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Abstract. Three-valued model checking has been proposed to support
verification when some portions of the model are unspecified. Given a
formal property, the model checker returns true if the property is sat-
isfied, false and a violating behavior if it is not, maybe and a possibly
violating behavior if it is possibly satisfied, i.e., its satisfaction may de-
pend on how the unspecified parts are refined. Model checking, however,
does not explain the reasons why a property holds, or possibly holds.
Theorem proving can instead do it by providing a formal proof that ex-
plains why a property holds, or possibly holds in a system. Integration of
theorem proving with model checking has only been studied for classical
two-valued logic – hence, for fully specified models. This paper proposes
a unified approach that enriches three-valued model checking with theo-
rem proving to generate proofs which explain why true and maybe results
are returned.

1 Introduction

Multi-valued model checking techniques, such as [5, 6, 15, 7, 19], have been pro-
posed to support the verification of models that are partial, i.e., their state space
is not fully specified. Three-valued model checking is a multi-valued model check-
ing technique that extends classical two-valued model checking by possibly re-
turning an additional maybe value. More precisely, it returns true if the property
definitely holds, false if it definitely does not hold, maybe otherwise.

In the classical context of two-valued model checking, although a sample
violating behavior (a counterexample) is normally returned when the property
is violated, no equally useful insight is provided if the property holds. In practice,
it would be useful to receive a formal explanation of the reason why the system
satisfies the property. To achieve this goal, the model checking framework can
be equipped with a theorem prover that formally justifies why model checking
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has failed in the search of a counterexample. Theorem proving algorithms have
been developed for fully specified models [21, 22], but no known similar approach
deals with partial models.

The ability to deal with partial models has a strong practical motivation.
Software development often proceeds in an iterative and incremental fashion.
Designers may start by providing an initial, high-level version of the model,
which is iteratively narrowed down as design progresses and uncertainties are
removed. Whenever the result of verification is true or maybe, the proof can
guide the designer throughout the refinement process, and confirm the correct-
ness of the design choices already performed. In some cases, the proof may even
implicitly suggest that actually the property does not capture the intended cor-
rectness condition, and it should be modified. For this reason, the integration
of theorem proving techniques and multi-valued model checking can guide the
designer towards the development of a correct model.

This paper proposes THRIVE, a THRee valued Integrated Verification framE-
work for partial models. THRIVE enriches model checking for partial models
with theorem proving. Theorem proving is used when a true or a maybe value
is returned by the model checker to justify why the verified system definitely or
possibly satisfies the property of interest. In addition to the general framework,
we present a specific instance of THRIVE useful for applications, which con-
siders models described as Partial Kripke Structures (PKSs) [5] and properties
expressed as Linear Temporal Logic (LTL) [23] formulae. The instance is based
on the three-valued LTL semantics [5]. To successfully integrate model checking
and theorem proving we customize the theorem proving framework (based on
deductive verification) proposed in [22] to support PKSs and LTL formulae.

We consider the applicability of THRIVE w.r.t. three-valued [5] and thor-
ough [6] LTL semantics. We also discuss its applicability in the case of self-
minimizing [11] LTL formulae, which are known to represent a practically rel-
evant subset of LTL formulae [2]. We evaluate the benefits of the framework
on an example by simulating the design of a medical software critical compo-
nent [3]. A discussion on the use of THRIVE in real world scenarios concludes
the evaluation.

Running example. We consider a simple grade crossing semaphore. We
assume that the designer has identified three simple properties: (1) Red lights
up infinitely often – formalized as φ1 = red. (2) Green lights up infinitely
often – formalized as φ2 = green. (3) When the light is red, it will always
be green – formalized as φ3 = (red→ green). Note that φ3 is deliberately
wrong and will be used later to discuss the application of THRIVE.
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Starting from this specification, a designer might initially propose the partially
specified model of the semaphore shown in Figure 1. Each state is associated
with the values of the propositions g and r (denoting green and red) holding in
that state, which specify whether the green and the red lights are on or off. For
example, in state s0 the red light is on (r = >) while the green is off (g = ⊥).
Instead, s2 is a state to which the semaphore may be brought, for instance by
a manual command. The designer still has to choose whether, in this state, the
green and red lights should be on or off. This is indicated by associating the value
? to the propositions g and r. The designer might refine the model by setting g
and r to either > or ⊥ in s2.

Related work. Three-valued [17, 12, 5, 6, 13] and multi-valued [15, 7] model
checking supports verification of partial models. Different model checking tech-
niques have been developed depending on the modeling formalisms. For example,
several papers focus on Partial Kripke Structures (e.g., [5, 6, 13, 15, 7]), others on
Modal Transition Systems (e.g., [17, 12]). However, to the best of our knowledge,
none of these techniques has been combined with theorem proving.

Theorem proving applies a set of techniques to try to establish the validity
of a given formula (see [18]). Some of these techniques (e.g., [21, 22, 20, 25, 24])
exploit the state space generated by the model checker to explain why a property
holds. However, to the best of our knowledge, none of these approaches has been
applied in a multi-valued context.

Organization. Section 2 contains background notations and algorithms.
Section 3 describes THRIVE. Section 4 presents an instance of THRIVE, that
considers PKSs and LTL formulae. Section 5 evaluates the approach on an exam-
ple. Section 6 discusses the applicability of THRIVE in real world cases. Section 7
concludes the paper.

2 Background

Checking complete models. Given a Kripke Structure M (KS), the model
checking procedure verifies whether a Linear Temporal Logic (LTL) formula φ
holds or does not hold in M . The procedure works in three steps: (1) generation
of a Büchi automaton (BA) A¬φ from the LTL formula ¬φ; (2) generation of
the product G = M ⊗A¬φ; (3) emptiness check of G.

Checking partial models. Partial Kripke Structures [5] (PKSs) extend
KSs by allowing a proposition in a given state to be labelled with ? to represent
an unknown value. A PKS M is a tuple 〈S,R, S0, AP, L〉, where: S is a set of
states; R ⊆ S × S is a left-total transition relation on S; S0 is a set of initial
states; AP is a set of atomic propositions; L : S×AP → {>, ?,⊥} is a function
that, for each state in S, associates a truth value in the set {>, ?,⊥} to every
atomic proposition in AP . The model of the grade crossing semaphore presented
in Figure 1 is an example of a PKS.

A completion of a PKS M is a KS M ′ that completes M by assigning values
to the unknown propositions. The set C(M) contains all the completions of M .

Two kinds of LTL semantics (three valued and thorough) exist for PKSs.
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Three-valued LTL semantics [(M,π) |= φ] associates to a model M , a path
π of M , and a formula φ, a truth value in the set {⊥, ?,>}. This semantics
specifies that a formula φ definitely holds in a PKS M if it is true for all possible
values of the unknown propositions in M . Likewise, it is definitely violated if it
is false despite the unknown values. According to three-valued semantics [13],
given a PKS M = 〈S,R, S0, AP, L〉, a path π = s0, s1, . . ., and a formula φ, we
inductively define that π satisfies φ in the model M as follows:

[(M,π) |= p] = L(s0, p)

[(M,π) |= ¬φ] = comp([(M,π) |= φ])

[(M,π) |= φ1 ∧φ2] = min([(M,π) |= φ1], [(M,π) |= φ2])

[(M,π) |= φ] = [(M,π1) |= φ]

[(M,π) |= φ1 U φ2] = max
j≥0

(min({[(M,πi) |= φ1]|i < j} ∪ {[(M,πj) |= φ2]}))

where the notation πi indicates the sub-path si, si+1 . . . of π.
Negation is defined by the function comp (complement), which maps > to

⊥, ⊥ to >, and ? to ?. The conjunction (disjunction) is defined as the minimum
(maximum) of its arguments, following the order ⊥ < ? < >. These functions
are extended to sets considering min(∅)=> and max(∅)=⊥.

Given a PKS M = 〈S,R, S0, AP, L〉, satisfaction of formula φ in a state s is
defined as [(M, s) |= φ] = min({[(M,π) |= φ] | π0 = s}). A PKS M definitely
satisfies a property φ ([M |= φ] = >) iff for all initial states s0 ∈ S0 of M ,
[(M, s0) |= φ] = >. A PKS M does not satisfy the property φ ([M |= φ] = ⊥) iff
there exists an initial state s0 ∈ S0 of M such that [(M, s0) |= φ] = ⊥. A PKS
possibly satisfies φ otherwise.

Three-valued semantics does not behave always in accordance with the nat-
ural intuition [6]: there are cases in which φ possibly holds for a PKS but all its
completions actually satisfy (or do not satisfy) φ. For this reason, an alternative
semantics, called thorough LTL semantics [6] has been proposed. According to it,
a formula is possibly satisfied only if there exist two completionsM1,M2 ∈ C(M),
such that φ is definitely satisfied in one and violated in the other. Thorough se-
mantics defines satisfaction of an LTL formula φ by a PKS M as follows:

[M |= φ]t =


> if M ′ |= φ for all M ′ ∈ C(M)

⊥ if M ′ 6|= φ for all M ′ ∈ C(M)

? otherwise

Given a PKS and an LTL formula φ, it has been proved [13] that (1) [M |= φ] =
> ⇒ [M |= φ]t = >; (2) [M |= φ] = ⊥ ⇒ [M |= φ]t = ⊥. That is, a formula
which is true (false) under the three-valued semantics is also true (false) under
the thorough semantics.

There exists a subset of LTL formulae, known in the literature as self-
minimizing [11], such that the two semantics coincide. Formally, given a model
M and a self-minimizing LTL property φ, then [M |= φ] = [M |= φ]t. It has been
observed that most practically useful LTL formulae belong to this subset [11].
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Fig. 2. The PKS of the crossing semaphore.
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Fig. 3. The BA associated with φ2.

We present a model checking algorithm for PKSs and LTL formulae based
on three-valued semantics. This procedure considers a version of M , called
complement-closed [6], in which for every proposition p ∈ AP , there exists a
new proposition p, called complement-closed proposition, such that L(s, p) =
comp(L(s, p)), for all s ∈ S. For example, the complement-closed version of the
PKS of the semaphore example is presented in Figure 2.

The model checking procedure for a PKS M is based on an optimistic
and pessimistic approximation of M ’s complement-closure. The optimistic (pes-
simistic) approximation function Lopt (Lpes) associates the value > (⊥) to each
atomic proposition of the complement-closure of M with value ?. Given a PKS
M = 〈S,R, S0, L〉, we have Mpes = 〈S,R, S0, Lpes〉 for the pessimistic case, and
Mopt = 〈S,R, S0, Lopt〉 for the optimistic one.

The three-valued model checking algorithm assumes that property φ is rewrit-
ten using complement-closed propositions. The procedure works in two steps.
First, the formula is expressed such that negations only appear in front of atomic
propositions. Second, each negated proposition is substituted by the correspond-
ing complemented proposition. Let φ be an LTL formula obtained using the pro-
cedure just discussed, M = 〈S,R, S0, L〉 a PKS with s ∈ S, and Mpes and Mopt

the corresponding pessimistic and optimistic cases. Then, [6]1 has defined:

[(M, s) |= φ] =


> if (Mpes, s) |= φ

⊥ if (Mopt, s) 6|= φ

? otherwise

This technique exploits two runs of the classical two-valued model checking
performed on a pessimistic and an optimistic completion of M .

Deductive verification. Given a complete KS M and an LTL property
φ that is satisfied by M , the deductive verification framework produces a proof
which explains why M |= φ [22] considering the product G = M⊗E¬φ where E¬φ
is a Generalized Büchi Automaton (GBA [10]) obtained by ¬φ. The approach

1 In [6] the procedure is presented for PML but is valid also for LTL (see [6, 11, 13]).



6 From model checking to a temporal proof for partial models

is based on three considerations. (1) Every state q ∈ Q of E¬φ is associated
with an LTL formula η(q) such that, for every accepting run σ = q0, q1, ... of G,
σi |= η(qi). The formula η(q) is computed during the procedure that converts
the LTL formula ¬φ into E¬φ [10]. For instance, the state q1 of the automa-
ton presented in Figure 3 is associated with the formula η(q1) = ¬g ∧ ¬g;
(2) Each state 〈s, q〉 which was not created during the computation of M ⊗E¬φ,
is such that s does not satisfy η(q), i.e., s |= µ(q). Each of these states, called
failed state, causes a failure in the search of a counterexample and ensures the
satisfaction of φ in the corresponding state of the system; (3) Given a state 〈s, q〉
of the automaton M ⊗E¬φ, the property η(q) associated with the state q of E¬φ
is not satisfied in s. Indeed, if η(q) was satisfied, a counterexample would have
been found. Thus, the negation µ(q) of η(q) holds in s.

In the rest of this paper we will use the notation s1, s2 . . . sn |= φ to indicate
that the states s1, s2 . . . sn of a KS satisfy an LTL property φ.

The deductive verification framework enriches the product M ⊗E¬φ by con-
sidering also failed states as part of it. Since in each failed state 〈t, p〉 the search
of a counterexample has failed, we can write the failure axiom t |= µ(p). A set of
deductive rules is applied to produce the proof. (1) Successors rule. Given a state
〈s, q〉 of the product, if for each of its successors 〈si, qj〉 the state si of M satisfies
the formula µ(qj), then also s satisfies µ(q). Intuitively, the rule is based on two
observations. First, each successor 〈si, qj〉 of 〈s, q〉 does not cause a violation of
φ, i.e., it ensures that si |= µ(qj). Second, by moving from 〈s, q〉 to 〈si, qj〉 the
system does not violate the property of interest, since no counterexample was
found. Thus, it must be that s satisfies µ(q). (2) Induction rule. It is a general-
ization of the successors rule applied on strongly connected components (SCCs).
Given a strongly connected component X , let us identify with Exit(X ) the set of
all states 〈si, qj〉 that do not belong to X and have an incoming transition from
a source state in X . If every state 〈si, qj〉 ∈ Exit(X ) is such that si |= µ(qj), we
can conclude that, for every state 〈s, q〉 ∈ X , s |= µ(q) holds. Intuitively, since all
the “successors” of X (the states in Exit(X )) ensure the property satisfaction
and the states in X do not violate the property of interest (no counterexample
has been found in the product), it must be that each state s satisfies the corre-
sponding property µ(q). (3) Conjunction rule. It connects conclusions made on
a given state making temporal logic interferences. The formulae computed for a
given state are and-combined.

These rules are applied considering the partial ordering relation ≺ between
SCCs. The relation X ≺ X ′ holds if there exists a transition from some state
in X to some state in X ′. If X ≺ X ′, before considering the component X , it is
necessary to compute the proof of X ′.

3 THRIVE

An overview of THRIVE is presented in Figure 4. THRIVE takes as inputs a
partial model M and a property φ and produces one of the outputs shown by
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Fig. 4. The THRIVE framework.

the grey filled shapes. The outputs are generated by integrating a model checker
for partial models and a theorem prover.

The model checker for partial models verifies whether the property φ of in-
terest is definitely satisfied (>), possibly satisfied (?) or not satisfied (⊥) by the
current partial model. If the property is not satisfied ( 3 ), there exist some be-
haviors which definitively violate the property of interest and do not depend on
the unspecified parts of the model. The model checker returns one such behavior,
i.e., a definitive counterexample. Whenever a property is definitely satisfied, its
satisfaction does not depend on the unspecified parts, i.e., on how the incom-
plete parts are later refined. Finally, if the property is possibly satisfied ( 5 ),
the model checker returns a possible counterexample, i.e., a possible violating
behavior that the model can exhibit.

The theorem proving framework is executed when a > or ? value is returned
by the model checker and computes a proof which specifies why the property
φ is definitely (possibly) satisfied by M . When a property is definitely satisfied
( 6 ), THRIVE returns a proof that specifies why the search of a definitive and
a possible counterexample has failed. Instead, whenever a property is possibly
satisfied ( 4 ), besides providing a possible counterexample, THRIVE returns a
proof that specifies why a definitive counterexample has not been found.

4 Using THRIVE with PKS and LTL

This section describes the instance of THRIVE proposed in this paper, using
PKSs and and LTL. We first show how we modified the theorem prover frame-
work presented in Section 2 to support PKSs and how it is integrated with the
three-valued model checker. We further analyze the case of thorough semantics,
which is more appealing in practice, and discuss to what extent and how the
framework can be used in such a case.

4.1 Adapting the theorem prover.

The deductive verification framework presented in [22] exploits the product be-
tween a state labeled transition system and a GBA E¬φ obtained by ¬φ to
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generate the proof. To enable the algorithm to work on KSs and BAs, we de-
scribe how to associate LTL formulae with each state of the BA and how to
identify failed states of the product automaton.

Identification of the formulae that hold in the states of the BA. We
assume that the degeneralization procedure [8], that converts the GBA E¬φ into
an equivalent BA A¬φ behaves as follows: when a new state q of A¬φ is created
from a state q′ of E¬φ, the formulae η(q′) and µ(q′) are also associated to q.

Identification of failed states. Following the procedure mentioned in Sec-
tion 2, the product automaton M ⊗ A¬φ between the KS M and the BA A¬φ
is modified to also generate failed states. Specifically, the product is computed
using the rules 1 and 2.

s→ t ∧ q L(t)−−−→ p

〈s, q〉 → 〈t, p〉
(1)

s→ t ∧ q ��L(t)−−−→ p

〈s, q〉 99K 〈t, p〉
(2)

Rule 1 is the classical rule used to compute the product automaton. It spec-
ifies that the state of the product 〈s, q〉 moves to 〈t, p〉 only if the transition

q
L(t)−−−→ p that moves the BA from q to p has the same label of the state t of M .

Rule 2 specifies how to compute failed states. It states that the failed state 〈t, p〉
is generated in the product when a transition that moves the BA A¬φ from q
to p is labelled differently with respect to the state t reached by the model M
when the transition s→ t is fired. This is indicated using the notation q ��L(t)−−−→ p.
For this reason, the transition 〈s, q〉 99K 〈t, p〉 from 〈s, q〉 to 〈t, p〉 is dashed. Let
us consider the product presented in Figure 5 computed from the KS Mopt ob-
tained from the PKS in Figure 2 and the BA of Figure 3. The transition 〈s0, q0〉
to 〈s1, q1〉 of the product presented in Figure 5 is dashed, since the proposition
g is false in s1, while the labeling of the transition from q0 to q1 requires g to be
true for the transition to be performed.

The set F(M ⊗ A¬φ) of the failed states contains the states 〈t, p〉 obtained
by applying rule 2. Note that, as stated in Section 2, each failed state 〈s, q〉 is
such that s |= µ(q). For example, the state 〈s1, q1〉 of the product presented
in Figure 5 is a failed state. Indeed, s1 satisfies the property µ(q1) = g ∨ g
associated with the state q1.

Theorem 1. The deductive verification procedure is correct.

Proof. We show that the states identified as failed correspond to the ones that
would be identified using [22]. In [22], a state 〈t, p〉 is failed if the propositional
assignment of t does not satisfy the conditions specified in the state p. It is
well known [10, 8], that a GBA E¬φ associated with φ is such that (1) all the
transitions (q, α, p) ∈ ∆ that reach a state p of the GBA have the same label α
and that (2) a transition (q, α, p) ∈ ∆ is in the GBA if and only if α satisfies the
conjunction of the negated and non negated propositions that hold in the state
p. By construction, the latter of these properties also holds in the BA obtained
from the GBA by applying the degeneralization procedure [8]. Thus, since all the
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Fig. 5. Product Iopt = Mopt ⊗A¬φ2
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〈s2, q1〉

Fig. 6. Product Ipes = Mpes ⊗A¬φ2

transitions that reach p are labelled with α, a transition 〈s, q〉 99K′ 〈t, p〉 is added
to the product automaton if and only if the propositional assignment of t does
not satisfy the propositional assignment specified in the state p. Furthermore,
BAs acceptance condition is a special case of fairness condition used in [22].
Thus, the proposed deductive verification procedure is a special case of [22],
with regard to acceptance. ut

4.2 Integrating the model checker and the theorem prover

Figure 7 presents an instance of THRIVE obtained as an integration of a model
checker for PKSs and LTL based on three-valued semantics and the theorem
prover presented in Section 4.1. The circled numbers in Figure 7 indicate how
this specific instance is plugged into THRIVE in Figure 4.

The three-valued model checker presented in Section 2 is used by THRIVE
to check the satisfaction of the property of interest. Specifically, it runs twice a
classical two-valued model checker, considering first the optimistic approxima-
tion Mopt, then the pessimistic approximation Mpes of the PKS M . When Mopt

is evaluated, if a counterexample is found, this is returned as output of THRIVE.
Otherwise, THRIVE verifies Mpes. If the property is satisfied, it means that no
violating nor possibly violating behaviors have been identified. Thus, THRIVE
executes the theorem prover that produces a proof that explains why no coun-
terexample has been found in the pessimistic approximation. Otherwise, the
property is possibly satisfied. In this case, THRIVE returns the possible coun-
terexample and runs the theorem prover on Mopt to compute a proof that spec-
ifies why a definitive counterexample has not be found.

Example Properties φ1, φ2 and φ3 of the crossing semaphore example are
satisfied, possibly satisfied and not satisfied by the model M of Figure 2.

Property φ2. The products between the optimistic and pessimistic approx-
imation of the model M and the BA automaton A¬φ2

are presented in Fig-
ures 5 and 6. THRIVE explores Ipes and returns the possible counterexample
(s0, s2)ω. Specifically, by looping an infinite number of times on states s0 and s2
the green light is never turned on. Since the property φ2 is possibly satisfied, the
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Fig. 7. THRIVE for PKS and LTL.

search of a definitive counterexample in the product automaton Iopt (Figure 5)
fails. THRIVE uses the product automaton Iopt to compute a proof (Table 1)
that explains the motivation. The states that are analyzed in different steps are
circled in Figure 5 through different grey frames. ( Step1). THRIVE analyzes
the failed states. Given a failed state 〈s, q〉, since in this state the search for
a counterexample fails, the formula associated with the state q of A¬φ2

holds
in s. For example, since the state 〈s1, q1〉 of Iopt is a failed state, the formula
green∨ green (valid in q1) is satisfied by the model state s1. This formula is
effectively true in s1 since the green light is on. ( Step2). Since all the successors
of 〈s0, q1〉 satisfy green∨ green, it is possible to deduce that this property
is also satisfied in s0. ( Step3). The induction rule is applied considering the
strongly connected component {〈s0, q0〉, 〈s1, q0〉, 〈s2, q0〉} and allows concluding
that s0 satisfies the property green. ( Step4). THRIVE applies the con-
junction rule to s0. Since s0 satisfies both green and green∨ green,
it is possibly to deduce that s0 satisfies the property φ2. This provides an inter-
esting insight to the designer: if she/he turns the green light on in s2 the property
becomes satisfied. The proof clearly states why.

Property φ3. THRIVE returns the counterexample (s0, s1)ω. The counterex-
ample specifies that by looping an infinite number of times on states s0 and s1
the green light is not permanently on after the red.

Property φ1. THRIVE produces a proof that highlights how and why a definite
counterexample is not found in the graph. First, it identifies the states 〈s0, q1〉
and 〈s2, q1〉 as failed. The conclusions found on these states are propagated to the
state 〈s1, q1〉. All the successors of the SCC formed by the product states related
to the property state q0 are analyzed. Finally, conclusions are drawn also on this
SCC. The proof is omitted for space reasons.

4.3 Thorough semantics and THRIVE

As stated in Section 2, three-valued semantics does not always behave in accor-
dance with the natural intuition [6]. When φ possibly holds in M , it is desirable
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Table 1. Proof that φ2 is not violated.

Step 1 Step 2 Step 3 Step 4

Fail Successors Induction Conjunction

〈s2, q1〉, 〈s1, q1〉 〈s0, q1〉 X = {〈s0, q0〉,
〈s1, q0〉, 〈s2, q0〉}
Exit(X ) = {〈s0, q1〉,
〈s1, q1〉, 〈s2, q1〉}

The initial state s0

〈s1, q1〉 ∈ F(Iopt)
〈s2, q1〉 ∈ F(Iopt)

s1, s2 |= g ∨ g

s0 → {s1, s2}
s1 |= g ∨ g
s2 |= g ∨ g

s0 |= g ∨ g

s0, s1, s2 |= g ∨ g
s0 → {s1, s2}
s1 → {s0}
s2 → {s0}

s0, s1, s2 |= g

s0 |= g
s0 |= g ∨ g
g ∧(g ∨ g)→ φ2

s0 |= φ2

that there exist two completions M ′ and M ′′ of M such that M ′ satisfies φ and
M ′′ violates φ. This property is not ensured by the three-valued semantics, and
is the motivation that leads to introduce thorough LTL semantics. Hereafter,
we discuss how the adoption of thorough semantics would affect the use of the
THRIVE framework.

Given a PKS M and a property φ, THRIVE produces the following outputs:

Property is satisfied. THRIVE works correctly. A property φ that evaluates to >
under three-valued semantics is also satisfied under thorough semantics. Thus,
the verification result is correct. Also the proof is correct since it shows that any
completion of M satisfies φ.

Property is not satisfied. THRIVE works correctly. When the model checker
returns a ⊥ value, the counterexample shows a behavior that violates φ. A
property φ that is not satisfied considering the three-valued semantics, is also
not satisfied considering the thorough semantics. Thus, the counterexample is
correct and proves the existence of a completion of M that violates φ.

Property is possibly satisfied. THRIVE does not work correctly for all LTL prop-
erties. When the three-valued model checker returns ? the property is possibly
satisfied considering the three-valued semantics but no conclusion can be drawn
based on thorough semantics. Indeed, there are cases in which a ? is returned, but
all the completions of the model either satisfy or do not satisfy φ. The computed
counterexample and proof can be spurious under the thorough semantics.

Example. The results obtained for φ1 and φ3 of the crossing semaphore ex-
ample are correct both considering the three-valued and the thorough semantics.
Since φ1 is satisfied, the proof is a correct proof that justifies why all the comple-
tions of the model presented in Figure 1 satisfy φ1. The counterexample returned
for φ3 is correct, i.e., all the completions of the model presented in Figure 1
exhibit the behavior returned as a counterexample.

Self-minimizing LTL formulae. Self-minimizing LTL formulae are a sub-
set of LTL formulae that present an interesting property: three-valued and thor-
ough semantics are equivalent, i.e., if φ is self-minimizing, then [(M, s) |= φ] =
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[(M, s) |= φ]t. Therefore, the three-valued model checking framework presented
in Section 2 produces a result that is correct also considering the thorough se-
mantics. For this reason, whenever the three-valued model checker returns ?, the
proof and the possible counterexample produced by THRIVE are also correct
under the thorough semantics. In [11], the authors propose a first grammar for
this LTL subset. The grammar does not capture entirely this set. However, it
can be used to generate formulae that are self-minimizing by construction, or to
check whether a formula is self-minimizing (sufficient condition). Furthermore,
the authors argue that the set of self-minimizing LTL formulae contains most
property patterns of practical interest, such as absence, universality, existence,
response and response chain [9]. For these reasons it is possible in practice to
use the version of THRIVE of Figure 7 also considering the thorough semantics.

Example Property φ2 is a special instance of LTL response pattern which,
according to [11], is self-minimizing. Thus, the possible counterexample and the
proof returned by THRIVE are correct.

5 Preliminary evaluation

This section tries to answer the following research question: how effective is
THRIVE w.r.t. incremental development?

To provide an initial answer, we simulated the design of a critical software
system. The system, described in [3], is used by optometrists and ophtalmolo-
gists to test visual problems and certify a certain level of stereoacuity. The test
requires patients to pass levels with increasing difficulties, in which they have
to recognize images. Each time the patient is able to recognize an image the
system shifts to a higher level and a more difficult image is shown. When the
patient fails, the level is decreased. The test ends in one of these cases: 1. when
the patient fails the image recognition and she/he did not pass an easier level;
2. when the top level is reached; 3. if the doctor interrupts the test. The complete
model and the obtained results can be found in [4].

Experimental setup. We modelled the system in [3] as a PKS. For sim-
plicity we considered only two levels. We used the atomic propositions fl, sl, test,
edb, cert and uncert to specify that the patient is in the first or in the second
level of the test, the test is under execution, a mistake has been made by the
patient, the patient has been certified and the patient is not certified, respec-
tively. If at some point the doctor quits the test, the patient is not certified. If
the patient fails the first level, the patient is not certified. If he/she passes the
first level, the second level is entered. If the patient also passes the second level
he/she is certified at the second level. Otherwise, we assume that the designer
is uncertain on the level in which the component should certify/not-certify the
patient (this is formalized by setting fl =?, sl =?).

We designed a set of properties that the system has to satisfy. Property
ψ1 = (¬cert)W (¬sl) states that a patient is not at the second level before
he/she is certified (see [1]). Note that, as observed in the following, this prop-
erty is wrong. Property ψ2 = (test → (cert∨uncert)) specifies that ev-
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ery test must be followed by a certification or a non-certification. Property
ψ3 = (edb→ (cert∨ fl)) states that if an error has been made by the patient
(edb), she/he cannot be uncertified and be at the second level (¬fl). Indeed, a
mistake prevents a patient from increasing the assessed level. Note that these
properties are obtained from well-known property patterns [9].

Results. Property ψ1. THRIVE returns the value ⊥ and returns a definitive
counterexample showing that there exists a case in which a patient is assessed
at the second level but has not been certified yet. Indeed, the property is wrong;
the desired property should have been expressed as ¬(cert∧ fl)W(¬sl), meaning
that a patient is not at the second level before he/she is certified at the first level.

Property ψ2. THRIVE returns the value >, since the property of interest is
satisfied. The proof shows that a test is always followed by a cert or uncert.

Property ψ3. THRIVE returns the value ? and a possible counterexample
obtained by assigning ⊥ to the proposition fl. THRIVE considers the optimistic
approximation to produce a proof that no definitive counterexample can be
found. The obtained proof is correct since a simple grammar check shows that
ψ3 is self-minimizing. The proof shows why, by assigning > to the unknown
proposition fl, the property of interest is satisfied.

The feedback produced by THRIVE for properties ψ1, ψ2 and ψ3 successfully
helps in understanding whether a property of interest is satisfied, possibly satis-
fied or violated. When the property is satisfied/possibly satisfied, understanding
the reason why this is true supports self-confidence.

6 Using THRIVE in real cases

This section elaborates on the applicability of THRIVE in real cases.
Three-valued vs thorough semantics. The generalized model checking algo-

rithm [6] (which levies a performance penalty) could be used to check a property
under the thorough semantics. In [16], the authors analyze how the generalized
model checking really helps. Whenever the model is built using predicate ab-
straction [14], the thorough check does not provide additional precision. It is
also argued that in many practically interesting cases, the thorough semantics
is not more precise than the three-valued one. For these reasons, THRIVE can
be correctly applied in most of the real world cases.

Temporal patterns of self-minimization. In [2], the authors consider popu-
lar syntactic specification patterns, documented at a community-led pattern
repository, and check whether formulae compliant with these patterns are self-
minimizing. They show that many such patterns are self-minimizing and the
ones that are not can be transformed with linear blowup into a self-minimizing
LTL formula. Thus, in most practical cases, the designer will consider a formula
that is self-minimizing. A syntactic check can be used to prove self-minimization
before running THRIVE.

Checking whether an LTL formula is self-minimizing. Checking whether an
LTL formula is self-minimizing is expensive, since it requires to compute an au-
tomaton that is exponential in |φ| [11]. However, if φ satisfies some constraints
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(sufficient conditions) then it is self-minimizing. For example, if it is in its nega-
tion normal form and no proposition occurs in mixed polarity, then φ is self-
minimizing. These checks can be implemented in THRIVE.

Scalability. Three-valued model checking is as expensive as classical model
checking [5], which is commonly used to analyze real world problems [26]. Deduc-
tive verification has been employed successfully in the verification of digital hard-
ware and software systems [24]. Since THRIVE simply combines multi-valued
model checking and theorem proving, its scalability improves as the performance
of the employed model checking and deductive verification frameworks enhances.

7 Conclusions and future work

This work presented THRIVE, a theoretical framework for a correct integra-
tion of existing multi-valued model checkers and theorem provers. Whenever
the property of interest is definitely satisfied, or possibly satisfied, THRIVE
provides information regarding why a certain result is returned by the model
checker. The proof gives intuition on what is working correctly in the current
design and insights for the next development rounds. We instantiate THRIVE
considering a PKS, to express the model of the system, and LTL, to specify the
property of interest. We show that the instantiation is feasible and sound, and
requires changing the model checking algorithm to accomodate the execution of
the theorem prover. THRIVE has been evaluated considering a safety critical
example [3], which showed the effectiveness of the approach. We also discussed
the applicability of the approach in real world cases.

As future work, we aim to implement THRIVE by integrating existing model
checkers and theorem provers. This will allow us to provide further evidence of
the impact of THRIVE in continuous system development and to analyze the
challenges of realistic systems. We would like to introduce possible extensions
of the currently considered formalisms: other forms of partial systems models
and other multi-valued logic options for the properties. Finally, we also wish to
investigate thoroughly how the proofs can be written in the most understandable
and useful form for the designer.
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