CEUR-WS.org/Vol-2482/paper5.pdf

Using Metadata for Locating Genomic Datasets
on a Global Scale

Anna Bernasconi
Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano, Milan, Italy
anna.bernasconi@polimi.it

Abstract

Genomic research benefitted from recent ex-
traordinary improvements in DNA sequenc-
ing techniques, leading to the production of
enormous amounts of datasets that store in-
formation such as nucleotide sequences, gene
locations/levels of expression, proteins-DNA
interactions. As this has now become a big
data matter, characterized by an underlying
disorganization, there is a strong need for in-
tegrative solutions.

In this paper, we devote our efforts to the
management of genomic data, to be orga-
nized and located using experimental stud-
ies descriptions. Such documentation, also
referred to as metadata, contains fundamen-
tal information to understand the content of
experimental samples (namely, how the bio-
logical material was extracted and processed,
in which clinical conditions, with which tech-
niques.) We propose a novel framework to
manage metadata of genomic datasets, offer-
ing a unified view with respect to a number
of heterogeneous data sources (usually big in-
ternational consortia, but also small research
centers) that currently display their metadata
in disorganized and very cumbersome formats.
The final outcome of this work is a search
platform which allows easy location of rele-
vant sources for specific genomic data analysis
problems.

Copyright © CIKM 2018 for the individual papers by the papers'
authors. Copyright © CIKM 2018 for the volume as a collection
by its editors. This volume and its papers are published under
the Creative Commons License Attribution 4.0 International (CC
BY 4.0).
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Figure 1: From a DNA fragment, through a sequence
of steps, to the memorization of information in region
data and its related metadata, made available for ex-

ploration in a user interface. Source of upper part of figure:
http://www.regulatory-genomics.org/rgt/basic-introduction/

1 Introduction

Genomic research is blooming because of revolution-
ary technologies to sequence DNA (Next Generation
Sequencing), which operate at much faster rates and
lower costs than traditional techniques. Such speed-up
is achieved by means of massively parallel sequencing,
which enables millions of nucleic acids fragments to
be handled simultaneously. A single human genome,
about 3 billion units of DNA in 23 thousands genes,
can now be processed in just a single day and stored
in around 200 Gigabytes [CCKT17].

Because of thousands of new experimental datasets
becoming available every day, genomics has become
a new “big data” generator (see [SLF*15] for com-



parison with other major big data domains). To
boost further research, this wealth of data needs to
be made available for search and download. Cur-
rently, it is distributed across a range of world-
wide repositories (nearly 1,000 sequencing centers
in 55 countries in universities, hospitals, and other
research laboratories), usually coordinated by na-
tional research consortia and institutes. Organiza-
tions such as the International Cancer Genome Con-
sortium (ICGC, [ZBC*11]), the National Cancer In-
stitute Genomic Data Commons (GDC, [JFGS17]),
the National Center for Biotechnology Information
(NCBI, [Cool7]), the National Human Genome Re-
search Institute (NHGRI, [Manl6]), and the Euro-
pean Bioinformatics Institute (EBI, [LVALO7]) main-
tain and enrich the repositories of genomic data, that
may contain both open and controlled data (i.e., only
accessible upon approval from a Data Access Com-
mittee). Public data are beneficial to researchers and
clinicians who can access and compare them, as well
as search for common patterns across a large number
of individual.

While data sources have more or less agreed on the
definition of protocols and formats for data production
and transformation, no convergence has been observed
for common metadata formats. The existing reposito-
ries propose their own standards which are only used
internally, presume a thorough knowledge of their spe-
cific rules, and require tedious manual work to allow
for use of data from combined sources.

Considering only publicly available data, we focused
on the need of the genomic research community for
a tool which helps to locate and retrieve interesting
data to solve biological and clinical questions and also
favours data interoperability. We propose a metadata
storage system, specific for genomic datasets, with a
four-fold contribution: 1. gradual inclusion of all pro-
cessed datasets from sources considered interesting for
tertiary analysis (i.e., data analysis in charge of “mag-
ing sense” of genomic signals [Gabl0]); 2. integra-
tion of genomic data residing in these heterogeneous
data sources to provide a unified view of the compara-
ble concepts; 3. curated representations of metadata,
maintained coherent with the current status of the
original sources; 4. user-friendly search functionality,
based on key-words characterizing the samples, but
also on their synonyms and hypernyms, which are re-
trieved through specialized ontologies.

Fig. 1 illustrates the story behind our effort. The ge-
nomic problem can be broken down into a sequence
of computational steps. The genome material (e.g.,
a DNA fragment), by means of an experimental se-
quencing technique (i.e., ChIP-seq), can be translated
first in reads (through primary analysis methodolo-
gies), then alignments, signals, and finally regions (by

means of secondary analysis methods).

Within the GeCo Project!, described in [CBCT17],
we use a machine readable representation, which in-
cludes “Region data” and the related “Metadata”
files. Region data consists of quadruples such as
(chri1,1,16,+), which identifies the region contained
in chromosome 1 of the human genome, spanning from
coordinates 1 to 16 w.r.t. a reference genome, and be-
ing located in the positive strand of the double helix
structure of DNA. Metadata, instead, contain informa-
tion about the genomic experiment which generated
the data.

In this paper we propose a system which, after submit-
ting metadata through a data integration pipeline, as a
final step exposes them by means of a user interface—
similar to the one shown at the bottom of the Fig. 1—
ready for querying.

With our system, we aim to encourage the use of
genomic datasets, allowing easier semantically en-
riched search and resulting download of processed
data. We have previously proposed GMQL [MCP*18],
a high-level query language for genomics, and
GDM [MKPC16], an integrative model for processed
data formats. Using the system described here in com-
bination with the query language and execution engine
implemented within the GeCo Project, we aim to help
support the specific processes of retrieval, exploration,
and analysis of genomic data.

The paper is structured as follows. Section 2 intro-
duces metadata usefulness with a motivating example.
Section 3 overviews the overall system which integrates
data, driven by the use of the Genomic Conceptual
Model. Section 4 explains how we allow novel searches
over the database of genomic experiments through a
web interface. Section 5 briefly mentions related works
in the literature. Finally, Section 6 concludes the pa-
per.

2 DMotivating Example

Genomic datasets are typically characterized by ex-
planatory information that can be consulted on the
interfaces of data sources; sometimes they are available
for download in various semi-structured formats. Gen-
erally, aspects described by metadata can be clustered
in the following areas: clinical information regarding
the physical individual who has donated the biological
sample extracted for sequencing; bio specimen infor-
mation about the tissue (or cell culture) of provenance
and the possible pathologies that affect the biological
material; the technologies (e.g., platforms), method-
ologies (i.e., pipelines), and processes used to sequence

IData-Driven ~ Genomic  Computing,
bioinformatics.deib.polimi.it/geco/
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Genomic Data Commons

Data Category Simple Nucleotide Variatiop

Case ID Project Primary Site Gender File
TCGA-A8-A08S TCGA-BRCA Breast 32

Case UUID
2779fa01-ac93-4e80-a997-3385f72172c3
Gene Expression Omnibus

Sample GSM1197482

gender: female
tissue:dareast cancer ductal carcino

Female

Query DataSets for GSM1197482
Source name
Organism
Characteristics

ENCODE
Experiment summary for ENCSRO00DMQ Experiment summary for ENCSR000DOS

Assay: ChlIP-seq Assay: ChiIP-seq
Target: MYC Target: MYC
Biosample: u@ Biosample:

Homo sapem>@TF 10>
Biosample Type: cellTine Biosample Type: cell line

Description: Mammary gland, adenocarcinoma Description: Mammary gland, non-tumorigenic cel
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Figure 2: Example of web interfaces of systems: GDC
Data Portal [JFGS17] (first rectangle at the top),
NCBI Gene Expression Omnibus [BWL113] (middle),
and ENCODE [rE12] (bottom).

the DNA, to align the sequences, and to further pro-
duce DNA regions; the formats and data types, which
describe the new shape of data, defining what kind
of information it delivers; details on the organization
aspects that include the program, project, and case
study under which the experiment is being conducted.
All these aspects are memorized by data sources in
various ways. Heterogeneity spans from download pro-
tocols and formats to attributes names and values.
To motivate our effort towards an integrated platform,
we introduce an example which simulates the research
of data suitable for a genomics project. For illustra-
tion purposes, we include just bio specimen informa-
tion, leaving aside technological and clinical aspects.
Consider a comparison study between a human non-
healthy breast tissue, suffering from carcinoma, and
a healthy sample coming from a similar tissue. A re-
searcher in the field, due to previous experience, knows
three portals to locate interesting data for this anal-
ysis. The results obtained after some browsing are
reported in Fig. 2.

For the diseased data, describing gene expression,
the chosen source is GDC Data Portal, an important
repository on human cancer mutation data. As it can
be seen on the top of Fig. 2, one or more cases (i.e.,
datasets) can be retrieved by composing a query which
allows to locate variation data on “Breast Invasive
Carcinoma” from “Breast” tissue.

To compare such data with references, the researcher
chooses additional datasets coming from cell lines, i.e.,
cell cultures which have been permanently established
and made immortal. Since cell lines are considered a
standard for similar investigations in the past, they
are frequently used in place of primary cells to study
biological processes. The scientific community tends
to accept the derived findings more readily.

A tumor cell line data is found on the GEO web in-

terface (middle rectangle of Fig. 2) where, by brows-
ing thousands of samples, the researcher locates one
from “Homo Sapiens” organism, where the analyzed
cell type is “T47D-MTVL” and observed disease is
“breast cancer ductal carcinoma”. On ENCODE;, in-
stead, the researcher chooses both a tumor cell line
(bottom left of Fig. 2) and a normal cell line (bot-
tom right), to make a control check. “MCF-7” is a
cell line started from a diseased tissue afflicted with
“Breast cancer (adenocarcinoma)”, while “MCF 10A”
is its widely considered non-tumorigenic counterpart.
Note that considerable external knowledge is neces-
sary in order to find these connections, which cannot
be obtained on the mentioned portals. Concerning the
disease choice: “breast invasive carcinoma” is the same
as “breast carcinoma” (as observed in the annotation
from EBI’s Expression Atlas [JB15]), which allows to
compare GDC’s data with the datasets from GEO and
ENCODE, since they describe more specific diseases
(i.e., “breast cancer (adenocarcinoma)” and “breast
cancer ductal carcinoma” are its sub-types, accord-
ing to the Disease Ontology [KAF*14]). Concerning
the cell lines choice: researchers typically query spe-
cific databases (such as the cell line browser of the
Catalogue Of Somatic Mutations In Cancer?) or ded-
icated forums to discover tumor/normal matched cell
line pairs. This information is not encoded in a unique
way over sources and is often missing.

3 Integration Procedure

During the design phase we considered four data
sources: Genomic Data Commons (GDC, [JFGS17]),
containing over 310,000 files, across over 32,000 cases,
in 40 projects, covering many aspects of cancer ge-
nomics; the Encyclopedia of DNA Elements (EN-
CODE, [rE12]), with almost 420,000 files, allocated in
over 15,000 experiments, part of 6 different projects,
related to the functional DNA sequences which in-
tervene at the protein/RNA levels and to the reg-
ulatory elements which control gene expression; the
Gene Expression Omnibus (GEO, [BWL"13]), an in-
ternational public repository of high throughput gene
expression (and other) data sets submitted by the
research community, linked to almost 20,000 pub-
lished manuscripts; Roadmap Epigenomics Project
(REP, [KMET15]) containing 1,936 datasets related
to genetic variation in association with human dis-
ease based on epigenomics evidence. Other three data
sources have been used to validate the approach and
we plan to add many others as future work.

The conceived metadata integration process is de-
signed as an incremental procedure. First, we perform

%https://cancer.sanger.ac.uk/cell\_lines/
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Figure 3: The overall data integration process.

a one-time activity to design the integration rules di-
vided in six steps: download, transformation, cleaning,
mapping, normalization, and enrichment (see Fig. 3).
Then, we periodically perform data integration ses-
sions where a range of increments with different mag-
nitude are supported: new data sources, portions of
data sources, datasets, or basic samples. Rules can be
developed in a dynamical fashion and may be modified
during design sessions.

The downloading phase handles heterogeneity at the
distribution and format level. It takes into account
various access protocols (such as FTP, HTTP RESTful
API, and file bundles) as well as data formats (XML,
JSON, CSV, Excel, and Google Sheet) and imports at
our repository site the original data and their meta-
data from the sources.

Through the transformation, metadata are trans-
lated into a simpler structure of (attribute,value)
pairs, where the attribute describes the kind of rep-
resented information and the wvalue embodies the
actual information (e.g., (biosample_type,“cell line”),
(target.gene name, “RAD217)). This representation is
useful for applications which benefit from a semi-
structured version of metadata, for example for dis-
tributed file systems.

Pairs are consequently cleaned, thus producing a
collection of clean metadata pairs for each source.
As an example, a rather complicated attribute such
as
is simplified into donor.organism, with the aim to fa-
cilitate human understanding and also the following
integration steps. Similarly, file.file type becomes
file.type. Redundant information (i.e., duplicated at-

replicates.biosample.donor.organism.scientific_name

tributes) is removed.

The mapper extracts information from some of these
pairs and maps it to a relational database.

In [BCCM17] we presented the Genomic Conceptual
Model (GCM), shown in Figure 4. This is an entity-
relation schema that summarizes the most important
information metadata shared between the genomic
data sources. GCM’s main objective is to recognize
a common organization for a limited set of concepts
which are supported by most data sources, although
with very different names and formats. GCM is cen-
tered on the ITEM entity representing an elementary
experimental unit and stored as a single file of genomic
regions and their attributes. GCM is organized as a
star-schema around ITEM. Its three hierarchical di-
mensions or views, indicated in Figure 4 with big ar-
rows, describe: 1. the biological phenomena observed
in the experiment: the sequenced replicated sample,
the biological material and its preparation, its donor;
2. the technology used in the experiment, including pa-
rameters used for internal selection and organization
of items (i.e., container), and the specific technique;
3. the management aspects of the experiment: the case
studies and projects/organizations behind its produc-
tion.

The GCM, used as a global model, drives a schema
integration process. We specify ad hoc mappings be-
tween the entities of the global schema and cleaned at-
tributes from the sources. Consider the entity DONOR
from the global schema, which contains information on
the individual from which the biological sample is ex-
tracted. As a basic example, to fill one of its attributes,
e.g., Ethnicity, we derive the value related to the at-
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Figure 4: Genomic Conceptual Model presented in [BCCMl?]

tribute donor.ethnicity from the data source ENCODE,
while we extract and concatenate demographic.ethnicity
and demographic.race from GDC; from GEO this is usu-
ally a missing information, while rarely we can find
characteristics.donor_ethnicity. The mapper also han-
dles duplicates: if two samples, respectively called
‘ENCBS236ISK’ (from ENCODE) and ‘GSM2192006’
(from GEO) contain information about an external
reference, i.e., univocal indication of being the same
real-world entity, they are registered in our repository
with a unique identifier.

The values mapped into the global schema are then
normalized. Normalization acts to ensure metadata
consistency at the semantic level. This phase involves
linking values to controlled vocabularies or biomedical
ontologies, typically manually curated by expert cu-
rators. Fig. 5 shows a biological sample entity from
the global schema. From the original source only the
information in the blue solid boxes is retrieved. This
is then completed through normalization, which adds
the information in the red dashed boxes. For exam-
ple, the disease information “Breast cancer (adeno-
carcinoma)” is equipped with a synonym “Mammary
adenocarcinoma” and DOID:3458, the corresponding
concept identifier in the Disease Ontology [KAF*14].

Finally, values are enriched by means of external on-
tologies. During this phase, values that have super-
concepts or sub-concepts in the biomedical ontologies
are enriched with all concepts in a is a relationship
within three steps in the ontology graph (see informa-
tion in the green dotted boxes in Fig. 5). For exam-
ple, the value “breast”, corresponding to the attribute
Tissue, is enriched by both its super-concept “Female
reproductive gland” and its sub-concept “Mammary
duct”, among others. Details of normalization and en-
richment pipelines are available in [BCCC18].

Breast disease
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Figure 5: Example of normalization and enrichment of
a BIOSAMPLE tuple from the ENCODE data source.

4 User-friendly Search Platform

The web platform ensures easy and fast location of
datasets from the considered set of repositories. We
provide the URL endpoint for download from our sys-
tem, when the dataset is available (as it was retrieved
from the original system or transformed into processed
data to make it suitable for tertiary analysis). Other-
wise, we provide the original source URL for download.
The laborious integration process is designed to make
data querying easier. An example instance of a user
query on our interface can be appreciated in the lower
part of Fig. 1. This query for genomic experiments
data works regardless of how requested values are ex-
pressed. For example, due to the mapping efforts made
during the integration process, by using the DONOR
column Species, the user can also reach data that was
documented through alike concepts, such as organism,



rather than abbreviations, such as Sp., or words in
other languages, such as the italian equivalent specie.
Moreover, due to the normalization and enrichment
efforts made during the integration process, a search
for samples with donors of “Homo Sapiens” species
will result in a selection of samples which were marked
with this annotation or, alternatively, with synonyms
(e.g., “man”, “Human”), abbreviations (e.g., “H. sapi-
ens”), misspellings (e.g., “Homo sapeins”), or even
sub-concepts (e.g., “Homo sapiens neanderthalensis”).
Similarly, concept-based search holds also for other at-
tributes.

To support these functionalities, the system rewrites
user queries to instrument wider searches, which also
cover synonyms, hyponyms, and other kinds of simi-
larities.

5 Related works

Many works in literature use conceptual models in
the genomics—and more in general biomedical—field.
However, they employ conceptual models’ expressive
power to explain biological entities and their interac-
tions [WZR05, RPCV16]. Instead, we propose to use
a conceptual model as the driving principle to achieve
data integration.

In the state of the art there have been mul-
tiple attempts to offer integrated access to het-
erogeneous sources. Some of these are: BioK-
leisli [DOTW97] (to provide read access to complex
structured data), BioMart [SHD*15] (for biomedical
databases), NIF [GBM™08] (in the neuroscience field),
and DATS [SGBRS™17] (for scientific datasets in gen-
eral).

Also some of the genomics consortia mentioned ear-
lier have provided methodologies to organize metadata
(see the BioProject database [BCGT12], Encode Data
Coordination Center [HSC*16], and Genomic Data
Commons [JFGS17]). However, these are not frame-
works which are general enough to make possible in-
cluding all genomic data sources, regardless of how far
apart the sub-areas on which their data focus.

Also DeepBlue [ALBL16], an interesting starting point
in terms of easy-to-use interfaces, only handles epige-
nomic data (i.e., study of epigenetic modifications on
the cell), a small area compared to the whole genomics.

DNADigest [KWR™16] is an effort that investigates
the problem of locating genomic data to download for
research purposes. Their work differs from ours since,
even allowing a dynamical and collaborative curation
of metadata, they only provide means to locate raw
data. Instead, we provide processed data ready to be
used for tertiary analysis.

6 Conclusions

Following the need to make genomic datasets and their
information collectively searchable, we are proposing
a framework to manage, integrate and enrich seman-
tically the experimental data documentation. We are
soon delivering an online platform for genomic data
querying driven by metadata, which will be appreci-
ated by the genomic research community. This will be
an important resource for: 1. conducting research ac-
tivities by using directly our processed data, available
from the data repository we are currently developing
as a major research project (further details are omit-
ted for anonymity reasons); 2. locating data through
the URL endpoints of the original data sources.
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