gmql.eu/popstudy/api/rarest_variants
http://www.gmql.eu/popstudy/api/values
http://www.gmql.eu/popstudy/api/annotate
http://www.gmql.eu/popstudy/api/variants_in_region
http://www.gmql.eu/popstudy/api/download_donors
http://www.gmql.eu/popstudy/api/download_donors
http://www.gmql.eu/popstudy/api/donor_grouping
http://www.gmql.eu/popstudy/api/variant_grouping
http://www.gmql.eu/popstudy/api/most_common_variants
http://www.gmql.eu/popstudy/api/rarest_variants
http://www.gmql.eu/popstudy/api/values
http://www.gmql.eu/popstudy/api/annotate
http://www.gmql.eu/popstudy/api/variants_in_region
http://www.gmql.eu/popstudy/api/download_donors
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All endpoints return responses in the form of JSON files. Endpoints that perform aggre-
gation (i.e., / donor_ group ing and / varia nt_ group ing) return a data cube showing counts 
or frequencies relative to one or many combined properties within the population. 
Other endpoints return a table, or a simple list. A call to VarSum only requires three 
Python instructions, as shown in Listing 3.

The API endpoints have self-descriptive names and reusable body parameters. Most 
endpoints share the same request body schema definition. For example, the request body 
params in lines 2–10 of Listing 3 is a valid input for the endpoints / most_ common_ varia 
nts and / rarest_ varia nts; but it becomes a valid input also for the endpoint / donor_ group 
ing once we add the attribute group_by. Furthermore, by adding a target_vari-
ant, the request body can be used also for calling the endpoint / varia nt_ group ing. A 
list of the valid assignments of metadata attributes is available at the endpoint / values. 
Instead, region attributes can be specified in multiple ways: genomic regions can be 
described as named annotations (e.g., the gene name IDH1), or as arbitrary intervals 
through the information about the chromosome, start and stop; variants can be iden-
tified by means of the values chromosome, start, and reference and alternative alleles, 
or also by the mutation ID as assigned by dbSNP [56]. Lines 16–19 of Listing 3 show 
how the response output may be transformed into a Pandas DataFrame [57], for further 
processing.

A complete documentation of the endpoints is available at [58]; under each endpoint, 
we define the structure of the allowed input parameters and provide a few examples. 
Users can try the API functions directly on the documentation page with ready-made 
examples, or custom parameters. Additionally, we provide examples of use of the API in 
form of IPython Notebooks [59] and Google’s Colab Notebooks [60] inside the /demo 
directory of the project repository [61]; two of them, (UC A - identification of mutations 
involved in development of brain lower grade glioma and UC B - differential mutation 
analysis to unveil cancer genes) are demonstrative applications explained also in the next 
section, while the other four are useful examples to familiarise with the body parameters 
and the API endpoints.

http://www.gmql.eu/popstudy/api/donor_grouping
http://www.gmql.eu/popstudy/api/variant_grouping
http://www.gmql.eu/popstudy/api/most_common_variants
http://www.gmql.eu/popstudy/api/most_common_variants
http://www.gmql.eu/popstudy/api/rarest_variants
http://www.gmql.eu/popstudy/api/donor_grouping
http://www.gmql.eu/popstudy/api/donor_grouping
http://www.gmql.eu/popstudy/api/variant_grouping
http://www.gmql.eu/popstudy/api/values
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Use cases

In this section we show example cases of use of the results of our effort. The first use 
case demonstrates how 1KGP datasets can interoperate with other sources in the 
META-BASE repository, by means of the GMQL query language. The second use case 
employs a simple exploratory API call to evaluate donors’ populations. The last two use 
cases provide instead more elaborate examples of how to compose several calls to the 
VarSum API to perform advanced analyses.

Integrative queries with GMQL

The META-BASE repository is accessible through the GMQL web interface [54], where 
datasets of several integrated genomic data sources are available. GMQL provides cloud 
computation supporting queries over several samples in parallel, taking into account 
genomic region positions and distances.

As an example of possible integrative queries, in Listing  4 we take advantage of the 
previous integration of ENCODE ChIP-seq data into the META-BASE repository, docu-
mented in [35]; we present a GMQL query that allows annotating the genomic variants 
of the 1KGP dataset with the H3K4me1 histonic modification regions of protein H3 for 
the human colon cancer cell line HCT116 (line 1). To demonstrate its use on a small 
data set, we selected only the female donors from Tuscany region of Italy (line 2). Then, 
by employing operators of the GMQL language, we created a unique dataset unifying 
both initially selected data sets (line 3), and only extracted those genomic regions that 
are covered by at least two initially selected variant and H3K4me1 regions (line 4), finally 
preserving only metadata relevant to the example (i.e., population, donor_id, and gen-
der) (line 5). The result is eventually materialized and can be downloaded for further 
inspection.

Extraction of a donors’ population

In this use case, we show how it is possible to choose a population of donors that satis-
fies precise requirements, also regarding genomic variants. We can start by inspecting 
the metadata properties of a dataset using the VarSum API endpoint / donor_ group ing/ 
donor_ group ing, for example with the request body in Listing 5.

http://www.gmql.eu/popstudy/api/donor_grouping
http://www.gmql.eu/popstudy/api/donor_grouping
http://www.gmql.eu/popstudy/api/donor_grouping
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If we are interested only in the donors whose genome shows any variation in one or 
more genomic regions (e.g., in the miRNA gene MIR4657), we can specify them as a 
requirement, as in Listing 6.

Once we are satisfied with the selected population, we can perform other queries to 
explore further the population through the endpoints of the VarSum API (e.g., to know 
the most common variants), or also export the population dataset and analyse it using 
other arbitrary tools. To download a population data, we make available the endpoint / 
downl oad_ donors, which takes as argument the same input of the endpoints / donor_ 
group ing, / varia nt_ group ing, / most_ common_ varia nts, or / rarest_ varia nts; therefore, to 
download the current population, we can use the input of previous Listing 5 or Listing 6. 
The downloaded files consist in one “.gdm” and one “.gdm.meta” file for each donor, 
describing respectively the genomic region data and the metadata of the donor.

Identification of mutations involved in the development of brain lower grade glioma

Here, we illustrate how to extract a disease population of interest from the integrated 
data, and identify: (i) the variants that are most likely involved in the disease, and ii) 
the affected genes. In this use case, we use the TCGA data available for use in VarSum 
thanks to its prior integration inside the META-BASE repository. Focusing on brain 
lower grade glioma, Listing 7 reports the sequence of calls made to the VarSum API 
for this study. First, we call the / most_ common_ varia nts endpoint with the payload 

http://www.gmql.eu/popstudy/api/download_donors
http://www.gmql.eu/popstudy/api/download_donors
http://www.gmql.eu/popstudy/api/donor_grouping
http://www.gmql.eu/popstudy/api/donor_grouping
http://www.gmql.eu/popstudy/api/variant_grouping
http://www.gmql.eu/popstudy/api/most_common_variants
http://www.gmql.eu/popstudy/api/rarest_variants
http://www.gmql.eu/popstudy/api/most_common_variants
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shown in lines 2-11 to find the most common somatic variants in patients affected by 
the considered disease. The service returns the mutation 2:208248387:C:T (referred 
to as TM1 in the following) as the top one, occurring in almost 70% of patients.

Such frequency has been calculated in the entire population of donors with the dis-
ease, but we can also look at the frequency in the sub-populations by calling the / 
varia nt_ group ing endpoint with the parameters indicated in lines 14-25 of Listing 7. 
The response reveals that out of all patients affected by brain lower grade glioma and 
with the TM1 variant (509), most (468—92%) are of white ethnicity. However, the 
population size in other ethnic groups is too small to make considerations about the 
population prevalence of the genetic trait or the disease; the under-representation of 
other ethnic groups in the dataset (white donors cover 75% of the patients analysed in 

http://www.gmql.eu/popstudy/api/variant_grouping
http://www.gmql.eu/popstudy/api/variant_grouping
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TCGA) is the most likely cause of this bias. Finally, the result also shows almost iden-
tical distribution of cases between males and females.

We identified the next target mutation (TM2 in the following) by calling the end-
point / most_ common_ varia nts as in lines 28-38 of Listing 7. The result tells that TM2 is 
17:7673802:G:A and occurs in almost 10% of the brain lower grade glioma patients with 
TM1. While the frequency of TM2 is not so high in such donors, the opposite holds: by 
calling / varia nt_ group ing with the payload shown in lines 41-54 of Listing 7, we observe 
a much higher frequency of TM1 in the white ethnicity donors having TM2 and brain 
lower grade glioma: almost 80%. This result suggests that TM1 and TM2 are the muta-
tions that are most likely involved in the development of such disease.

To strengthen our findings, we further tested the distribution by disease of the donors 
having TM1 and TM2, using the endpoint / donor_ group ing with the request parameter 
at lines 2–16 of Listing 8; the call can be repeated moving alternatively one of the two 
mutations inside a “without” list of variants in the “having_variants” group to obtain the 
distribution of donors having TM1 but not TM2, or vice versa. The results are reported 
in Fig. 6.

Finally, by querying the endpoint / annot ate first with the parameters shown at lines 
2-8 and then with those at lines 9-15 of Listing 9, we observe that the genes IDH1 and 
TP53 are mutated respectively by the variants TM1 and TM2.

http://www.gmql.eu/popstudy/api/most_common_variants
http://www.gmql.eu/popstudy/api/variant_grouping
http://www.gmql.eu/popstudy/api/donor_grouping
http://www.gmql.eu/popstudy/api/annotate
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This finding is confirmed in the literature (Ichimura et al. [62]), where the combina-
tion of IDH1 and TP53 mutations is found to be a frequent and early change in the 
majority of secondary glioblastomas, a more severe type of brain tumor originating 
from lower grade glioma.

Differential variant analysis to unveil cancer genes

In [63], Przytycki and Singh proposed a technique (named DiffMut) to identify genes 
that are likely involved in a given disease, based on the comparison of their somatic 
mutations and germline variants. Taking advantage of the VarSum functionalities, 
that relevant technique can be easily implemented using VarSum, only assuming a 
few simplifications to the original method (discussed in the following). Thus, leverag-
ing on the performed integration of genome variation data from different sources, it 
can be applied on the aggregated data (in this use case we use GENCODE gene anno-
tations, TCGA and 1KGP mutations and variants) for different studies of biological 
and clinical interest. Here, we show how to do it, focusing on finding genes that are 
involved in skin cutaneous melanoma.

The adopted general strategy can be summarized as follows: 

(1) Select a set of candidate genes G
(2) Separately for a group of healthy donors (healthy cohort) and a group of patients 

affected by the considered disease (tumor cohort): 

(a) Assign a score Si to each gene Gi for a cohort: being V c
i
 the set of variants pre-

sent in the cohort c and falling in the genomic region of Gi , and countc(v) the 
number of times a variant v occurs in the donors of the cohort c, compute the 
score as Sc

i
=

v∈V
c
i
countc(v)

size(c)

Fig. 6 Comparison of the pathologies of donors with only TM1, or only TM2, or both TM1 and TM2 
mutations. TM1 is found in 6 groups of patients corresponding to widely different pathologies, including 
brain lower grade glioma, bladder urothelial carcinoma, breast invasive carcinoma, glioblastoma multiforme, 
acute myeloid leukemia, and prostate adenocarcinoma. The co-presence of both TM1 and TM2 mutations 
reduces the number and types of associated pathologies to only 2 (both brain tumors), and increases of 2.1% 
the likelihood of correctly detecting the brain lower grade glioma 
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(b) Rank-normalize the gene scores in a cohort, by assigning value 1.0 to the gene 
with the highest score and lower positive values to the other genes, proportion-
ally to their score Si (this normalized value is a measure of how much a gene is 
likely to mutate within the considered cohort)

(3) Compare the rank-normalized scores to find the genes where they differ the most 
between the tumor and the healthy cohorts.

Compared to the DiffMut technique that analyses the single patient’s genomes, 
in VarSum we make use only of aggregated data; therefore, the need to adapt the 
method. The original technique counts the variants falling in each candidate gene 
for every donor in the cohort under consideration, thus obtaining a distribution of 
variant counts for every gene. Then, to estimate the role of the gene and its alteration 
in the tumorigenic event, DiffMut computes the difference between the two cohort 
distributions for the gene, using a novel measure called unidirectional Earth Mov-
er’s Difference (uEMD). We replaced the mutational profile of each gene (a distribu-
tion over donors) with the gene score Si previously illustrated, and consequently the 
uEMD with the difference of the gene scores.

For computing the gene scores, we first extract the list of variants in a gene for the 
tumor and healthy cohorts; this can be done by calling the / varia nts_ in_ region end-
point of the VarSum API with the gene name as a parameter (see Listing 10 for the 
tumor cohort), repeating the operation for each gene in the candidate list.

The next step to compute the gene scores involves extracting and counting the 
occurrences of a specific gene variant, and knowing the size of the cohort. We can 
obtain both information by calling the VarSum API endpoint / varia nt_ group ing as in 
Listing 11; the interesting values for our analysis are contained in the output columns 
OCCURRENCE_OF_TARGET_VARIANT and POPULATION_SIZE, which is a con-
stant of the cohort.

http://www.gmql.eu/popstudy/api/variants_in_region
http://www.gmql.eu/popstudy/api/variant_grouping
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By composing the two described operations, we can compute the scores for a list of 
candidate genes for the two considered cohorts. Assuming the following candidate genes 
[CTSZ, EFEMP2, ITGA5, KDELR2, MAP2K3, MDK, MICALL2, PLAUR, SERPINE1, 
SOCS3], a tumor cohort including all skin cutaneous melanoma patients with somatic 
mutations aligned to GRCh38, and a healthy cohort including all donors having germline 
variants aligned to GRCh38, using VarSum we can easily compute the gene scores and their 
rank normalization, shown in Fig. 7.

As an evaluation metric for assessing the relevance of each candidate gene in the skin 
cutaneous melanoma, for every gene we compute the difference between its normalized 
scores in the tumor and in the healthy cohorts, obtaining the results shown in Fig. 8. Thus, 
among the selected candidate genes we identify the ITGA5 gene as the one most likely 
involved in the skin cutaneous melanoma. This finding is confirmed in recent studies [64].

Discussion
We presented two separate implementation contributions, the first one being the inte-
gration of population variation datasets within a tertiary analysis repository, and the sec-
ond one being a computational framework with an API to flexibly query the integrated 
datasets for sample-set extraction and population variant analysis.

Fig. 7 Candidate genes and their scores. On the left the scores for the tumor cohort; on the right the ones 
for the healthy cohort
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Regarding the first contribution, we proposed to transform input datasets from 
the VCF classical format into a GDM-based one. These are two very different for-
mats to represent genomic variants; the steps necessary to perform the conversion 
are many and quite complex overall. Also the size of the generated datasets is con-
siderably greater than the original one, since the VCF format offers a greater com-
pression ratio when describing variants that are common to a large set of individuals. 
However, conversely the GDM-based format makes the valuable VCF data and related 
metadata seamlessly integrated with all other heterogeneous genomic data from mul-
tiple sources publicly available in the META-BASE repository, including somatic 
mutations from TCGA, as well as comprehensively queryable and evaluable efficiently 
in the cloud thanks to the GMQL technology and its ecosystem of publicly available 
interfaces and tools.

For what concerns our second contribution, the provision of a computational frame-
work with an API for flexible population variation querying, previously proposed 
strategies, which rely on pre-computed population statistics (e.g., gnomAD), limit the 
possibility to refine studied populations in depth. More sophisticated population charac-
terisations are enabled by general genomic computing systems, such as GMQL, where a 
variety of data sources can be comprehensively queried using a dedicated language; yet, 
the learning barriers of the latter ones are substantial, due to the complexity of the sys-
tems and their ad-hoc query languages [7, 20, 65, 66]. Other approaches, offering practi-
cal user interfaces (e.g., Ensembl [17], or PGG.SNV [23]), do not provide APIs that are 
easy to be integrated within bioinformatic pipelines.

Conversely, VarSum, whose goal is to support the analysis of the genomic variation 
characteristics of a user-defined population, offers several advantages: 

(1) on the technological side, we claim a fast learning curve of the VarSum services and 
their parameters, and their easy integration within programming codes;

Fig. 8 Candidate genes and their scores. On the left the scores for the tumor cohort; on the right the ones 
for the healthy cohort
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(2) on the interoperability side, we have fully integrated the 1000 Genomes Project var-
iant datasets within the GMQL and GenoSurf systems;

(3) on the functional side, we have developed a framework and an API to support the 
aggregated analysis of DNA variants of a population that the user can arbitrarily 
define through fine-grained requirements over metadata and genomic region data 
of the considered datasets, also allowing comparing the frequency of DNA variants 
in any desired (sub)population.

We integrated variation data from 1KGP and TCGA, as well as gene annotations from 
GENCODE; more datasets of DNA variants or relevant genomic regions can be further 
integrated by seamlessly adding dedicated software classes extending the Annotation 
Source or Variation Source classes of VarSum. In particular, we plan to integrate addi-
tional data of other sequencing projects, such as the “1+ Million Genomes Project” [67] 
that started recently, as well as a broader set of genome annotation types, beyond gene 
annotations. Moreover, as the release of whole genome variation studies has recently 
raised privacy concerns  [68], VarSum  provides built-in support for ready-made pri-
vacy constraints (e.g., by refusing to answer the user’s request if the result involves data 
only from a small number of donors). Still, more complex privacy rules will be added 
per request and data-source, if needed. Even though VarSum scales well with the num-
ber of data sources, critical aspects emerge when ranking variants by frequency on large 
whole-genome data collections as 1KGP. The calculation of the most frequent/rarest 
variants requires scanning and grouping operations for each variant in the population of 
interest. For 1KGP data, this results into a number of variants increasing by 4.4 million 
per donor, corresponding to a response time of  9 seconds per individual3. To improve 
this performance, two main optimisations will be targeted as future work: offline pre-
calculation of results (for typical queries that do not use genomic region data filters) and 
response caching.

Conclusions
The 1000 Genomes Project is the most recent whole-genome sequencing initiative 
that publicly released a big collection of DNA variants and population data without 
any embargo. Similar or larger projects were started afterwards, especially in the form 
of large-scale genomic national initiatives [69]. Examples include All of US  [70] by the 
National Institutes of Health (NIH) in the United States, the 100,000 Genomes Pro-
ject [5] (a United Kingdom Government project that is sequencing whole genomes from 
UK National Health Service patients), or deCODE Genetics [71], a private company that 
initiated the full sequencing of the Icelandic population. Assuming that these project 
results will be released publicly in the future, they will need to be considered within the 
scope of future public data integration efforts, giving a new and substantial boost to the 
potential of genomic data analysis. At that time, there will be even a stronger need for 
instruments for genomic data aggregation and querying such as the one here proposed, 
allowing free characterizations of populations from a genomic/evolutionary standpoint.

3 Such performance corresponds to the tests carried on the same machine used for the integration of 1KGP data into the 
META-BASE repository (see Result section).
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Availability and requirements

Project name: VarSum
Project home page: http:// www. gmql. eu/ popst udy/
Operating system(s): Platform independent
Programming language: Scala is the main programming language used for the data 
integration task, as it is the language of development of the META-BASE project. 
The data integration procedure involves also the use of XML files for defining con-
figuration options as well as the output region file schema. Instead, both the software 
loading GDM region data files to the database and the VarSum API have been devel-
oped using Python as the main programming language, in combination with SQL for 
making database queries. VarSum also makes extensive use of the YAML [72] lan-
guage for the API documentation.
Other requirements: Java 1.7 or higher is required to run Metadata-Manager 
(https:// github. com/ DEIB- GECO/ Metad ata- Manag er/). Instead, the database load-
ing software and the VarSum API server need Python 3.7 to be installed. VarSum and 
the database loading software have separate software package dependencies, respec-
tively listed inside a file named requirements.txt, as is usual in Python projects. One 
of such files is present in each project’s GitHub repository: at https:// github. com/ 
DEIB- GECO/ VarSum for the API server, and at https:// github. com/ DEIB- GECO/ 
geco_ agent_ loader for the database loading software. Additionally, a PostgreSQL 
database server running in the same machine is needed for the proper execution of 
the software hereby discussed.
License: The software module developed for the integration of 1KGP data inside the 
META-BASE repository is part of the Metadata-Manager software package (https:// 
github. com/ DEIB- GECO/ Metad ata- Manag er/) and is available under the same 
Apache-2.0 License. Likewise, the Apache-2.0 License applies to the database loading 
software (https:// github. com/ DEIB- GECO/ geco_ agent_ loader). The VarSum soft-
ware is released under the GNU General Public License (GPL) v3.0.
Any restrictions to use by non-academics: The same restrictions provided by the 
GNU GPL License v3.0 apply to academic and non-academic use.
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BED  Browser Extensible Data
EVS  Exome Variant Server
GCM  Genomic Conceptual Model
GDC  Genomic Data Commons
GDM  Genomic Data Model
GMQL  GenoMetric Query Language
gnomAD  Genome Aggregation Database
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IGSR  International Genome Sampling Resource
JSON  JavaScript Object Notation
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NGS  Next-Generation Sequencing
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NIH  National Institutes of Health
rDNA  ribosomal DNA
REST  Representational state transfer
SAGE  South Asian whole genomes and exomes
SNP  single nucleotide polymorphism
SQL  Structured Query Language
TCGA   The Cancer Genome Atlas Program
URI  Uniform Resource Identifier
VCF  Variant Call Format
XML  Extensible Markup Language
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Additional file 1. Example of translation from VCF into GDM format for genomic region data: This .xlsx (MS Excel) 
spreadsheet exemplifies the transformation of the original 1KGP mutations—expressed in VCF format—into GDM 
genomic regions. As a demonstrative example, some variants about chromosome X have been selected from the 
source data (in VCF format) and listed in the first table at the top of the file. The values of columns #CHROM, POS, REF 
and ALT appear as in the source. We removed the details that are unnecessary for the transformation from the col-
umn INFO. In the column FORMAT it is indicated exclusively the value “GT”, meaning that the next columns contain 
only the genotype of the samples (this and other conventions are expressed in the VCF specification document and 
in the header section of each VCF file). In multiallelic variants (examples e, f.1 and f.2), the genotype indicates with 
a number which of the alternative alleles in ALT is present in the corresponding samples (e.g., the number 2 means 
that the second variant is present); otherwise, it only assumes the values 0—mutation absent, or 1—the mutation 
is present. Additionally, the genotype indicates whether one or both chromosome copies contain the mutation 
and which one, i.e., the left one or the right one; the mutated alleles are normally separated by a pipe (“|”), if not 
otherwise specified in the header section; we do not know which chromosome copy is maternal or paternal, but 
as the 1KGP mutations are “phased”, we know that the “left chromosome” is the same in every mutation located in 
the same chromosome of the same donor. As in this example we have only one column after the FORMAT one, the 
mutations described are relative to only one sample, called “HG123456”. Actually, this sample does not exist in the 
source, but serves the purpose of demonstrating several mutation types that are found in the original data. The table 
reports six variants in VCF format, with the last one repeated two times to show how different values of genotype 
lead to a different translation (indeed, examples f.1 and f.2 differ only for the last column). Below in the same file, the 
same variants appear converted in GDM format. The transformation outputs the chr, left, right, strand, AL1, AL2, ref, alt, 
mut_type and length columns. The value of strand is positive in every mutation, as clarified by the 1KGP Consortium 
after the release of the data collections. Values of AL1 and AL2 express on which chromatid the mutation occur and 
depend on the value of the original genotype (column HG123456). The values of the other columns, namely chr, left, 
right, ref, alt, mut_type and length, are obtained from the variant original values after the split of multi-allelic variants, 
the transformation of the original position into 0-based coordinates, and the removal of repeated nucleotide bases 
from the original REF and ALT columns. In 0-based coordinates, a nucleotide base occupies the space between the 
coordinates x and x + 1. So, SNPs (examples a and f.2) are encoded as the replacement of ref at position between 
left and right with alt. Insertions (examples c and f.1) are described as the addition of the sequence of bases in alt at 
the position indicated in left and right, i.e., in between two nucleotide bases. Deletions (example b) are represented 
as the substitution of ref between positions left and right with an empty value (alt is indeed empty in this case). 
Finally, structural variants (examples d and e) such as copy number variations and large deletions have an empty 
ref because, according to the VCF specification document, the original column REF reports a nucleotide (called 
padding-base) that is located before the scope of the variant on the genome and is unnecessary in a 0-based rep-
resentation. In this file, we reported only the columns relevant for the understanding of the transformation method 
regarding the mutation coordinates, reference and alternative alleles. Actually, in addition to the ones reported in 
the second table, the transformation adds some more columns, called as the attributes in the original INFO column 
to capture a selection of the attributes present in the original file.

Additional file 2. Example of transformed metadata: In this .xlsx (MS Excel) file, we list all the output metadata cat-
egories generated for each sample from the transformation of the 1KGP input datasets. The output metadata include 
information collected from all the four 1KGP metadata files considered. Some categories are not reported in the 
source metadata files—they are identified by the label manually_curated__...—and were added by the developed 
pipeline to store technical details (e.g., download date, the md5 hash of the source file, file size, etc.) and informa-
tion derived from the knowledge of the source, such as the species, the processing pipeline used in the source and 
the health status. For every information category, the table reports a possible value. The third column (cardinality > 
1) tells whether the same key can appear multiple times in the output GDM metadata file. This is used to represent 
multi-valued metadata categories; for example, in a GDM metadata file, the key manually_curated__chromosome 
appears once for every chromosome mutated by the variants of the sample.
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