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Abstract 
Background:	Since	the	beginning	of	the	COVID-19	pandemic,	more	than	one	million	studies	
have	been	collected	within	 the	COVID-19	Open	Research	Dataset	Challenge	 (CORD-19),	 a	
corpus	of	manuscripts	created	to	accelerate	the	research	against	the	disease.	Their	related	
abstracts	represent	a	wealth	of	information,	which	is	–	in	many	cases	–	yet	to	be	explored,	as	
well	 as	 unstructured	 and	 thus	 hardly	 searchable.	 Keyword-based	 search	 is	 the	 standard	
approach,	which	allows	users	to	retrieve	the	documents	of	a	corpus	that	contain	(all	or	some	
of)	the	words	in	a	target	list.	This	kind	of	search,	however,	does	not	provide	visual	support	
to	the	task	and	is	not	suited	to	expressing	complex	queries,	nor	to	compensating	for	missing	
specifications.	
Objectives:	As	graphs	are	 increasingly	used	to	represent	and	query	scientific	knowledge,	
this	paper	proposes	to	consider	small	graphs	of	concepts	and	exploit	them	for	expressing	
graph	searches	over	existing	COVID-19-related	literature,	providing	a	user-friendly	search	
and	exploration	experience.	
Methods:	We	considered	the	CORD-19	corpus	and	summarized	its	content	by	annotating	
publications’	 abstracts	 using	 terms	 selected	 from	 the	 Unified	 Medical	 Language	 System	
(UMLS)	 and	 the	Ontology	 of	 Coronavirus	 Infectious	Disease	 (CIDO).	 Then,	we	 built	 a	 co-
occurrence	network	that	includes	all	relevant	concepts	mentioned	in	the	corpus,	establishing	
connections	when	their	mutual	information	is	relevant.	A	sophisticated	graph	query	engine	
was	built	to	allow	the	identification	of	the	best	matches	of	graph	queries	on	the	network,	
allowing	 as	 well	 partial	 matches	 and	 proposing	 candidate	 query	 completions	 (through	
shortest	paths).	
Results:	 We	 built	 a	 large	 co-occurrence	 network,	 consisting	 of	 128,249	 entities	 and	
47,198,965	relationships;	the	GRAPH-SEARCH	interface	allows	users	to	explore	the	network	
by	formulating	or	adapting	graph	queries;	it	produces	a	bibliography	of	publications,	globally	
ranked;	 each	publication	 is	 further	 associated	with	 the	 specific	parts	of	 the	query	 that	 it	
explains,	thereby	allowing	the	user	to	understand	each	aspect	of	the	matching.	
Conclusions:	Our	approach	supports	the	process	of	query	formulation	and	evidence	search	
upon	 a	 large	 text	 corpus;	 it	 can	 be	 reapplied	 to	 any	 scientific	 domain	where	 documents	
corpora	and	curated	ontologies	are	made	available.	
	
Keywords:	Big	 data	 corpus;	 Clinical	 research;	 Co-occurrence	 network;	 CORD-19;	 Graph	
search;	Named	entity	recognition;	Neo4j;	Text	mining.	
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Introduction 
Since	the	COVID-19	outbreak	 in	early	2020,	 important	clinical	research	efforts	have	been	
targeted	at	understanding	the	COVID-19	disease.	More	than	one	million	studies	have	been	
collected	within	 the	 COVID-19	Open	Research	Dataset	 Challenge	 (CORD-19),	 a	 corpus	 of	
manuscripts	created	to	accelerate	the	research	against	the	disease.	Their	related	abstracts	
represent	 a	 wealth	 of	 information,	 which	 is	 -however-	 unstructured	 and	 thus	 hardly	
accessible	or	searchable.		
Searching	over	literature	is	a	non-trivial	task,	as	it	strongly	relies	on	the	quality	of	the	data	
corpus,	the	characteristics	of	the	search	portal,	and	the	language	used	to	express	the	search.	
Keyword-based	search	is	the	standard	search	approach,	which	allows	users	to	retrieve	the	
documents	of	a	corpus	that	contain	some	of	the	words	in	a	specified	target	list	[1],	[2].	This	
kind	of	 search,	however,	does	not	provide	visual	 support	 to	 the	 task	and	 is	not	 suited	 to	
expressing	complex	research	queries,	nor	to	compensating	for	missing	specifications.		
The	development	of	frontend	tools	and	visualizations	for	COVID-19	knowledge	graphs	has	
been	motivated	by	several	[3],	[4].	We	then	explored	the	use	of	small	graph-based	queries	
that	can	be	built	visually	[5]	to	empower	a	literature-exploration	tool:	the	GRAPH-SEARCH	
system	 stems	 from	 this	 motivation,	 providing	 both	 a	 visual	 language	 to	 express	 search	
queries	 and	 a	 friendly	 tool	 to	 explore	 relevant	 publications,	 which	 highlights	 the	
relationships	 between	 the	 original	 graph	 queries	 and	 an	 underlying	 corpus	 of	 scientific	
evidence,	in	the	spirit	of	literature-based	discovery	[6].	
In	 order	 to	 support	 this	 idea,	 the	 underlying	 textual	 corpus	 must	 be	 first	 analyzed	 and	
enriched;	 in	 our	 approach,	 the	 CORD-19	 dataset	 was	 expressed	 in	 the	 form	 of	 a	 co-
occurrence	 network.	 First,	 we	 annotated	 all	 the	 abstracts	 with	 terms	 from	 the	 Unified	
Medical	Language	System	(UMLS,	[7])	and	the	Ontology	of	Coronavirus	Infectious	Disease	
(CIDO,	[8]).	This	step	was	much	in	 line	with	classical	work	on	ontology-based	annotation	
(see	Semantic	MEDLINE	[9]	and	our	own	work	on	genomic	metadata	annotation	[10],	[11]).	
Second,	we	built	a	comprehensive	co-occurrence	network	that	includes	all	relevant	clinical	
and	biological	concepts	mentioned	in	the	corpus,	linking	them	based	on	their	co-occurrence	
in	given	abstracts.		
The	visual	language	employed	to	express	a	query	over	the	network	describes	concepts	as	
nodes	and	their	co-presence	within	research	abstracts	as	undirected	edges;	some	concepts	
are	associated	with	medical	 conditions,	others	with	 treatments,	or	biological	entities.	We	
also	allow	modifiers.	Queries	run	on	the	network	may	correspond	to	the	expressed	graph	
pattern,	or	to	a	selected	subpart.	
The	query	semantics	corresponds	to	extracting	scientific	evidence	(i.e.,	publications)	from	
the	corpus,	in	support	of	the	existence	of	the	relationships	linking	the	expressed	concepts;	
each	 search	process	 extracts	 the	 references	 that	 best	 explain	 the	 relationships	 occurring	
within	 the	 query.	 When	 a	 specified	 path	 is	 not	 present	 in	 the	 co-occurrence	 network,	
alternative	scored	and	ranked	shortest	paths	connecting	the	nodes	expressed	in	the	query	
are	proposed	to	the	user	(see	‘Methods’	section).	The	search	output	provides	a	ranking	of	
references	 because	 of	 their	 weight,	 summing	 up	 the	 support	 that	 they	 give	 to	 several	
relationships	in	the	query.		
Our	GRAPH-SEARCH	implementation	 is	supported	by	a	graphical	 interface	(see	 ‘Data	and	
Code	Availability’	section)	that	allows	the	user	to	express	the	queries	and	to	interpret	the	
results	in	terms	of	concepts	explained	by	each	discovered	reference,	thus	enabling	the	users	
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to	better	qualify	 the	query	during	 the	 interaction;	 in	addition,	users	 can	 read	 the	 textual	
abstracts	of	the	retrieved	references.	Such	interactive	exploration	of	the	search	space	allows	
for	 exploring	 assumptions	 and	 for	 progressively	 adapting	 them	 as	 a	 result	 of	 existing	
evidence.		
The	 manuscript	 is	 organized	 as	 follows:	 we	 first	 describe	 the	 CORD-19	 dataset;	 the	
characteristics	 of	 the	 co-occurrence	 network	 representing	 CORD-19	 abstracts;	 the	
technological	process	of	building	the	network;	the	graph	search	operation;	and	the	Web	user	
interface	that	allows	us	to	express	graph	queries	and	explore	the	retrieved	results.	We	then	
present	a	series	of	example	use	case	queries	relevant	to	COVID-19	research	and	review	the	
current	state	of	the	art.	We	evaluate	the	benefits	of	using	our	GRAPH-SEARCH	as	opposed	to	
full-text	indexed	databases	and	keyword-search;	finally,	we	draw	our	conclusions.	

Methods 

The CORD-19 dataset  
The	COVID-19	Open	Research	Dataset	(CORD-19,	[12])	is	a	corpus	of	academic	publications	
about	COVID-19	and	related	coronavirus	research;	 it	was	released	and	maintained	by	the	
Allen	Institute	for	AI,	in	collaboration	with	The	White	House	Office	of	Science	and	Technology	
Policy	 and	 other	 partners.	 Published	 articles	 and	 preprints	 were	 collected	 from	 several	
archives,	 including	 PubMed,	 PubMedCentral,	 bioRxiv,	 and	 arXiv;	 since	 its	 release,	 it	 has	
served	as	 the	basis	of	many	COVID-19	 text	mining	and	discovery	 systems	 [12].	The	 final	
release	of	June	2,	2022,	indexes	more	than	1	million	publications.	As	summarized	in	Figure	
1,	nearly	79%	of	the	documents	in	CORD-19	have	an	abstract.	Out	of	them,	around	41%	have	
a	full-text	JSON	file	available,	while	less	than	11%	of	available	full-text	publications	have	no	
abstract	in	the	metadata	table.	Thus,	we	decided	to	focus	on	dataset	records	with	an	abstract.	
The	 file	containing	the	metadata	of	 the	dataset’s	publications	 is	a	comma-separated	table	
(CORD-19metadata.csv),	including:		
- a	 unique	 identifier	 cord_uid	 for	 a	 cluster	 of	 different	 records	 of	 the	 same	

publication	–	upon	it,	we	performed	deduplication	and	subsequent	reconciliation	of	
the	other	metadata	of	the	cluster	into	a	single	record;		

- title	of	 the	publication	–	we	detected	the	 language	and	 filtered	out	 those	not	 in	
English;		

- abstract	of	the	publication	–	only	records	with	an	actual	abstract	were	retained;		
- publish_time	 –	 the	distribution	of	publication	 times,	 shown	 in	Figure	2,	 shows	

that	COVID-19	publications	increased	in	the	first	half	of	2020.	Spikes	at	the	beginning	
of	each	year	correspond	to	publications	whose	publish	time	is	incomplete	(only	the	
year	 field	 was	 filled).	 Publications	 prior	 to	 2020	 concern	 MERS,	 SARS,	 and	
coronavirus;	we	removed	these	publications.	

- journal’s	 abbreviated	 name	 –	 fuzzy	 matching	 of	 the	 abbreviated	 names	 was	
performed	with	a	list	of	full	names	obtained	by	Scopus	[13];	

- authors	and	doi	of	the	publication;	
- number	of	citations	received	(numCitedBy),	obtained	by	SemanticScholar	APIs	[14].	

Records	from	CORD-19	are	already	harmonized	(see	Wang	et	al.	[12]),	resulting	in	distinct	
cord_uid keys.	 However,	 several	 records	 of	 the	 same	 publication	 are	 included,	 with	
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different	metadata.	We	deduplicated	them	and	retained	just	one	record	(the	one	published	
in	a	peer-reviewed	journal,	if	available,	else	the	richest	one	in	metadata).	
	

	
Fig.	1.	Euler-Venn	Diagram	of	 the	overlap	of	publications	with	abstract	with	publications	
with	full-text	JSON	from	PDF	or	from	PubMedCentral	in	CORD-19.	
	

	
Fig.	2.	Line	plot	showing	the	10-base	logarithm	of	the	number	of	publications	(y-axis)	per	
publish	time	date	(x-axis).	

Co-occurrence network 
The	 co-occurrence	network	was	built	 to	 support	 graph	 search;	 it	 consists	of	 entities	 and	
relationships	 mined	 from	 the	 title	 and	 abstract	 fields	 of	 the	 metadata	 table.	 For	
building	it,	we	considered	two	sources:	UMLS	and	CIDO.	UMLS	(the	Unified	Medical	Language	
System	 [7])	 is	 a	 generic	 source	 that	 includes	 many	 vocabularies	 and	 covers	 the	 entire	
spectrum	 of	 medicine;	 CIDO	 (the	 Ontology	 of	 Coronavirus	 Infectious	 Disease	 [8])	 is	 a	
community-driven	open-source	biomedical	ontology	 in	 the	area	of	coronavirus	 infectious	
disease.	
While	CIDO	has	a	simple	concept	structure,	UMLS	concepts	have	a	taxonomy	that	includes	
macro-categories	at	a	coarse	level;	each	macro-category	is	further	characterized	by	a	type.	
Currently,	 we	 consider	 the	 following	 UMLS	 macro-categories:	
ACTIVITIES_AND_BEHAVIORS, ANATOMY, CHEMICALS_AND_DRUGS, 
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CONCEPTS_AND_IDEAS, DEVICES, DISORDERS, ENTITY, 
GENES_AND_MOLECOLAR_SEQUENCES, GEOGRAPHIC_AREAS, LIVING_BEINGS, 
OBJECTS, OCCUPATIONS, ORGANIZATIONS, PHENOMENA, PHYSIOLOGY,	 and 
PROCEDURES.	
Entities	 of	 the	 co-occurrence	 network	 include	 as	 attributes	 the	 Name,	 optionally	 an	
Umls_id	when	the	entity	is	extracted	from	UMLS,	and	the	Frequency	associated	with	the	
entity	(i.e.,	number	of	documents	in	CORD-19	capturing	that	concept).	Relationships	in	the	
co-occurrence	network	express	the	co-occurrence	of	two	entities	in	one	or	more	documents	
of	CORD-19.	Each	relationship	has	the	following	attributes:	a	Name	(built	as	concatenation	
in	alphabetic	order	of	the	names	of	the	entities	that	co-occur),	a	Frequency	(the	number	of	
abstracts	that	mention	such	co-occurring	entities),	and	then	several	statistical	indicators	of	
the	relationship’s	strength	within	the	corpus:	the	PMI	value	(Pointwise	Mutual	Information	
estimator,	comparing	the	relative	frequency	of	two	concepts	occurring	together	in	the	text	
to	 the	 probability	 of	 either	 concept	 occurring	 independently	 [15]);	 the	 NPMI	 value	
(Normalized	 Pointwise	 Mutual	 Information,	 normalized	 by	 Shannon’s	 self-information,	
ranging	from	-1	to	1	[16]);	and	the	Cramer’s V	value	(measuring	the	statistical	significance	
of	the	co-occurrence	between	two	entities	[17]).	
Figure	3	illustrates	the	process	of	ontology	creation	at	a	conceptual	level.	The	process	applies	
to	textual	abstracts	–	in	Figure	3	we	consider	an	excerpt	of	the	textual	abstract	of	[18]	–	and	
consists	of	an	entity	recognition	task	aiming	to	extract	the	known	ontological	terms	(either	
from	UMLS	or	from	CIDO)	followed	by	an	entity	linking	task;	eventually,	we	produce	a	co-
occurrence	network,	whose	entities	are	extracted	terms	and	whose	relationships	connect	
entities	that	co-occur,	weighted	by	the	strength	of	the	co-occurrence.	We	next	detail	the	data	
extraction	and	transformation	process.		
	

	
Fig.	3.	Rationale	of	co-occurrence	network	construction.	Ontological	terms	are	recognized	in	
textual	 abstracts	 using	 entity	 recognition;	 then,	 this	 process	 is	 reiterated	 with	 ~660K	
publications’	 abstracts.	 Terms	 are	 connected	 to	 each	 other	 using	 entity	 linking;	 each	
relationship	 between	 entities	 is	 associated	 with	 several	 properties	 representing	 the	 co-
occurrence	 weight,	 using	 different	 statistical	 methods.	 The	 generated	 connected	 co-
occurrence	network	has	~128	thousand	concepts	and	~47	million	relationships.	
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Data provisioning and co-occurrence network construction  
The	data	provision	workflow	is	represented	in	Figure	4;	it	follows	the	extract-load-transform	
paradigm.	Data	was	extracted	from	CORD-19	and	loaded	into	the	data	storage	system.	The	
pipeline	produces	three	data	objects:	the	co-occurrence	network,	the	metadata	table,	and	the	
inverted	 index,	 i.e.,	 a	 simple	 postings-list	 whose	 keys	 are	 the	 relationships	 of	 the	 co-
occurrence	network	and	whose	elements	are	links	to	the	relevant	publications	where	such	
relationships	co-occur.	Other	data	tables	contain	intermediate	results	of	the	extraction	and	
curation	 of	 the	 entities	 –	 i.e.,	 the	 nodes	 –	 of	 the	 co-occurrence	 network	 and	 of	 the	
computation	of	the	co-occurrence	measures	employed	for	the	relationships.	For	storing	data	
tables,	 we	 selected	 the	 MariaDB	 relational	 engine	 [19];	 for	 storing	 the	 co-occurrence	
network	we	selected	the	Neo4j	graph	data	engine	[20].		

Data loading 
Three	 tasks	 apply	 to	 raw	 CORD-19	 data	 and	 produce	 a	 metadata	 table.	 Metadata	 was	
obtained	by	using	the	“GET	metadata”	from	the	S3	bucket	of	AllenAI;	then,	we	performed	a	
“Wrangling	and	Cleaning”	step	and	the	“Augment	and	Load”	step	on	the	cleaned	metadata	
table	with	information	from	the	external	APIs.		

	
Fig.	 4.	 Workflow	 diagram	 of	 the	 GRAPH-SEARCH	 data	 provision	 pipeline.	 Tasks	 are	
performed	sequentially,	each	task	uses	data	objects	and	produces	data	objects,	starting	from	
the	 raw	 CORD-19metadata.csv	 file	 present	 in	 CORD-19,	 which	 is	 translated	 into	
metadata.csv	 once	 cleaned.	 The	 final	 outcome	 of	 the	 pipeline	 is	 a	 Neo4j	 database	
containing	the	network.	

Entities mining and linking 
The	“Mine	Entities	and	Link”	task	takes	as	input	the	curated	and	augmented	metadata	table	
and	 produces	 the	raw_entity	 table.	With	 a	 single	 pass	 over	 the	 title	 and	 abstract,	we	
performed	typical	Information	Retrieval	steps	such	as	lexical	analysis,	removal	of	stopwords,	
stemming,	 and	 lemmatization.	 Then	 we	 performed	 Named	 Entity	 Recognition	 (NER)	 –	
consisting	of	the	identification	and	extraction	of	entities	from	unstructured	text	and	linking	
to	UMLS	and	CIDO;	specifically,	we	used	the	en_core_sci_lg	model	of	 the	scispaCy	
Python	 package.	 The	 selected	 model	 is	 particularly	 suited	 for	 processing	 English-based	
scientific	 literature,	providing	a	~785k	word	vocabulary	with	600k	word	vectors,	with	 a	
declared	F1-scores	for	mentions	of	68.67	(see	[21]	for	details	on	the	achieved	performances).	
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Entities	are	linked	to	UMLS	and	CIDO	by	associating	each	concept	with	the	UMLS	identifier	
(with	its	related	type	and	macro-class)	and/or	the	CIDO	identifier.		

Entity curation 
The	“Entity	Curation”	task	aggregates	the	occurrences	in	the	raw_entity	table	and	outputs	
the	entity_materialized	table,	collecting	all	the	entities	to	be	employed	as	nodes	of	the	
co-occurrence	network.	In	this	pass,	we	excluded	the	occurrences	of	the	entities	that	score	a	
low	similarity	with	UMLS/CIDO	concepts;	we	used	a	normalized	string	similarity	measure	
based	on	 the	Levenshtein	distance	and	a	 threshold	value	of	0.7.	We	also	 included	within	
entities	some	utility	 terms	that	 indicate	 level	modifiers	(such	as	 ‘high’	and	 ‘increased’)	or	
causative	 connectors	 (i.e.,	 `induces').	 Eventually,	 we	 added	 the	 entity	 type	 and	 macro-
category,	using	their	names	in	UMLS.		

Link mining 
The	“Link	Mining	and	 Inverted	 Index	Creation”	 task	uses	 the	raw_entity	 table	and	the	
entity_materialized	table	to	generate	the	bigram	table	(i.e.,	information	on	the	links	
of	the	co-occurrence	network)	and	the	bigram_publications	 table	that	we	use	as	an	
inverted	index	in	the	information	retrieval	process.		
A	 co-occurrence	 is	 a	 relationship	 between	 two	 concepts,	 and	 it	 exists	 when	 those	 two	
concepts	 occur	 in	 the	 same	 document.	 Each	 relationship	 is	 named	 using	 the	 convention	
“X.name	 -	 Y.name”,	 where	 X	 and	 Y	 are	 the	 two	 concepts	 expressed	 as	 nodes,	 which	 it	
connects,	and	X.name	precedes	Y.name	alphabetically.		
We	 designed	 a	 greedy	 algorithm	 –	 optimized	 for	 big	 data	 contexts	 –	 to	 extract	 the	
relationships	in	a	single	pass	over	the	publications.	This	algorithm	requires	two	read-only	
lookup	tables,	built	before	the	execution:	publication_entities	(for	each	publication	
a	 list	 of	 mentioned	 entities)	 and	 entity_publications	 (for	 each	 entity,	 a	 list	 of	
mentioning	publications).	The	complexity	of	the	algorithm	is	𝑜(𝑁!),	where	𝑁	is	the	number	
of	 entities	 in	 the	 entity_materialized	 list;	 in	 practice,	 the	 number	 of	 required	
comparisons	is	low,	as	the	number	of	entities	in	each	publication	is	much	lower	than	the	total	
number	of	entities	selected	in	the	“Entity	Curation”	step.		

Graph consolidation 
The	 “Graph	 Consolidation”	 task	 selects	 data	 from	 the	 entity_materialized	 and	
bigram	tables	and	migrates	it	to	the	Neo4j	instance	to	create	the	co-occurrence	network.		
The	 nodes	 are	 curated	 in	 the	 previous	 “Entity	 Curation”	 step.	 The	 relationships	 of	 co-
occurrence	are	chosen	at	this	stage,	based	on	their	NPMI,	which	is	the	point	estimate	of	the	
Mutual	 Information,	 normalized	 by	 the	 Shannon	 Self-Information	 between	 [-1,+1];	 this	
compares	the	probability	that	the	two	entities	occur	together.	We	exclude	the	relationships	
with	NMPI≤	0,	as	a	non-positive	NPMI	indicates	that	the	relationship	is	not	significant.		
The	 resulting	 co-occurrence	 network	 has	 128,249	 entities	 and	 47,198,965	 relationships,	
extracted	from	662,105	initial	publications.	Using	the	Neo4j	Graph	Data	Science	library	[22],	
we	verified	that	the	graph	is	a	unique	connected	component—such	a	condition	is	essential	
to	ensure	that	every	possible	formulated	graph	query	can	be	matched	on	the	co-occurrence	
network.		



	 8	

Graph query search  
A	graph	query	𝑄	is	a	connected	graph	formed	by	nodes	and	undirected	relationships,	where	
nodes	are	 the	set	of	entities	appearing	 in	𝑄	and	𝑟𝑒𝑙𝑠(𝑄)	is	a	 set	of	arbitrary	relationships	
connecting	some	pairs	of	entities	 in	𝑄.	A	subgraph	𝑄"	is	 simply	a	connected	subset	of	 the	
nodes	and	 relationships	of	𝑄.	The	 search	 strategy	 is	 composed	of	 two	steps:	matching	of	
graph	query	against	the	co-occurrence	network	and	extraction	of	the	relevant	publications.		
Graph	 query	 matching	 is	 the	 operation	 of	 comparing	 the	 graph	 query	𝑄 	with	 the	 co-
occurrence	network	𝑁	created	along	the	procedure	described	in	the	‘Data	provisioning	and	
co-occurrence	network	construction’	section.	By	construction,	each	entity	in	𝑄	is	contained	
in	𝑁,	whereas	 relationships	 in	𝑟𝑒𝑙𝑠(𝑄),	 arbitrarily	 created	 in	𝑄,	may	not	be	present	 in	𝑁.	
Both	𝑄	and	𝑁	are	connected	graphs	with	undirected	relationships;	then,	matching	𝑄	within	
𝑁	can	be	seen	as	an	instance	of	inexact	graph	matching	[23].	
Figure	 5	 guides	 the	 intuition	 of	 the	matching	 operation.	 A	 graph	 query	 A-B	 (in	 blue)	 is	
searched	over	a	co-occurrence	network	(in	white).	No	direct	relationship	exists	between	A	
and	B	on	the	network.	However,	several	alternative	finite	paths	exist	(i.e.,	A-X-B,	A-Y-Z-B,	or	
A-V-Y-Z-B).	Among	these,	A-X-B	is	 found	to	be	the	 ‘shortest	path’	between	A	and	B,	as	 its	
length	(or	distance,	in	green)	equals	1.	
	

	
Fig.	5.	Graph	query	matching	operation.	
	
That	is,	all	entities	in	𝑄	are	matched	in	𝑁;	then,	for	each	relationship	𝑟	in	𝑟𝑒𝑙𝑠(𝑄),	connecting	
nodes	𝛼	and	𝛽,	we	retrieve	the	‘shortest	paths’	within	𝑁	that	connect	𝛼	and	𝛽,	i.e.,	a	chain	of	
relationships	𝑟#", 𝑟!", … , 𝑟$",	where	𝑟′	is	in	𝑟𝑒𝑙𝑠(𝑁),	𝑟#" 	starts	from	node	𝛼,	and	𝑟$"	ends	in	node	𝛽.	
Shortest	 paths	 are	 computed	 by	 using	 the	 All	 Pairs	 Shortest	 Path	 function	
allShortestPaths	 available	 in	Cypher,	Neo4j	 v4.4	 [20].	 Candidate	 shortest	 paths	 are	
ranked	by	 the	 average	of	 the	NPMI	property	 associated	with	 each	 relationship	 along	 the	
path;	we	retain	the	top	ten	paths	in	the	ranking.	
We	refer	 to	 the	 set	of	 candidate	 shortest	paths	as	expansion;	 the	 selection	of	 exactly	one	
preferred	path	among	the	candidates	of	the	expansion	is	performed	interactively	by	the	user	
of	the	search	system,	as	it	is	strictly	domain	or	context-specific.	
Relevant	publications	extraction	corresponds	to	the	retrieval	of	the	publications	that	mention	
concepts	of	the	matched	graph,	using	the	inverted	index.	We	access	the	inverted	index	by	
relationship	 name,	 using	 either	𝑟 	when	 it	 appears	 in	 the	 relationships	𝑟𝑒𝑙𝑠(𝑁)	of	 the	 co-
occurrence	network,	or	all	the	relationships	𝑟#", 𝑟!", … , 𝑟$"		appearing	in	the	specified	𝑝𝑎𝑡ℎ(𝑟).	
The	score	of	a	publication	𝑃	relative	to	a	query	𝑄	(i.e.,	the	number	of	explained	relationships)	
is	computed	as	follows:	
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𝑆𝑐𝑜𝑟𝑒(𝑃, 𝑄) = 	∑
∑ &!"!"∈$%&'(!)

|()*+(-)|-∈-012(3) 	 	 (1)	
The	addends	of	the	external	summation	represent	a	score	assigned	to	each	relationship	𝑟	in	
𝑄.	Each	addend	captures	how	well	𝑃	represents	𝑟;	it	is	equal	to	1	if	𝑃	directly	mentions	the	
relationship	 of	 𝑄 	(e.g.,	 when	 𝑝𝑎𝑡ℎ(𝑟) 	= 	 𝑟" ,	 with	 length	 1)	 or	 if	 𝑃 	mentions	 all	 the	
relationships	 of	𝑝𝑎𝑡ℎ(𝑟) .	 Otherwise,	 it	 equals	 a	 fraction	 of	 one,	 counting	 the	 number	 of	
relationships	𝑟#", 𝑟!", … , 𝑟$"		of	𝑝𝑎𝑡ℎ(𝑟)		mentioned	in	𝑃,	divided	by	the	length	of	𝑝𝑎𝑡ℎ(𝑟).	
Extracted	 publications	 are	 ordered	 by	 their	 score;	 they	 are	 further	 described	 by	 other	
properties,	such	as	the	sum	of	the	NPMI	of	all	the	mentioned	relationships	and	the	date	of	
publication.	

Running example 
Consider	Figure	6	as	an	example	of	the	four	steps	performed	during	the	search:	

• Panel	A:	Create	graph	query.	Nodes	are	chosen	among	the	concepts	existing	in	the	co-
occurrence	network;	node	names	can	be	found	through	a	dedicated	browser	working	
either	by	auto-completion	of	user-typed	content	(matching	terminologies	concepts)	or	
by	selection	of	Category/Type	and	contained	concepts;	search	on	multiple	terminologies	
at	the	same	time	is	allowed.	For	each	concept,	we	provide	a	description	and	ID	from	the	
original	source.	Relationships	can	be	drawn	between	any	pair	of	nodes.	
• Panel	B:	Find	paths.	For	each	pair	of	entities	connected	by	a	relationship	in	the	graph	
query,	 the	 Neo4j	 graph	 is	 queried	 to	 find	 the	 shortest	 paths	 (at	 most	 ten)	 with	 top	
average	NPMI	scores.	
• Panel	 C:	 Select	 paths.	 The	 user	 selects	 the	 most	 relevant	 path	 for	 each	 original	
relationship	that	has	been	expanded.	
• Panel	D:	Retrieve	publications	and	return	ranking	to	the	user.	The	system	collects	the	
names	of	all	the	relationships	from	the	expanded	graph	query	(computed	in	step	B	and	
selected	in	step	C)	and	exploits	them	to	retrieve	the	posting	lists	of	publications	(from	
the	inverted	index).	It	computes	the	relationships	explained	by	each	publication.	Then,	
it	 ranks	 the	 publications	 by	 1)	 the	 number	 of	 explained	 relationships	 of	 the	 original	
graph	 query	 (see	 Eq.	 1);	 2)	 the	 sum	of	 NPMI	 scores	 of	 the	 relationships;	 and	 3)	 the	
publication	date.	Finally,	it	shows	the	complete	list	with	publications’	metadata.	

	
In	Figure	6D,	we	observe	that	five	expansions	are	produced:	the	first	publication	scores	1	in	
four	expansions	and	1/2	in	the	expansion	at	the	top	right-end	of	the	graph	query.	Indeed,	
publication	 1	 only	 includes	 the	 relationship	 (AngII)-(1,0),	 which	 is	 half	 of	 the	 selected	
shortest	path	that	connects	(AngII)	and	(Vascular	Permeability).	
The	second	publication	scores	0	in	one	expansion,	as	there	is	no	path	between	(AngII)	and	
(Vascular	Permeability);	1	in	three	expansions;	and	2/3	in	the	expansion	at	the	left	end	of	
the	graph	query	–	the	relationship	(SARS-CoV-2)-(1,0)	is	not	mentioned.	
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Fig.	6.	(A)	Example	of	a	graph	query	with	6	concepts	and	5	relationships.	(B)	Match	of	graph	
query	on	the	co-occurrence	network,	with	the	search	of	shortest	paths	(in	the	dashed	spaces,	
called	 expansions).	 Considering	 the	 relationship	 between	 (SARS-CoV-2)	 and	 (ACE2),	 its	
expansion	includes	three	paths	of	length	3,	each	characterized	by	two	intermediate	nodes.	
Light	green	paths	have	the	highest	average	NPMI	of	each	expansion.	(C)	Regardless	of	the	
suggested	paths	with	the	highest	average	NPMI,	users	can	select	any	path	(dark	green).	(D)	
A	list	of	publications,	ranked	by	their	score,	is	extracted;	the	score	is	computed	using	Eq.	1	
and	 considers	 all	 the	 relationships	 in	 the	 selected	 paths	 that	 are	 mentioned	 in	 the	
publication.	

Results 

Web Interface 
With	GRAPH-SEARCH,	the	researcher	can	express	a	query	in	the	form	of	a	graph	query	on	a	
Web	interface	and	retrieve	a	list	of	CORD-19	publications	that	best	correspond	to	the	query.	
During	the	search	process,	each	link	in	the	original	graph	query	is	expanded	and	matched	
with	the	co-occurrence	network.	When	a	relationship	in	the	query	is	not	available	in	the	co-
occurrence	network,	an	expansion	may	suggest	that	several	sets	of	concepts	can	explain	a	
relationship	 in	 the	original	graph	query;	 therefore,	 ten	ranked	paths	are	proposed	 to	 the	
user,	who	may	express	a	preference	according	to	her	interest.	After	selecting	one	path	for	
each	expanded	relationship,	GRAPH-SEARCH	provides	a	list	of	publications	ranked	by	the	
number	of	explained	relationships	of	the	original	graph	query.	
The	 GRAPH-SEARCH	 application	 service	 exposes	 a	 web	 user	 interface	 to	 query	 the	 co-
occurrence	 network	 and	 exploit	 the	 graph-driven	 search	 methodology	 described	 in	 the	
‘Graph	Query	Search’	section;	it	contains	a	backend	(web	server	that	exposes	a	RESTful	API	
for	high-level	retrieval	operations)	and	a	frontend	(visual	interface	that	exploits	the	RESTful	
APIs	to	use	the	backend).	
The	web	 interface	 has	 been	 designed	 and	 implemented	 following	 the	major	 steps	 of	 the	
algorithm	described	in	the	‘Running	Example’	above.	The	user	experience	has	been	modeled	
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as	a	multi-page	application;	for	each	step	of	the	retrieval	strategy,	different	API	services	and	
a	different	page	were	implemented.	
The	frontend	is	built	with	the	Vue.js	framework	and	the	D3.js	library	for	graph	illustrations;	
instead,	the	backend	is	written	in	Python	and	includes	two	components:	

• swagger_server,	 which	 implements	 the	 web	 service	 logic,	 interfaces,	 and	 the	
models	necessary	to	handle	the	persistence	and	asynchronicity	behaviors	of	a	multi-user	
system.	We	employed	the	connexion	framework,	a	Flask-based	web	framework,	and	
SQLAlchemy	as	the	database	abstraction	layer;	
• core,	which	implements	the	retrieval	strategy	and	provides	high-level	programming	
interfaces	for	it.	This	package	has	been	designed	as	an	independent	library	that	can	be	
embedded	 in	 other	 applications,	 as	 it	 has	 been	 done	 with	 the	 backend	 service.	 Its	
implementation	 relies	 on	 several	 Python	 libraries,	 such	 as	 neo4j,	 networkx,	 and	
SQLAlchemy.	

Use cases 
Use	 case	UC1	 emphasizes	 the	 strength	 of	 exploratory	 search	 over	 graphs,	 by	 supporting	
users	 in	 selecting	 graph	 portions,	 considering/accepting	 proposed	 expansions,	 and	
browsing	 results	 in	 terms	 of	 NMPI	 and	 explained	 relationships.	 Use	 cases	 of	 increasing	
complexity	 are	 provided	 next,	 offering	 examples	 of	 searches	 upon	 graph	 queries	 with	
different	 shapes:	 UC2	 and	UC3	 introduce	 very	 simple	 linear	 graph	 queries	 (one	 chain	 of	
nodes);	UC4	shows	the	use	of	a	Y-shaped	graph	query;	and	UC5	and	UC6	represent	more	
complex	shapes	with	nodes	forming	triangles.	
UC1.	Genetic	mechanisms	of	 critical	 illness	 in	COVID-19:	Pairo-Castineira	et	al.	 [24]	 aim	 to	
reveal	 previously	 undescribed	 molecular	 mechanisms	 of	 critical	 illness	 in	 patients	 with	
COVID-19	with	genome-wide	studies.	The	results	of	such	studies	may	provide	therapeutic	
targets	 to	 modulate	 the	 host	 immune	 response	 to	 promote	 survival.	 Inspired	 by	 this	
publication,	we	 create	 a	 graph	query	 including	 relevant	human	genes	 that	 are	 related	 to	
higher	or	lower	severity	of	COVID-19	(IFNAR2,	CCR2,	and	TYK2	genes)	and	we	link	them	to	
the	change	in	the	severity	of	the	disease	(see	Figure	7A).	Since	the	research	idea	is	broad,	we	
start	the	exploratory	process	focusing	on	a	subgraph	of	the	graph	query	(see	nodes	in	red	
selected	in	Figure	7A).	Here,	we	only	consider	the	effect	of	the	increase	of	expression	in	the	
CCR2	gene.	Figure	7B	shows	how	GRAPH-SEARCH	expands	the	path	between	the	concepts	
‘High’	and	‘Gene Expression’	(not	otherwise	connected	in	the	co-occurrence	network).	
According	to	NPMI	values,	the	most	relevant	concept	connecting	them	is	‘Up-Regulation 
(Physiology)’.	 Figure	 7C	 shows	 that	 the	 path	 going	 through	 this	 concept	 has	 been	
selected	 by	 the	 user	 among	 the	 other	 proposed.	 The	 Results	 page	 (Figure	 7D)	 shows	 a	
publication	(Teixeira	et	al.	[25])	that	covers	4/5	explained	relationships	of	the	original	graph	
query.	This	means	that	–	out	of	the	five	original	relationships	of	the	selected	portion	of	the	
graph	query	–	only	 four	are	explained	by	 the	publication	(all	except	 for	 the	one	between	
‘Gene Expression’	and	‘High’).	At	this	point,	the	user	can	consider	other	portions	of	the	
graph	query,	or	the	entire	query.	
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Fig.	7.	GRAPH-SEARCH	screens	dedicated	to	UC1.	(A)	Graph	query;	(B)	Find	paths;	(C)	Select	
paths;	(D)	First	publication	on	the	results	page.	
	
UC2.	COVID-19	and	cystic	fibrosis:	Cystic	fibrosis	is	a	disorder	that	affects	mostly	the	lungs,	
the	digestive	system,	and	other	organs	in	the	body.	It	is	widely	known	that	also	COVID-19	
affects	the	respiratory	system.	How	has	their	connection	been	investigated	in	CORD-19?	The	
simplest	 possible	 graph	 query	 in	 GRAPH-SEARCH	 holds	 two	 nodes	 (cystic	 fibrosis	 and	
COVID-19)	 connected	 by	 one	 relationship	 of	 co-occurrence.	 ‘Cystic fibrosis’	 is	
represented	 by	 UMLS	 concept	 ID	 C0010674;	 and	 ‘COVID-19’	 by	 the	 UMLS	 concept	 ID	
C5203670.	 The	 two	 concepts	 are	 not	 directly	 connected	within	 the	 network;	 among	 the	
proposed	paths	in	the	expansion,	we	choose	the	one	through	the	concept	‘Respiratory 
secretion viscosity alteration’	 (UMLS	 ID	 3537094).	 Only	 one	 publication	 in	
CORD-19	explains	this	path,	covering	it	completely,	with	an	NPMI	sum	of	0.5668.	Kratochvil	
et	al.	 [26]	characterized	 the	composition	of	respiratory	secretions	of	 intubated	COVID-19	
patients	 finding	 that	 they	 closely	 resemble	 those	 of	 cystic	 fibrosis,	 a	 minor	 observation	
unrelated	to	clinical	severity.	In	general,	the	lack	of	relevant	clinical	references	confirmed	
our	expectation	that	cystic	fibrosis	did	not	impact	COVID-19	severity.	
UC3.	COVID-19	and	NSAIDs:	During	 the	second	year	of	 the	pandemic	 interest	arose	 in	 the	
possibility	 of	 intervening	 at	 the	 onset	 of	 mild-to-moderate	 COVID-19	 symptoms	 in	
outpatients	(instead	of	hospitalized	patients);	it	was	suggested	that	this	could	prevent	the	
progression	to	a	more	severe	illness	and	long-term	complications.	More	specifically,	Perico	
et	 al.	 [27]	 investigated	 the	 use	 of	 anti-inflammatory	 drugs,	 especially	 non-steroidal	 anti-
inflammatory	drugs	(NSAIDs)	as	a	therapeutic	strategy.	In	our	graph	query,	we	include	as	
main	 concepts	 ‘COVID-19’	 (C5203670)	 -	 ‘Outpatients’	 (C0029921)	 -	 ‘Anti-
Inflammatory Agents, Non Steroidal’	 (C0003211)	 -	 ‘Cyclooxygenase 2 
Inhibitors’	 (C1257954),	 the	 last	 being	 a	 specific	 class	 of	 NSAIDs.	 In	 this	 case,	 no	
expansion	of	the	original	graph	query	is	performed,	as	all	the	relationships	are	present	in	the	
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co-occurrence	network.	The	Results	page	contains	a	list	of	440	publications,	whose	abstracts	
discuss	the	concepts	in	the	graph	query	from	different	perspectives	and	approaches.	The	top	
three	results	include	work	from	Consolaro	et	al.	[28]	–	a	home-treatment	algorithm	based	
on	anti-inflammatory	drugs;	Popovych	et	al.	[29]	–	discussing	the	therapeutic	efficacy	of	the	
BNO	1030	extract,	which	is	a	phytotherapeutic	anti-inflammatory	agent;	and	Sava	et	al.	[30]	
–	exposing	the	results	of	a	ninety-day	treatment	of	patients	with	severe	COVID	with	a	specific	
NSAID	drug,	tocilizumab.	

UC4.	Elevated	blood	glucose	levels	and	COVID-19	severity:	Elevated	blood	glucose	levels	are	
considered	a	risk	factor	for	the	severity	of	the	disease.	With	GRAPH-SEARCH,	we	compose	a	
Y-shaped	 graph	 query	 (see	 Figure	 8),	 expressing	 that	 high	 levels	 of	 blood	 glucose	 or	
increasing	blood	glucose	can	induce	a	severe	illness.	This	example	makes	sophisticated	use	
of	utility	 terms;	 these	 are	 provided	 in	 a	 specific	 list	 of	 the	 concepts'	 browser	 of	 GRAPH-
SEARCH.	
As	a	consequence,	we	obtain	a	list	of	395	results,	where	the	top-ranked	publication	explains	
5/5	relationships:	Logette	et	al.	[1]	reports	on	the	relationship	between	blood	glucose	levels	
and	the	severity	of	COVID-19.	All	following	publications,	ranked	in	descending	order	by	the	
number	of	explained	relationships	of	the	original	graph	query,	explain	at	most	3/5	relations.	
	

	
Fig.	8.	Graph	query	of	UC4,	with	UMLS	concepts	IDs	in	red.	
	
UC5.	COVID-19,	ACE2,	and	cardiovascular	diseases:	Patel	et	al.	in	[31]	hypothesized	that	SARS-
CoV-2	infection	could	be	associated	with	the	shedding	of	ACE2.	In	their	study,	it	is	suggested	
that	 in	 patients	 with	 cardiovascular	 diseases,	 there	 is	 increased	 shedding	 of	 ACE2;	
consequently,	 higher	 levels	 of	 ACE2	 in	 blood	 circulation	 are	 associated	 with	 the	
downregulation	of	membrane-bound	ACE2.	The	 graph	query	 in	 Figure	9A	 expresses	 this	
query,	by	connecting	COVID-19	patients	with	cardiovascular	diseases;	as	 they	have	more	
circulating	ACE2,	consequently	there	is	a	downregulation	of	membrane-bound	ACE2.	When	
running	this	query,	two	relationships	are	not	found	in	the	co-occurrence	network;	the	first	
paths	suggested	by	the	system	as	possible	explanations	are	not	meaningful	w.r.t.	the	context,	
thus	we	 select	 alternative	 concepts,	 i.e.,	 ‘Subacute Endocarditis’	 and	 ‘Intensive 
Care Unit’	(see	Figure	9B).	Results	can	be	ranked	by	number	of	citations;	we	found	two	
publications	particularly	interesting,	by	Yamaguchi	et	al.	[32]	and	Gupta	et	al.	[33],	as	they	
propose	 solutions	 for	 the	 prevention	 and	 treatment	 of	 the	 side	 effects	 of	 COVID-19	 for	
patients	with	cardiovascular	diseases.	
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Fig.	9.	Graph	query	of	UC5	(A)	and	found	paths	(B).	
	
UC6.	COVID-19	Vaccines	and	Myocarditis:	The	side	effects	of	vaccines	are	a	topic	of	relevance.	
Here,	we	investigate	the	connection	between	events	of	heart	inflammation	(e.g.,	myocarditis)	
among	 adolescents	 and	 the	 COVID-19	 Moderna	 vaccine.	 We	 compose	 a	 graph	 query	 in	
GRAPH-SEARCH	with	 four	nodes	(see	Figure	10A);	a	 triangle	 is	 formed	by	 ‘Adolescent 
(age group)’	(C0205653),	‘Myocarditis’	(C0027059),	and	the	‘Moderna COVID-19 
Vaccine’	(CIDO	ID	obo.VO	 0005157);	the	vaccine	entity	is	connected	to	the	‘COVID-19’	
(C5203670)	node.	COVID-19	and	Moderna	COVID-19	Vaccine	 are	not	directly	 connected;	
among	the	possible	paths	suggested	by	GRAPH-SEARCH,	the	two	scoring	the	highest	sum	of	
mutual	 information	 are	 through	 ‘Vaccination’	 and	 ‘Myopericarditis’.	 The	 latter	
refers	to	both	myocarditis	and	pericarditis	(i.e.,	the	inflammation	of	the	pericardium	which	
is	the	sac	that	surrounds	the	heart).	The	latter	concept	allows	us	to	expand	the	initial	query	
to	complete	the	match	with	the	co-occurrence	network	(see	Figure	10B).	On	the	Results	page,	
190	 bibliographic	 resources	 are	 provided.	 The	 top-ranked	 one,	 which	 explains	 all	 four	
relationships	 of	 the	 graph	 query,	 is	 a	 report	 by	 Gargano	 et	 al.	 [34]	 that	 suggests	 the	
implication	of	the	use	of	mRNA	vaccines	with	a	higher	risk	for	myocarditis	in	males	aged	12-
29	 years.	 The	 following	 results	 do	 not	 explain	 the	 relationship	 between	 the	 COVID-19	
Moderna	 Vaccine	 and	 COVID-19	 through	 Myopericarditis,	 as	 they	 explain	 only	 three	
relations.	These	results,	for	instance,	report	adverse	events	of	Myocarditis	after	vaccination	
in	the	US	[35]	and	Korea	[36].	

	

	
Fig.	10.	Graph	query	of	UC6	(A)	and	found	paths	(B).	

A B

BA
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Query performances 
GRAPH-SEARCH	queries	are	composed	of	two	computationally	intensive	steps:	1)	the	graph	
query	 matching	 over	 the	 co-occurrence	 network	 and	 2)	 the	 retrieval	 and	 ranking	 of	
publications	related	to	the	query.	For	each	such	step,	we	run	a	performance	analysis.		
Specifically,	we	simulated	random	queries	with	2,	4,	6,	8,	or	10	nodes	from	the	existing	co-
occurrence	network;	we	assume	that	these	are	the	typical	use	case	scenarios	–	as	queries	
represent	small	queries	of	researchers	created	through	the	graphical	interface.	
We	separately	measure	computation	times	of	the	first	and	second	steps	(respectively	shown	
in	 Figure	 11A	 and	 11B);	 each	 experiment	 has	 been	 repeated	 on	 10	 queries,	 generated	
randomly	using	the	‘Random	walk	with	restarts	sampling’	method	of	Neo4j.	We	observe	that	
the	computational	times	for	graph	matching	is	in	all	cases	below	2.2	seconds,	and	its	growth	
is	less-than-linear	with	the	number	of	the	nodes,	whereas	the	retrieval	operation	typically	
takes	up	to	3	seconds,	with	a	small	number	of	outliers	due	to	cache	misses	–	the		resulting	
user	delay	in	these	scenarios	seems	quite	acceptable.	
We	 also	 created	 random	 graph	 queries	 by	 removing	 increasing	 percentages	 of	 their	
relationships,	to	simulate	the	difference	between	exact	and	inexact	graph	search	(thereby	
triggering	the	search	 for	alternative	shortest	paths);	computational	 times	(not	shown	for	
brevity)	are	not	significantly	affected.	
	

Fig.	 11.	 Boxplots	 measuring	 the	 time	 for	 the	 graph	 matching	 operation	 (A)	 and	 the	
publication	retrieval	operation	(B)	performed	using	complete	graph	queries	of	–	respectively	
–	2,	4,	6,	8,	and	10	nodes	(each	repeated	10	times).	

Related work 
In	this	section,	we	review	classic	approaches	to	search	over	co-occurrence	networks,	then	
we	focus	on	the	specific	use	of	bio-ontologies	in	information	extraction	systems,	finally,	we	
propose	a	close	comparison	with	COVID-19-specific	search	systems.	
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Semantic-network search 
The	task	of	searching	and	extracting	literature	documents	over	co-occurrence	networks	with	
graph-based	queries	can	be	considered	through	the	subproblems	that	compose	it.	To	query	
a	co-occurrence	network	with	a	graph-like	query,	a	similarity	measure	between	graphs	must	
be	defined.	Existing	methods	in	the	context	of	graph	databases	include	definitions	of	graph	
edit	distances	and	maximum	common	subgraphs	 [23],	but	 a	 later	approach	 introduced	a	
similarity	measure	based	on	a	graph	kernel	between	pairs	of	documents,	which	exploits	the	
shortest	paths	between	nodes	as	units	to	compare	graphs	[37].	Considering	the	construction	
of	the	co-occurrence	networks	from	datasets	of	literature	documents,	different	approaches	
are	available	to	extract	concepts	to	represent	nodes	in	the	network	and	connections	between	
them.	The	survey	from	Han	et	al.	[38]	and	the	work	by	Shi	et	al.	[39]	present	all	the	main	
methodologies	 and	 text-mining	 pipeline	 architectures,	 here	 applied	 to	 engineering	 and	
design	(i.e.,	subsets	of	scientific	literature).	G-Bean	[40]	is	also	relevant	related	work,	i.e.,	a	
graph-based	tool	that	exploits	ontologies	for	graph-based	query	expansion	to	support	the	
user	search	intention	discovery.	

Literature annotation and bio-ontologies 
The	incorporation	of	bio-ontologies	in	information	extraction	and	information	retrieval	has	
demonstrated	its	efficacy	through	diverse	applications,	such	as	patent	information	retrieval	
[41]	and	identification	of	concept	domains	[42].	Bio-ontologies	are	also	applied	in	natural	
language	processing	tasks,	like	NER	[43].	Moreover,	[44]	illustrates	the	application	of	bio-
ontologies	in	retrieving	biomedical	datasets,	while	[45]	emphasizes	their	role	in	literature	
search	 facilitation	 and	 metadata	 organization.	 The	 potential	 for	 refining	 search	 queries	
through	ontology-guided	expansion	is	also	a	recurring	theme	in	the	biomedical	literature	for	
information	retrieval;	 [46]	and	[47]	show	query	expansion	methodologies	using	different	
medical	vocabularies.		
A	fundamental	aspect	of	research	in	this	domain	pertains	to	the	availability	and	utilization	
of	suitable	corpora	and	datasets;	works	such	as	[48]	and	[49]	have	provided	foundational	
annotated	and	curated	resources	 that	underpin	 the	experimental	 frameworks	addressing	
these	tasks.	Lately,	the	integration	of	bio-ontologies	with	Language	Models	has	also	gained	
traction	within	the	context	of	bio-information	extraction	[50],	[51].	

COVID-19-specific literature discovery 
With	 the	 outbreak	 of	 the	 COVID-19	 pandemic,	 several	 open-access	 datasets	 have	 been	
collected,	 including	 the	 National	 Institute	 of	 Health’s	 COVID-19	 [52],	 the	 Human	
Coronaviruses	Data	Initiative	[53],	and	COVIDScholar	[54].	
The	CORD-19	dataset	received	the	widest	attention.	Several	knowledge	graphs	that	exploit	
this	dataset	were	proposed	at	the	beginning	of	the	pandemic	for	representing	biomedical	
entities	(e.g.,	CORD-NER	[55]	and	COVID-19	KG	[56])	or	publications	metadata	(e.g.,	Covid-
19-Literature	[57]).	More	recently,	CovidPubGraph	[58]	has	provided	a	comprehensive	and	
updated	 knowledge	 graph,	 which	 integrates	 information	 from	 multiple	 sources,	 making	
results	available	through	a	SPARQL	endpoint.	Lastly,	CovidGraph	[59]	exposed	a	knowledge	
graph	in	the	Neo4j	browser;	several	external	ontologies	are	used	to	tag	entities.	The	focus	of	
these	resources	is	more	on	organization	and	semantic	enrichment	than	on	exploration.		
The	purpose	of	the	TREC-COVID	initiative	[60]	was	that	of	setting	up	specific	retrieval	tasks	
in	response	to	the	pandemic,	to	be	shared	and	addressed	collaboratively	by	the	community.	
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Instead,	GRAPH-SEARCH	aims	to	make	literature	about	COVID-19	searchable	and	explorable.	
This	objective	is	common	to	other	two	systems,	LitCovid	and	Outbreak.info;	these	support	
enhanced	keyword-based	search,	but	they	do	not	offer	any	graph-based	search	support.	
LitCovid	 [1]	 was	 developed	 within	 the	 US	 National	 Institutes	 of	 Health	 (NIH)	 as	 a	
comprehensive	 resource	 of	 literature	 on	 COVID-19	 (372,221	 publications	 at	 the	 time	 of	
writing),	updated	regularly	 starting	 from	PubMed.	Publications	are	manually	 screened	 to	
determine	 if	 they	 are	 relevant	 to	 COVID-19,	 they	 are	 assigned	 to	 categories	 (such	 as	
overview,	disease	mechanism,	transmission	dynamics,	treatment,	case	report,	and	epidemic	
forecasting),	associated	geographical	location,	and	annotated	with	drug	or	chemical-related	
information	found	in	their	title/abstract	–	if	applicable.	The	updated	version	[61]	introduced	
the	 long-covid	category,	added	annotations	on	variants	and	vaccines,	and	supported	with	
machine	 learning	 algorithms	 the	 topic	 categorization	 (with	 a	more	 updated	model)	 and	
entity	recognition	(with	NER).	The	interface	allows	us	to	apply	filters	on	Country,	Journal,	
Drug,	Variant,	and	Vaccine	and	compose	search	strings	combining	AND,	OR,	NOT	operators	
(not	documented);	results	are	ranked	by	Relevance,	based	on	the	widely	used	BM25	ranking	
function	of	Lucene.	LitCovid	positively	compares	its	performances	to	the	classical	keyword	
search	of	PubMed	(where	annotations/tags	are	not	used).	
Outbreak.info	Research	Library	[2]	is	a	project	of	the	Hughes,	Su,	Wu,	and	Andersen	labs	at	
Scripps	Research.	It	offers	a	searchable	interface	of	COVID-19	publications	(complementing	
the	content	of	LitCovid	integrating	preprint	servers),	together	with	clinical	trials,	datasets,	
protocols,	and	other	resources.	The	data	structure	upon	which	the	search	is	performed	is	
supported	by	a	schema;	entities	are	connected	by	links	with	various	semantics.	The	visual	
interface	allows	the	use	of	some	filters	and	keyword	search;	results	are	ranked	by	relevance	
based	 on	 Lucene’s	 Practical	 Scoring	 Function	 on	 Elasticsearch	 (prioritizing	 the	 query	
normalization	factor,	coordination	factor,	term	frequency,	inverse	document	frequency).	

Discussion 
In	this	section	we	discuss	how	the	proposed	graph	query	search	could	be	compared	to	other	
information	extraction	setups.	For	this	purpose,	we	focus	on	two	use	case	queries,	i.e.,	the	
linear	query	presented	in	UC3	(four	nodes	in	a	linear	pattern),	and	the	red	subgraph	shown	
in	UC1	(a	non-linear	six	nodes	query,	expanded	with	an	additional	node	in	GRAPH-SEARCH).	

Comparing with COVID-19-literature search systems 
First,	 we	 considered	 running	 the	 use	 cases	 on	 the	 COVID-19	 literature-dedicated	 search	
systems	LitCovid	 and	Outbreak.info.	Both	 systems	were	queried	by	using	 concept	names	
corresponding	 to	 UMLS	 terms	 in	 the	 nodes;	 unfortunately,	 they	 both	 suffer	 from	 the	
limitations	of	Boolean	search.	Specifically,	if	we	search	with	conjunctive	clauses	and	exact	
search	 (e.g.,	 using	 “Outpatients” AND “Anti-Inflammatory Agents, Non 
Steroidal” AND “Cyclooxygenase 2 Inhibitors” AND “COVID-19”	for	UC3),	
no	system	returns	any	result.	Dealing	with	exact	search	is	hard	(e.g.,	with	LitCovid,	the	query	
“Cyclooxygenase Inhibitors”	produces	 3	 results,	 whereas	 the	 query	
“Cyclooxygenase 2 Inhibitors”	produces	 5	 results,	 although	 apparently	 more	
restrictive;	instead,	the	query	Cyclooxygenase Inhibitors	(no	quotes),	without	exact	
search,	produces	12,287	results	(including	all	references	referring	to	generic	inhibitors).	In	
Table	1,	we	report	the	results	of	LitCovid	with	conjunctive	queries	but	no	exact	matching,	
while	a	similar	search	 is	not	supported	by	Outbreak.info.	 In	comparison,	GRAPH-SEARCH	
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reports	respectively	327	results	for	UC1	and	440	results	for	UC3.	These	outputs	are	hardly	
comparable,	mainly	because	with	LitCovid	it	is	not	possible	to	build	a	unique	graph-shaped	
query;	 therefore,	 results	of	 single	 conjunctive	queries	need	 to	be	evaluated	one	after	 the	
other,	 whereas	 GRAPH-SEARCH	 aggregates	 together	 the	 results	 of	 several	 conjunctive	
chains;	 it	 also	expands	given	concepts	with	 their	acronyms	 (e.g.,	 ‘Anti-Inflammatory 
Agents, Non Steroidal’	is	also	searched	as	‘NSAIDs’).	Additionally,	GRAPH-SEARCH	
allows	for	the	expansion	of	specific	links	by	adding	new	concepts	(e.g.,	 ‘Up-Regulation 
(Physiology)’	 in	 UC1).	 No	 domain-specific	 system	 for	 COVID	 supports	 graph-based	
search,	allowing	for	a	more	insightful	comparison.	

Comparing with search on full-text indexed corpora 
We	also	attempted	a	comparison	with	search	operations	performed	on	a	baseline	created	by	
full-text	 indexing	the	CORD-19	titles	and	abstracts.	Specifically,	we	employed	the	full-text	
indexing	option	of	MariaDB,	an	open-source	fork	of	MySQL	[19].	Typically,	full-text	indexes	
work	well	 for	regular	text;	 they	build	an	index	over	specific	words	rather	than	the	whole	
text—consequently,	they	show	good	performances	for	searches	of	specific	words.	The	same	
queries	used	on	LitCovid/Outbreak.info	were	used	on	this	setup:	on	MariaDB,	we	employed	
the	 “Natural	 language	mode”	 documented	 on	 [62]	 and	 thus	 removed	 the	 ‘AND’	 Boolean	
operators	and	parentheses.	To	be	part	of	the	index,	words	must	appear	in	less	than	50%	of	
the	 documents	 to	 be	 considered	 potentially	 relevant	 and	 to	 be	 used	 in	 searches	
(consequently,	 ‘COVID-19’	 and	 ‘SARS-CoV-2’	 are	 not	 considered	 relevant).	 Results	 are	
returned	in	descending	order	of	relevance;	 limitations	include	the	exclusion	of	partial	(or	
very	short/long)	words.	
Notwithstanding	 our	 attempts,	 we	 note	 that	 the	 comparison	 of	 the	 GRAPH-SEARCH	
approach	with	the	full-text	indexing	setup	is	very	difficult	for	many	reasons:	

a. the	databases	upon	which	 search	 is	 performed	are	built	 on	different	 assumptions	
(e.g.,	to	be	part	of	the	index,	words	must	appear	in	less	than	50%	of	the	documents;	
the	 co-occurrence	 network	 only	 includes	 entities	 that	 score	 high	 similarity	 with	
ontology	concepts	and	exclude	relationships	with	a	negative	NMPI);	

b. in	one	case	we	perform	separate	keyword-search	sessions	with	separate	results	(with	
associated	precision/recall	measures);	 in	the	other,	we	retrieve	aggregated	results	
(with	summarized	measures);	

c. on	one	side,	the	ranking	produced	is	only	on	single	query	result	sets;	on	the	other	
side,	it	is	a	global	ranking.	

Results	are	reported	in	Table	1;	they	must	be	read	considering	all	these	aspects.	Note	that	
results	achieved	with	keyword-search	are	restricted	to	manipulating	Boolean	expressions,	
adding,	 and	dropping	keywords.	Differently,	 the	 results	 on	GRAPH-SEARCH	 (respectively	
327	 and	440)	 are	 inspectable,	with	 ranking,	 ordering,	 filtering,	 and	 visualization	 options	
dedicated	to	the	explained	chains	of	entities;	using	our	search	paradigm,	users	can	compose	
graph	queries;	more	complex	topologies	also	allow	a	stronger	explainability	of	results.	
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Query	
N.	of	retrieved	publications	

LitCovid	 MariaDB	 GRAPH-SEARCH	

UC1	

(Severe (severity modifier)) AND (Disease) AND (Associated With) AND 
(Gene Expression) AND (High) AND (CCR2 gene)	

316	 11	

327	(Severe (severity modifier)) AND (Disease) AND (Associated With) AND 
(Gene Expression) AND (High) AND (CCR2 gene)  
AND Up-Regulation (Physiology)	

52	 12	

UC3	
	

(Outpatients) AND (Anti-Inflammatory Agents, Non Steroidal) AND 
(Cyclooxygenase 2 Inhibitors)	

972	 4	

440	
	

(Outpatients) AND (Anti-Inflammatory Agents, Non Steroidal) AND 
(COVID-19)	

1714	 3	

(Outpatients) AND (Cyclooxygenase 2 Inhibitors) AND (COVID-19)	 3018	 1	
(Anti-Inflammatory Agents, Non Steroidal) AND (Cyclooxygenase 2 
Inhibitors) AND (COVID-19)	

37322	 5	
(Outpatients) AND (Anti-Inflammatory Agents, Non Steroidal) AND 
(Cyclooxygenase 2 Inhibitors) AND (COVID-19)	

902	 5	
“Outpatients” AND “Anti-Inflammatory Agents, Non Steroidal” AND 
“Cyclooxygenase 2 Inhibitors” AND “COVID-19”	

0	 5	

	
Table	 1.	 Results	 of	 evaluation	 of	 UC1	 (Fig.	 7)	 and	 UC3	 queries	 when	 performed	 on	 the	
LitCovid	 search	 interface,	 on	 the	 full-text	 indexed	 MariaDB	 database,	 and	 on	 GRAPH-
SEARCH.	

Conclusion 
GRAPH-SEARCH	is	the	first	search	engine	to	propose	the	exploration	of	COVID-19	scientific	
literature	using	visual	graph	queries.	GRAPH-SEARCH	provides	several	unique	features	such	
as	 the	 possibility	 to	 describe	 concepts	 using	 well-known	 ontologies,	 to	 establish	 co-
occurrence	relationships	between	any	two	concepts	of	choice,	to	support	search	queries	with	
concepts	 proposed	 and	 ranked	 by	 the	 system,	 and	 to	 browse	 resulting	 publications	
exploiting	several	visual	and	analytical	measures.	
The	completeness	and	accuracy	of	the	information	captured	in	the	co-occurrence	network	
strictly	depend	on	the	advances	of	 the	NER	methods	employed	during	the	steps	of	entity	
mining	 and	 linking.	 Other	 systems	 have	 employed	 expert	 curation	 (e.g.,	 LitCovid)	 or	
community-driven	curation	(e.g.,	Outbreak.info).	Although	expert	curation	can	improve	the	
search	experience,	it	does	not	properly	scale;	we	opted	for	the	exploitation	of	well-known	
biomedical	ontologies	such	as	UMLS/CIDO	and	to	trust	state-of-the-art	NLP	models	used	for	
Entity	Recognition	in	our	data	provision	pipeline.	
The	ability	of	our	system	to	extract	results	was	evaluated,	attempting	a	comparison	with	
existing	published	systems	(LitCovid	and	Outbreak.info)	and	with	full-text	indexing	search.	
We	recognize	that	comparisons	between	the	results	retrieved	from	these	systems	are	not	
ideal,	as	it	is	very	critical	to	compare	single	search	runs	with	a	system	where	the	result	is	
built	progressively	on	the	graph	–	considering	a	set	of	aspects	altogether	(how	the	network	
was	built	and	pruned,	shortest	path	computation,	completion	with	additional	nodes,	global	
ranking	of	results).		
Co-occurrence	networks	are	conventionally	used	for	analyzing	extensive	text	and	big	data.	
Common	 applications	 have	 involved	 sentiment	 analysis	 [63]	 and	 detection	 of	 prevailing	
topics	[64].	Here,	each	node	is	a	word	occurring	in	a	set	of	user-generated	social	media	posts.	
Moreover,	 word-co-occurrence	 networks	 are	 present	 in	 clinical	 applications,	 e.g.,	 [65]	
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proposed	to	encode	recordings	of	speech	data	used	for	recognizing	Alzheimer’s	patients	and	
controls.	In	all	such	cases,	GRAPH-SEARCH	may	be	employed	to	find	specific	subgraphs	and	
propose	completions	of	missing	links.	
In	this	work,	we	have	demonstrated	the	capability	of	domain-specific	(even	inexact)	graph	
query	matching	when	semantics	is	considered	only	for	nodes;	we	are	aware	of	the	limitations	
of	this	approach,	which	-at	this	stage-	is	considered	a	modeling	choice.	In	future	work,	we	
plan	to	extend	our	search	system	to	semantically	rich	knowledge	graphs	with	both	entities	
and	relationships,	 thereby	enriching	 the	expressivity	of	graph	queries	 (also	 including	 the	
possibility	to	capture	relationships’	semantics,	with	state-of-the-art	methods	[66]	or	as	we	
already	experimented	 in	[67]).	Then,	we	aim	to	 formalize	 the	use	of	graph	queries	 in	 the	
context	of	graph	databases,	by	studying	the	complexity	of	graph	search	and	connecting	it	to	
classical	 theories	 of	 subgraph	 matching,	 shortest	 path	 search,	 and	 conjunctive	 query	
processing.		
We	 also	 aim	 to	 conduct	 extensive	 empirical	 studies,	 to	 measure	 user	 satisfaction	 with	
systems	 such	 as	 GRAPH-SEARCH,	 analyzed	 along	 the	 three	 dimensions	 of	 usability,	
usefulness	in	deepening	their	knowledge	of	certain	connected	topics,	and	support	of	user’s	
intentions	in	knowledge	exploration.	

Data and code availability 
The	 data	 processing	 pipeline	 is	 available	 as	 a	 Docker	 image	 on	
https://hub.docker.com/r/frinve/graph-search.	 The	 GRAPH-SEARCH	 application	 is	
available	 on	 http://gmql.eu/graph-search	 and	 documented	 in	 the	 WIKI	
https://github.com/FrInve/graph-search/wiki/.	
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