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Abstract

Background: Literature about SARS-CoV-2 widely discusses the effects of variations that have spread in the past 3 years. Such in-
formation is dispersed in the texts of several research articles, hindering the possibility of practically integrating it with related
datasets (e.g., millions of SARS-CoV-2 sequences available to the community). We aim to fill this gap, by mining literature abstracts
to extract—for each variant/mutation—its related effects (in epidemiological, immunological, clinical, or viral kinetics terms) with
labeled higher/lower levels in relation to the nonmutated virus.

Results: The proposed framework comprises (i) the provisioning of abstracts from a COVID-19-related big data corpus (CORD-19) and
(ii) the identification of mutation/variant effects in abstracts using a GPT2-based prediction model. The above techniques enable the
prediction of mutations/variants with their effects and levels in 2 distinct scenarios: (i) the batch annotation of the most relevant
CORD-19 abstracts and (ii) the on-demand annotation of any user-selected CORD-19 abstract through the CoVEffect web application
(http://gmql.eu/coveffect), which assists expert users with semiautomated data labeling. On the interface, users can inspect the pre-
dictions and correct them; user inputs can then extend the training dataset used by the prediction model. Our prototype model was
trained through a carefully designed process, using a minimal and highly diversified pool of samples.

Conclusions: The CoVEffect interface serves for the assisted annotation of abstracts, allowing the download of curated datasets
for further use in data integration or analysis pipelines. The overall framework can be adapted to resolve similar unstructured-to-
structured text translation tasks, which are typical of biomedical domains.
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Introduction

The COVID-19 pandemic has made SARS-CoV-2 one of the most
studied viruses in the world, with research on its variation, spread,
and impacts on the host immune system. At the start of 2020, it
was estimated that 200,000 coronavirus-related journal articles
and preprints would be published by the end of the year [1]. As
of today, about 3 years since the beginning of the pandemic, more
than 1 million articles have become available.

This wide COVID-19-related literature is still largely unex-
plored but can be employed for data and text analysis. Most
COVID-19 research outputs have been gathered within the COVID-
19 Open Research Dataset (CORD-19 [2]) by the Allen Institute.
The corpus includes preprints and papers from Semantic Scholar
up to mid-2022, sourced from PubMedCentral, PubMed, the World
Health Organization’s Covid-19 Database, and the preprint servers
bioRxiv, medRxiv, and arXiv.

In parallel, there has been a worldwide spread of open data rep-
resenting SARS-CoV-2 sequences (through the data sources GI-
SAID [3], GenBank [4] and COG-UK [5]), gathered on repositories
by public and private institutes. The study of viral sequences has
addressed several research questions related to the epidemiology
and immunology aspects of the viral spread [6-8]. Much attention
has alsobeen dedicated to identifying amino acid-level mutations

(or groups of them—coordinated within variants) that lead to par-
ticular changes in the behavior of the virus and its ability to es-
tablish infections—when compared to the wild type [9-11]. Note
that, currently, it is hard to integrate data about sequences (with
associated mutations) with information about variation effects,
as the latter is not available in structured formats.

Structured information can be retrieved resorting to Natural
Language Processing (NLP) techniques. NLP models usually re-
quire a considerable quantity of training data to learn their tasks.
However, recent breakthroughs with deep learning models such
as the Generative Pretrained Transformer (e.g., GPT2 [12]) allowed
the design of multitask learners that use fewer data than classic
supervised machine learning techniques.

In this work, we use GPT2 to learn tuples that contain a SARS-
CoV-2 variation, its effect and level, starting from CORD-19 ab-
stracts. The model is trained on a small dataset that we carefully
fabricated, as no such ready-to-use dataset was available. As our
system enables expert users to provide more input annotations,
it is preferable to use a model that dynamically and efficiently
learns how to handle new annotations over time; in parallel, it is
desirable to augment the training datasetin a continuous manner.
To allow for this, we use a semiautomated data labeling system,
which employs the predictive model to assist the human labeler,
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combining manual annotations with automatic tuples extraction.
The model is used to recommend labels and automate basic func-
tions in a labeling interface. The user can decide when to employ
the generated labeled data for augmenting the training dataset
and retraining the model. A user-friendly web interface CoVEffect
allows expert users to annotate abstracts with variation effects
without requiring any programming or data management knowl-
edge.

Related Work

Currently, the task of recognizing mutations and variants’ effects
needs to be performed by hand. There are a very few resources
that provide this kind of information; when this is the case, they
are exclusively manually curated. FaviCoV and ESC [13, 14], re-
spectively, store SARS-CoV-2 genetic mutations that are function-
ally relevant and are associated with immune escape. The anti-
genic role of amino acid replacements in the context of the human
immune response is also the focus of the COG-UK Mutation Ex-
plorer [15], while a list from the World Health Organization (WHO)
concentrates on specific replacements that characterize variants
[16]. Torrens-Fontanals et al.[17] report on how variation impacts
can be predicted. Online resources such as CoVariants [18], Euro-
pean Centre for Disease Prevention and Control [19], WHO [20],
and Centers for Disease Control and Prevention (CDC) [21] ex-
plain variants’ effects, commenting on how they are reported in
the literature. We previously made extensive curation of effects
stored in CoV2K [22], a knowledge base of data and knowledge
about SARS-CoV-2; our cumbersome manual curation approach
had quickly become unfeasible, prompting us to explore alterna-
tive solutions.

Several NLP techniques have been used and adapted to
bioinformatics-relevant problems, as reported in surveys such as
[23] or [24]. Research applications concerned omics (e.g., predic-
tion of protein classification/structure [25], motifs [26], or drugs
to be developed [27]) and biomedical imaging/signal processing
[28].

Regarding biomedical text extraction, a wealth of studies is fo-
cused on clinical NLP, regarding electronic health records and clin-
ical notes [29-31]. For extracting phenotype-genotype relation-
ships, Singhal et al. [32] proposed a 3-step pipeline that (i) recog-
nizes 3 different kinds of entities (mutations, diseases, genes) with
entity-specific tools of PubTator [33], (ii) links mutations with dis-
eases using a Machine Learning (ML) binary classifier [34], and (ii)
interprets mutations in the context of specific genes.

A very recent tool called VIMRT [35] employs ad hoc opti-
mized rules and regular expressions for the extraction of viral
mutations; a whole infrastructure is built with this sole purpose,
demonstrating the complexity of the task, whose resolution re-
mains largely uncovered.

Instead, the most recent approaches to biomedical text extrac-
tion tasks have employed transformer-based techniques, as re-
viewed in [36] and [37-39]; they report that current works are
mainly focused on connections between entities [40, 41]. Very few
works addressed results’ explainability combined with transform-
ers in this domain [42, 43].

In our past work [44, 45], we employed deep learning
transformer-based techniques for NLP to infer attributes from
Gene Expression Omnibus [46] experiment metadata, formulat-
ing the problem as a translation task. Cannizzaro et al. [44] and
Serna Garcia et al. [45] achieved the result of translating Gene Ex-
pression Omnibus experiment descriptions into key:value pairs

(e.g., cell line:K562, disease:myeloid leukemia, assembly:hgl9,
assay:Chip-Seq, target:H3K9me3).

CoVEffect stems from this thread of works, but it is carefully
adapted to solve a more complex task: that of predicting a series
of tuples from SARS-CoV-2-related abstracts where we consider
a variation, its effect, and the change of its level. Each of the cur-
rently available systems supports only one user-driven annota-
tion [47], predictions of single independent annotations with on-
tological terms [48], or biomedical general-purpose triplets based
on existing knowledge graphs [49], especially targeted to protein—
protein interactions [50]. These correspond to different tasks than
the one performed by CoVEffect, and the described approaches do
not allow for online modifications of the training dataset. Our pur-
pose is closer in spirit to the one targeted in Mahajan et al. [51];
however, their work is focused on clinical aspects (textis extracted
from electronic health records instead of research abstracts) and
is not supported by a user-oriented interface.

Allin all, to the best of our knowledge, CoVEffect is one of the
first transformer-based approaches applied to biomedical tasks,
combined with explainability approaches.

Materials and Methods

Figure 1 captures the high-level architecture of the whole frame-
work. As our input, we consider the wealth of information con-
tained in the CORD-19 dataset. From the data corpus, we extract
only abstracts that reach sufficient quality standards and provide
essential metadata.

Two offline processes exploit the dataset: (i) data provisioning,
where we perform data curation and prepare a dataset that sup-
ports indexed keyword-based search and similarity-based search,
and (ii) prediction model setup, where we manually craft a dataset,
use it for training the model, check its performances (through a
validation dataset), and evaluate the need to change or augment
the initial training dataset.

The artifacts produced by these 2 processes are the indexed
curated dataset of CORD-19 abstracts and the trained prediction
model. They feed 2 possible modes of use, sharing standardized
output formats:

® an offline Batch Annotator, which provides annotated data for
a selection of 7,230 relevant abstracts from the CORD-19 cor-
pus, and

® an interactive online Web Application employed by expert
users to annotate samples and inspect predicted annotations.

Data provisioning

From the latest and final CORD-19 release (issued in June 2022),
we collected metadata.csv, a table with metadata of all papers, and
cord_19_embeddings.tar.gz, a collection of precomputed SPECTER
[52] document embeddings for each paper. The data provisioning
pipeline aims to produce a curated set of abstracts (equipped with
metadata) to support the activities of the learning framework.

Data curation

As described by Wang et al. [2], the CORD-19 dataset gathers
COVID-19-related papers from several sources. In this dataset, pa-
pers are already harmonized and de-duplicated: in the metadata
table, each cord_uid represents a cluster of papers with colliding
identifiers, such as DOI or arxiv_id. For our system, we extracted
a portion of the original CORD-19 dataset: we kept only 1 record
for each paper, thereby avoiding duplicated entries and easing the
annotation user experience. To this end, we designed a reconcili-

€202 ke g uo Jasn | I'IINITOd@VESY-ILSINOIV-OYLNIO Ad |1 29.1 2/9e0pelb/aousiosebib/e601 01 /10p/a[ole/eouslosefib)/wod dno-olwapese//:sdjy woly papeojumoq



CoVEffect: mining the effects of SARS-CoV-

ation step: for each cluster, we favored the entry with the longest
abstract and promoted values from other members of the clus-
ter to fill in the missing information; then, we removed the other
members of the cluster, obtaining only 1 entry for each paper. We
also removed those papers for which an abstract was not avail-
able. Additionally, we used langdetect [53]—a language detection
library ported from Google’s language-detection—to detect the lan-
guage of the abstracts and filtered out the papers not written in
English.

Abstract retrieval

The curated dataset has been indexed to support search on the
paper abstracts. Such a step is functional to the retrieval task of
the learning system, where the user searches abstracts that are
of interest. For the purpose, we built a search engine leveraging 2
existing libraries.

® The keyword-based search is based on Whoosh [54], a full-text in-
dexing and searching library, to let users search the abstracts
using combinations of keywords.

® The similarity-based discovery is based on Annoy [55], an ap-
proximate nearest-neighbor search library, to let the users
discover abstracts similar to those already selected. These
recommendations are computed by exploiting the SPECTER
embeddings of the papers, which are document-level vector
representations originated from citation-based transformers.
For our purpose, we dramatically reduced the dimensional-
ity of the vector space from 768 to 100. The 100 dimensions
were selected by means of a principal component analysis, re-
sulting in a representation with an explained variance ratio
of 74%. In line with the recommendation task overviewed in
[52], we chose cosine similarity as a similarity metric among
papers by setting the distance parameter of the AnnoyIndex
to “angular.”

Language model and task design
Model

In this work, we favored text-generative transformer models over
BERT-like models [56] because of their ability to perform multi-
task learning [12] and to easily adapt to new tasks. Indeed, text-
generative models formulate multitask learning as a conditional
distribution P(output|input,task), where the task to be performed
can be easily expressed in the form of text. We also make a dis-
tinction between general and domain-specific pretrained models.
General models are usually pretrained with large datasets aim-
ing to be as general as possible (e.g., BookCorpus [57] and En-
glish Wikipedia). Domain-specific models, instead, are further pre-
trained in order to fit a particular application (e.g., medicine, bi-
ology). In our case, the specific domain knowledge is represented
by the CORD-19 dataset [2]. In the past years, several new gener-
ative models have been proposed (e.g., T5, BART, GTP3, BLOOM).
These models achieved increasingly better performances, mostly
by increasing the size of the model parameters and the size of the
pretraining datasets. As a trade-off, bigger models are significantly
slower.

In our work, the model is also used in an interactive way (with
a domain expert), and thus we preferred smaller models to large
models. Considering all these aspects, we opted for a domain-
specific version of a gpt2-small model available on the hugging-
face model hub [58]; it represents a reasonable compromise be-
tween model size and performances in a very specific domain. We
propose it as a baseline for future works that could make use of
our dataset.

2 mutations and variants | 3

Target data format

Abstracts are annotated by recognizing structured tuples of the
form (type,entity,effect,level). Possible types are “mutation” and
“variant.” With mutation, we refer to amino acid changes within
specific proteins, occurring in a position where a reference residue
has been changed into an alternative residue. These changes cor-
respond to nonsynonymous nucleotide mutations; we do not con-
sider synonymous nucleotide mutations, as they typically do not
influence the protein functionalities. In this work, we focus on
substitutions, leaving aside insertions and deletions as they would
require substantial additional training due to their very heteroge-
neous formulations. With variant, we denote forms of the SARS-
CoV-2 that are considerably different from the original wild-type
[59], as they accumulated a set of amino acid changes that charac-
terize their phenotypic characteristics [60]. Variants are typically
associated with a name to easily address them.

In our tuples, entities are the names of mutations (e.g.,
Spike_N501Y or NSP12_P323L) or of variants—for example, Alpha,
Delta, Omicron (as named by WHO [20]) or B.1.1.7,B.1.617, B.1.519
(as named by Pangolin [61]).

Effects are chosen from a taxonomy, that is, a controlled vo-
cabulary of terms, including, for example, transmissibility, dis-
ease severity, resistance to antiviral drugs, or change in the pro-
tein kinetics (flexibility or stability properties). We previously pro-
posed an initial version of this vocabulary [22, 62], which has now
evolved into a complete list of effects organized by category (“epi-
demiology,” “immunology,” “viral kinetics and dynamics,” or “diag-
nosis, prevention, and treatments”). The full list can be found the
AdditionalFilel-effects-taxonomy [63].

Finally, each effect has an associated level, that is, higher, lower,
unaffected, undefined, or no evidence (see AdditionalFile2levels-
taxonomy [63] for detailed definitions).

Task

The macro-task performed by our prediction model is a text-to-
table task, translating a full paper abstract into a table of tuples,
each one with the fields described above. Each tuple is composed
itself by solving 3 subtasks:

i) entity extraction of mutations/variants (from which also the
type is inferred);

ii) classification of effects; and

ili)classification of levels.

Tasks (i) and (iii) are classic classification tasks, targeting a
known set of values. Instead, the entity extraction task (i) is more
complex than a classical Named-Entity-Recognition (NER) task:
we extract mutations and variants with an associated effect and
corresponding level. The complexity of this macro-task increases
also because the number of tuples of the table output for each
abstract is not fixed a priori. Instead, it depends on the number of
extracted entities and on the number of effects exhibited by the
entities. Text-generative models allow to fine-tune a single model
that is able to perform this macro-task.

Figure 2 illustrates the working principle of our prediction task
on a real abstract [64]. Three different tuples are recognized in
the text, all referring to the Spike V367F mutation, but predicating
on different effects with higher levels. Note that the information
about the protein on which the mutation occurs is positioned in
a part of the text that is far apart from the signature of the muta-
tion. In the figure, we can also appreciate the difference between
the predictions obtained by our approach versus the ones that a
typical NER task could obtain.

€202 ke g uo Jasn | I'IINITOd@VESY-ILSINOIV-OYLNIO Ad |1 29.1 2/9e0pelb/aousiosebib/e601 01 /10p/a[ole/eouslosefib)/wod dno-olwapese//:sdjy woly papeojumoq



4 | GigaScience, 2023, Vol. 12, No. 0

Expert drivan 5
Domain-expert 5 Mathine v
user process
CoVEffect Web App
Frontend Result format
I = e view
[Coftine_] Data provisioning [ searchul  J&———*isemi-autom. data labeling UI}- - - - = - - - - - >
SARS-CoV-2 variant
KEYWORD-BASED — e
SEARCH INDEXING Extraction
TsConnectedWith

DATA CURATION

SIMILARITY-BASED
DISCOVERY
INDEXING

CORD-19

- full texts.

- metadata
- SPECTER
document vestor
embeddings

Prediction model setup Z

Semi-autom. data
labelling framework

Refrieval | |
KEYWORD-BASED
SEARCH

SIMILARITY-BASED

isChangedTa

N )

DISCOVERY

 Lower! ",
 nigha...

SCORES
TRAINING / COMPUTATION
VALIDATION
TRAINING VALIDATION ‘?a_
PHEFARAT\UN RESULTS
EVALUATION .

trained
GPT2

CLASSIFICATION
in embeddings space
from k-Means clusters
k=5

euclidean distance

l buwnluﬂdad

l

Annotated

CORD-19 BATCH
SELECTION
- iology-related cluster
- keyword-based fiter

dataset

Figure 1: CoVEffect framework overview.

I

1 The current pandemic of COVID-19 is caused by a novel coronavirus, severe acute respiratory |
1 syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2|spikejprotein receptor-hinding domain |
1 (RBD) is the critical determinant of viral tropism and infectivity. To investigate whethr nalturallyI
1 occurring RBD mutations during the early transmission phase have altered the receptOnpinding i
! affinity and infectivity, we first analyzedin silicothe binding dynamics between SARS-CoV-R RBD,
!mutants and the human angiotensin-converting enzyme 2 (ACE2) receptor Among 3%,123 '

Our task
SPIKE_

V867F binding_to_host_receptor higher|
infectivity |[Righer

ywould be difficult for bat SARS-like Co\//To 1
| potentially infectious to humans. The

n resonance, and pseudotyped virus assays. Phylogenetic an
mutants showed that during the early transmission phase, most

1

1

1 1
! ith the SARS-CoV-2 prototype strain than the dual-mutation variants | ||D614G|- mutation
! which may derivate from recombination. The analysis of critical RBD mutations |
1

1

1

1

1

O'U

)
- &
=
=
S
e
c
S
5,
(%)
&
)
9'
N
V)
=
o
S
]
=X
-
5
@
uy)
o]
W]
o
D
@
)
13
=0
@
@
e
17
o]
b ©
=
=)
a
—
=3
©]
<
O
2
o
@
o
=3
=3
S
[
2

ct h wever, the pangol
infectivity of V367 Inutants was further validated r i tei
Iby performing receptor-ligand binding enzyme-linked immunosorbent assay (ELISA), surface ! .@' protein

! protein_stability higher

Typical NER task

f the genomes of ! |[V367F |- mutation
mutants clustered i |} ]

rovides further insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotlc !
rigin under negative selection pressure and supports the continuing surveillance of [Spike]:
mutations to aid in the development of new COVID-19 drugs and vaccines. |

Figure 2: Difference between tasks resolved by an NER approach (only recognizing entities from a text excerpt) and our translation-based approach
(targeting entities with connected effects and levels). The abstract excerpt is extracted from a paper by Ou et al. in the Journal of Virology [64].
Information used to form our tuples is connected through blue lines. Yellow identifies information on type and entity, gray on effect, and blue on level.
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RegEx-based prediction filtering

A common issue for text-generative models is the instability of
the generated text (i.e., these models tend to repeat words or to
generate meaningless words). To mitigate this effect, we make use
of a filter based on regular expressions that only allows outputs
of the model corresponding to predefined legal values. The RegEx
filter is applied after the extraction of mutations and variants to
include only predictions that follow these patterns:

* Mutations: " ([A-Z0-9]+_)[A-Z]\d{1,4}[A-Z]$
* Variants: " ([A-Z]{1,2]\.[0-9]{1,3))(\.[0-9]{1,3)){,2)$

Prediction model setup

The previously described task is more complex than a classical
NER task, as it requires to connect different linked information.
In biomedical literature, training datasets for supervised learning
are typically available for general biomedical terms [38], which
are of no use for our purpose; therefore, we prepared our own
training dataset. This operation requires a costly manual cura-
tion, operated by highly expert users. This is an inevitable effort

to handle data scarcity, analyzed in [65] in general terms, becom-
ing even more relevant in biomedical fields [66, 67]. To minimize
such effort in our case, we implemented a process that supports
the building of small high-quality training datasets.

We started with a small number of initial abstracts (corre-
sponding to a first set of 30 papers). Using this seed, we used an
iterative process of 4 steps (represented in Fig. 3):

(1) Training dataset enhancement. Except for the first round
(30 abstracts), at each iteration, we include (typically 5) new
abstracts, allowing stronger training on insufficiently repre-
sented cases.

(2)Model training. This procedure includes parameter tuning
and possible changes based on previously obtained results.

(3) Validation scores computation. The model prediction per-
formances are evaluated on a validation dataset of 50 pa-
pers, carefully chosen to be as representative as possible of
the problem at hand. By comparing expert-provided anno-
tations and predicted annotations on the validation dataset,
we compute performance scores.
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Figure 3: Iterative process for the prediction model setup.

(4)Evaluation of results and errors. The obtained scores are
considered; the iteration is repeated until satisfactory scores
are obtained.

Training dataset preparation

The set of abstracts used for initial training was built by following
a number of criteria:

® priority was given to published articles over preprints, exclud-
ing papers that duplicated the same research;

® priority was given to simple abstracts over abstracts with nu-
merous and complex annotations;

® a wide selection of mutations (from different proteins) and
variants (both WHO- and Pangolin-based names) was em-
ployed;

® abstracts involving mutations of insertion/deletion types
were excluded at this stage, due to their highly heterogeneous
representations;

® abstracts associating effects to groups of mutations (rather
than to a single mutation or variant) were also excluded not
to overly complicate the prediction task; and

® no effect of our taxonomy (see AdditionalFilel-effects-
taxonomy [63]) was underrepresented in the dataset.

Table 1 shows comprehensive counts of abstracts con-
taining information on each effect of our taxonomy, both
for the training and the validation datasets; AdditionalFile3-
training dataset_target [63] contains the manual annotations as-
sociated with the 221 abstracts selected for training (after several
iterations on the process shown in Fig. 3).

Model training

In the iterative process, the “model training” phase is run in 2 dif-
ferent modes: (i) short-cycle training and (ii) long-cycle training:

(i) Long-cycle training employs the whole training dataset col-
lected thus far to train the pretrained gpt2-model [58] all at
once. It is triggered when a relevant number of annotations
(60) have been collected. A manual inspection of the learning
curves is conducted to perform appropriate hyperparameter
tuning; the number of epochs is determined by performing
an early stopping (using the validation set). When the train-
ing concludes, we generate a model freezed version (check-
point) to be used in the following phases (validation and er-
rors checking).

(ii)Short-cycle training is triggered when 5 new abstracts are
added to the training set, aiming to update the system as
soon as the new annotations are available. Here, no hyper-

parameters are used, and the learning rate is set to half of
the long-cycle training one, in order to avoid overfitting.

In both modes, the used maximum token length is 1,000, and
AdamW [68] is used as the optimizer. The final model was trained
for 12 epochs with a learning rate of 1e — 5 and a batch size of 1.

Scores computation

The target annotations performed by our expert researchers
are available at AdditionalFile4validation_dataset_target [63]
and are supported by the text document AdditionalFile5-
validation_dataset_highlighted [63], where we highlighted in yel-
low information used by experts to inform the annotation process
and derive the target tuples.

We compare the expert annotations with the predictions of
the model (see AdditionalFile6-validation_dataset_prediction). Six
scores are computed for 2 different scenarios: (i) we evaluate enti-
ties, effects, and levels separately (note that types are not included
as they can easily be inferred from the syntax of the entity), and
(if) we evaluate whole tuples, including an entity with its linked ef-
fect and linked level. By comparing the target tuples—from zero
to many in each abstract—with the predicted tuples, we assess
the number of true positives, false positives, and false negatives.
Based on these observations, we compute the accuracy, precision,
and F1 score of each abstract. Then, we obtain 2 aggregate scores as
a simple average of the single-abstract scores (i.e., each abstract
contributes equally) and a weighted average (i.e., each abstract
contributes proportionally to the number of contained target tu-
ples).

In Table 2, we show the results on the 50 papers of the val-
idation dataset. Evaluating fields separately and using a nor-
mal average, the trained model reached 0.79 F1 score on muta-
tion/variants, 0.63 on the effects (independently on their link to
an existing entity), and 0.76 on their levels (independently on their
link to an existing entity or effect). Especially for entities and ef-
fects, precision was higher than recall, indicating that the model
performed well in identifying actual positives. Specifically, out of
all the predicted entities, almost 88% were actually present in the
abstracts; out of all effects, 74% were actually present; and out
of all levels, about 76% were actually present. Recall was slightly
lower for entities and effects, indicating that the model missed
some target information in the abstract. Specifically, recall was
about 77% for entities, meaning that about 23% of actual entities
were not recognized in abstracts; similarly, about 38% effects were
not recognized and 24% levels were not recognized. Performances
computed with the weighted average are generally lower, suggest-
ing that simple abstracts (with few annotations) are the ones that
contribute to improving the scores.

Finally, performances are considerably lower for the complex
task of connecting the 3 fields in an atomic tuple (0.46 F1 score,
0.59 precision, 0.44 recall). We defend that—for such a composite
task—it is more important to have higher precision (less wrong
predicted annotations) at the expense of recall (missing some ex-
isting annotations). The model produces few results, but in gen-
eral, they are of good quality. Performances can improve by aug-
menting the training dataset; this indeed occurs thanks to the use
of the CoVEffect Web Application presented later in the article.

Results

Results include a double contribution: on the one hand, we pro-
vide complete predictions on a set of more than 7,000 abstracts
from CORD-19 that are relevant to SARS-CoV-2 variation effects;
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Table 1: Number of abstracts representing each effect in the validation and train datasets

Category Effect # training abs # valid. abs # training tuples # valid. tuples
Viral kin. and dyn. protein_flexibility 8 3 16 11
protein_stability 29 3 47 9
host-virus interactions 5 1 12 1
binding to_host_receptor 45 7 94 10
binding to_antibodies 16 3 30 3
viral_load 27 7 30 9
viral_incubation_period 8 1 9 1
viral_replication 16 2 22 2
viral_fitness 14 4 21 10
intermolecular_interactions 20 2 0 2
protein_functioning 19 2 32 5
protein_conformational optimization 28 4 60 6
entry_efficiency 9 1 14 1
Immunology sensitivity_to_antibodies 18 9 24 20
sensitivity_to_convalescent_sera 20 6 32 10
sensitivity_to_vaccinated_sera 20 6 35 11
immune_escape 35 11 69 21
Epidemiology viral_transmission 66 18 95 33
infectivity 44 13 65 24
viral_virulence 9 3 22 5
disease_severity 32 8 62 15
risk_of_hospitalization 10 7 26 10
risk_of_reinfection 11 3 11 7
fatality_rate 20 9 36 12
infection_duration 7 1 9 1
Diag/Prev/Treatm. effectiveness_of_available_diagnostics 13 1 23 1
effectiveness_of_available_vaccines 37 13 50 29
effectiveness_of_available_antiviral_drugs 23 6 50 10
ct_value 12 2 14 2
No relevant tuples found 9 1 — —
Distinct abstracts/tuples 221 50 1,051 282
Table 2: Validation set results (run to set up the prediction model)
Task Measure F1 score Precision Recall
Entity Average 0.791 0.878 0.766
Weighted average 0.668 0.806 0.613
Effect Average 0.626 0.741 0.617
Weighted average 0.561 0.716 0.531
Level Average 0.762 0.763 0.761
Weighted average 0.702 0.705 0.701
Whole tuple Average 0.463 0.588 0.441
Weighted average 0.354 0.519 0.300

on the other hand, we provide a user-friendly framework for ex-
pert users to annotate abstracts of interest and possibly con-
tribute to additional training of the learning model.

Annotation of the biology-related CORD-19
cluster

Abstracts informing about SARS-CoV-2 variation effects can be
selected from CORD-19 via a 2-step process: (i) identification of
a biology-related cluster and (ii) targeted search on the cluster
based on particular keywords.

Clusters. We built a clustering model to partition in topic-
based classes the CORD-19 dataset curated by our provisioning
pipeline. For this purpose, we exploited the SPECTER document-
level embeddings dataset distributed as part of CORD-19 (previ-
ously described in the similarity-based discovery). Because of the

considerable size of the dataset, we opted for a representative-
based clustering model (i.e., K-means). SPECTER embedding vec-
tors are known to be effective in predicting the topic class as-
sociated with a paper [52]. Differently from [52], we did not
know a priori the number of topic classes to be predicted. To
choose an appropriate value for the number of clusters k of K-
means, we plotted the silhouette score and the distortion for
each candidate number of clusters, ranging from 2 to 50. The
value K = 5 was chosen as it allowed us to visualize a spike
in the plot of the silhouette score and an elbow-like shape in
the plot of the distortion. For each of the 5 clusters, we gen-
erated WordCloud plots, including the most frequent words in
papers’ titles abstracts and titles (top words common to clus-
ters were excluded). This allowed us to manually recognize a
100 K abstracts cluster as the one mostly related to biological
aspects.
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Keywords. Out of the biology-related subset of CORD-19, we only
targeted abstracts whose content relates to mutation and variants
effects—the focus of CoVEffect. To this end, we described the sub-
set of interest with a logical query expressed through the Whoosh
search library [54]—previously mentioned for the keyword-based
search of the data provisioning pipeline. The library already in-
cludes simple lemmatization capabilities; additionally, we loaded
the OperatorsPlugin (which adds logical operators such as AND,
OR, NOT), the GroupPlugin (to group search clauses using paren-
theses), and the SingleQuotePlugin (to specify single terms con-
taining spaces by enclosing them in single quotes). Finally, we
added a union set operation for the papers retrieved with each
single query (equivalent to having all the queries in OR but with-
out overloading the parsing process of Whoosh).

As a result of this procedure—employing the keyword-based
query listed in the AdditionalFile7-keywords_query_list [63]—we
could extract 7,230 papers from the cluster on biological aspects
(see AdditionalFile8-CORD-19_batch_dataset_metadata [63]). We
then ran the CoVEffect prediction on this dataset; the resulting
predictions for the 7,230 abstracts are provided in AdditionalFile9-
CORD-19_batch_dataset_prediction [63] as a contribution to the
scientific community.

Testing results

Out of this batch, we tested the prediction performances on 100
randomly selected papers, ensuring that they did not overlap
with the previously used training and validation sets. For these,
we manually prepared target annotations (see AdditionalFile10-
test_dataset_target [63]). Then, we predicted the annotations
of their abstracts using our model (see AdditionalFilel1-
test_dataset_prediction [63]).

In Table 3, we show the results on the 100 papers of the test
dataset, based on the comparison between target and predicted
annotations. Reassuringly, performances were comparable to the
ones obtained on the validation set. Indeed, they were only worse
in the case of entities, whereas effects, levels, and also whole tuples
improved their scores.

Benchmarking considerations

As mentioned in the “Related Work” section, Singhal et al. [32]
previously proposed a method for extracting entities and rela-
tionships from biomedical text; that approach is considered to-
day’s state-of-the-art. We do not compare our results with that ap-
proach because CoVEffect performs a significantly different task,
providing an output that could be read as the result of 4 separate
steps: entity recognition (for mutations and variants), entity link-
ing (protein with mutation), classification (effects and levels), and
relation extraction (among the previously extracted information).
In essence, CoVEffect should not be considered the best possible
method for performing each one of these tasks. Instead, it offers
an all-in-one annotation platform that allows experts to insert an-
notations manually or to inspect, correct, and eventually accept
predictions of specific triples entity—effect-level. The proposed ap-
proach can be interpreted as a combination of automated extrac-
tion and crowdsourcing, as initially proposed in [69].

The CoVEffect web application

As a second output, we implemented the CoVEffect web appli-
cation; its front end provides 2 main functionalities: (i) a search
interface for finding papers of interest and (ii) an interactive in-
terface to label abstracts with a semiautomated framework. The
first functionality is based on a back-end retrieval module, which
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uses the methods described in the “Data provisioning” section
(i.e., keyword-based search and similarity-based search of papers).
The second functionality is fueled by a back-end extraction mod-
ule, which uses the prediction model described in the “Language
model and task design” section and implements a framework for
semiautomated data labeling by users, as detailed in the follow-
ing.

Semiautomated data labeling framework

This framework aims to facilitate and accelerate the abstract an-
notation process operated by an expert researcher. A typical an-
notation session with iterative phases (shown in Fig. 4) follows.

® The user provides a list of abstracts.

® For each selected abstract: (i) the model generates a proposed
labeling in the form of predicted tuples, and (ii) the user may
edit each single prediction (i.e., 1 tuple field at a time).

® Once the editing session is over, the user is provided the
choice of accepting the annotations and of retraining the
model with the new provided annotations.

The user may modify or add abstracts to the list at any point in
time. For each prediction (type, entity, effect, or level), the frame-
work provides 2 types of visual feedback. First, it shows the pre-
diction confidence value with a color code: green for high con-
fidence predictions >0.8, yellow for medium-confidence predic-
tions between 0.6 and 0.8, and black for low-confidence predic-
tions <0.6. Second, it shows a saliency map built on the input ab-
stract. Saliency maps are a machine learning interpretation mech-
anism born in the field of explainable artificial intelligence; they
are maps over the input that highlight the portions of the text
that contributed the most to the extraction of given attributes.
Here, we exploited the generation of saliency maps that employ
the Gradient technique [70]. Such an idea was already proposed
successfully in our previous work [45] where such a mechanism
was well evaluated by the users of the system, as it allow users
to understand whether a given result is not only predicted cor-
rectly, but also predicted by exploiting a correct information. As
an example, in Fig. 5, we show the saliency map obtained for the
prediction of the “infectivity” effect on the abstract of Ou et al. [64]
previously introduced in Fig. 2.

Application workflow and example

The “Homepage” of CoVEffect accepts 2 kinds of input: a list of
keywords or a single DOI. Suppose that we search for the keywords
“Neutralization of Q677H” (as shown in Fig. 6). The following work-
flow is explained by the activity diagram in Fig. 7.

Once the search is performed, we reach the “Search result
page,” whose results can be examined (based on their metadata
and abstract) and exported as a tab-separated file. Extracted pa-
pers may be of interest for the user (especially when they are fo-
cused on mutations or variants effects), in which case they can be
included in the prediction stack. For each paper, users may also
explore similar papers by opening the “Similar papers tab”; as be-
fore, papers of interest can be selected. When the user closes the
tab, they will have a complete list of the searched papers, where
papers selected are marked in gray and papers added for the sim-
ilar ones are marked in green. Figure 8 shows an example where,
from the papers obtained in the previous search, we selected the
paper with DOI “10.1128/mbio.02510-21" [71] and its similar paper
with DOI “10.1186/512985-021-01,554-8" [72].

By pressing the green arrow on the top-right corner of the
screen, we reach the “Annotation page.” This page allows users
to inspect results and suggest changes for one abstract at a time.
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Table 3: Test set results (run to evaluate the predictions on 100 abstracts randomly selected from the CORD-19 biology-related cluster)

Task Measure F1 score Precision Recall
Entity Average 0.762 0.802 0.755
Weighted average 0.688 0.822 0.822

Effect Average 0.792 0.855 0.781
Weighted average 0.656 0.656 0.656

Level Average 0.832 0.832 0.832
Weighted average 0.624 0.625 0.624

Whole tuple Average 0.578 0.631 0.569
Weighted average 0.324 0.440 0.288

Abstracts list loading :.
_ -
For each abstract:
=inspection of predictions
«user feedback

Save W
-
28% Optional online training

Updating the table...

Figure 4: The iterative phases of the online semiautomated data
labeling framework.

Abstract

The current pandemic of COVID-19 is caused by a novel coronavirus, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 spike protein receptor-binding domain (RBD) is the critical
determinant of viral tropism and infectivity. To investigate whether naturally occurring RBD mutations
during the early transmission phase have altered the receptor binding affinity and infectivity, we first
analyzed in silico the binding dynamics between SARS-CoV-2 RBD mutants and the human angiotensin-
converting enzyme 2 (ACE2) receptor. Among 32,123 genomes of SARS-CoV-2 isolates (December 2019
through March 2020), 302 nonsynonymous RBD mutants were identified and clustered into 96 mutant
types. The six dominant mutations were analyzed applying molecular dynamics simulations (MDS). The
mutant type V367F continuously circulating worldwide displayed higher binding/affinity to human ACE2
due to the enhanced structural/stabilization of the RBD beta-sheet scaffold. The MDS also indicated that it
would be difficult for bat SARS-like CoV to infect humans. However, the pangolin CoV is potentially
infectious to humans. The increased|ififéetivity of V367 mutants was further validated by performing
receptor-ligand binding enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance, and
pseudotyped virus assays. Phylogenetic analysis of the genomes of V367F mutants showed that during
the early transmission phase, most V367F mutants clustered more closely with the SARS-CoV-2 prototype
strain than the dual-mutation variants (V367F+D614G), which may derivate from recombination. The
analysis of critical RBD mutations provides further insights into the evolutionary trajectory of early SARS-
CoV-2 variants of zoonotic origin under negative selection pressure and supports the continuing
surveillance of spike mutations to aid in the development of new COVID-19 drugs and vaccines.
IMPORTANCE A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has
caused the pandemic of COVID-19. The origin of SARS-CoV-2 was associated with zoonotic infections.
The spike protein receptor-binding domain (RBD) is identified as the critical determinant of viral tropism
and infectivity. Thus, whether mutations in the RBD of the circulating SARS-CoV-2 isolates have altered the
receptor binding affinity and made them moreliff8EHiONS has been the research hot spot. Given that SARS-
CoV-2 is a novel coronavirus, the significance of our h is in identifying and validating the RBD
mutant types emerging during the early transmission phase and increasing human angiotensin-converting
enzyme 2 (ACE2) receptor binding affinity and/iffectivityl Our study provides insights into the evolutionary
trajectory of early SARS-CoV-2 variants of zoonotic origin. The continuing surveillance of RBD mutations
with increased human ACE2 affinity in human or other animals is critical to the development of new
COVID-19)8flig8 and vaccines against these variants during the sustained COVID-19 pandemic.

Figure 5: The gradient-based saliency map implemented in the
CoVEffect tool. The example shows the abstract of the paper by Ou et al.
[64] also used in Fig. 2 to motivate our task. The text fragments
highlighted with different shades of blue are used by the model to
predict the effect of the SPIKE_V367F mutation, here corresponding to
the value “infectivity.”

For each abstract, the framework extracts a list of predicted tu-
ples, each composed of 4 fields (type, entity, effect, and level). For
each of such annotations, the user can inspect the saliency map

CovEffect ABOUT

Search papers over the COVID-19 literature
using keywords

Neutralization of Q677H

e

or load a specific paper through its DOI

insert a DOl in the form of 10.1101/2020.11.28.20237016 n

Figure 6: Homepage, with a section for keyword search and a section for
DOI search.

and decide if the annotation is correct (thus should be approved)
or needs correction. Missing annotations can also be added man-
ually.

Figure 9 represents the status of the “Annotation page” for pa-
per [71]. Panel A provides user utilities. Panel B shows the saliency
map referring to the prediction of the value “higher” for the level
of the first predicted tuple (selected in panel D). Panel C shows the
metadata of the currently inspected paper and informs that the
prediction stack contains 2 papers (of which none has yet been
annotated, as we have not clicked on “SAVE”). Panel D shows pre-
dictions 1, 2, 3, 4, and 6 as produced by the prediction framework,
with the exception of the level values of 2, 4, and 6 that have
been manually corrected into the “lower” value (which had been
wrongly predicted), by employing the drop-down menu in panel
E.

In addition, a full tuple annotation has been added (number
5) regarding the single mutation Spike Q677H, which leads to an
increase in infectivity of the SARS-CoV-2 virus.

When the user is satisfied with all the annotations associated
with an abstract, these can be saved and are accordingly stored in
the “Annotated Papers” list (panel A, top-right corner), where they
can also be downloaded for further processing. Note that anno-
tated abstracts that can be saved are the result of either a model
prediction or of a user manual correction/addition.

When saving annotations for the first time, the user is
prompted to name the current session. Sessions can be down-
loaded as JSON files and reloaded at a later time. Then, the user
is asked if they wish to retrain the model immediately. This pro-
cess is computationally intensive and may require several min-
utes based on the occupation of the servers. Users may also wait
to annotate additional papers and retrain the model only at a later
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Figure 7: Activity diagram of the user’s interactions with the CoVEffect web application.
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for the ones corresponding to the similarity-based search.

stage. The application can be installed on other machines using
the Docker distribution available on our GitHub repository.

Discussion

In this article, we described two contributions. On one hand,
we provide the identification of SARS-CoV-2 variants and muta-
tions’ effects over a relevant set of CORD-19 abstracts. On the
other hand, we make this annotation extendable, as training
data can be augmented by using the CoVEffect interface. The
project stems from the need of providing a complete framework
that supports semiautomatic extraction of structured informa-

tion on SARS-CoV-2 variation effects. We had previously employed
transformer-based text extraction for capturing key-value pairs
from genomic experiments (from Gene Expression Omnibus). The
task performed in this case is more complex, as it aims to iden-
tify attributes that are interdependent: mutation or variants with
their effect and level.

A considerable improvement of the initial GPT2 model was nec-
essary to address this new challenge. In addition, no preexist-
ing training dataset was available; we thus designed a method-
ology to build a small manually crafted dataset of good qual-
ity. The trajectory to evaluate the performances of our method
is as follows: we chose an initial dataset with minimal size,
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that the Q677H mutation increases viralllAfEEHVIY and syncytium formation, as well as'
between SARS-CoV-2 spike mutations and the continued need to monitor Q677H-bearing VOCs.

Abstract

ThelSensitivity of SARS-CoV-2 variants of concern (VOCs) to neutralizingSlIBOAIES has largely been studied in the context of key receptor binding domain (RBD) mutations, including E484K and N501Y. Little is known about the epistatic
effects of combined SARS-CoV-2 spike mutations. We now investigate the neutralizationSensitivity of variants containing the non-RBD mutation Q677H, including B.1.525 (Nigerian isolate) and Bluebird (U.S. isolate) variants. The effect on
neutralization of Q677H was determined in the context of the RBD mutations and in the backgmund of major VOCs, including B.1.1.7 (United Kingdom, Alpha), B.1.351 (South Africa, Beta), and P1-501Y-V3 (Brazil, Gamma). We demonstrate
to/neutralization for VOCs, including B.1.1.7 and P1-501Y-V3. Our work highlights the importance of epistatic interactions

Paper Info

Remove Paper

Entiy Type 1008}

Entity Type 1008

Annotated Papers:

ReadyTaTrain Papers s e
; | \ e

" variant 1381

Neutralization of SARS-CoV-2 Variants of Concern
Harboring Q677H

Authors

Zeng, Cong; Evans, John P.; Faraone, Julia N.; Qu,
Panke; Zheng, Yi-Min; Saif, Linda; Oltz, Eugene M ;
Lozanski, Gerard; Gumina, Richard J.; Liu, Shan-Lu

Year
2021

Extracted Annotations

iy Ty Mutationis)/Vari.
=R EAE Joe
0/2 z wlm . 11.1,7%'.l - - .°
) Level

= T L 1 B
Title:
- e
| EntnyType[100N] | Mutationds)/Vara_ higher 2
N --“

6 Editor G

Selected Attribute:

[E=rs @ ) Confidence
"W 100%

Abstract doesn't contain this information []

Figure 9: Overview of the CoVEffect interface, with a top bar and 4 panels, captured during the annotation of a paper by Zeng et al. [71]. Panel A
includes the top bar; the commands on the left allow to return to the keyword search screen, open a new user session, save the current one, or load a
previously closed one. The commands on the right allow to inspect the list of already processed papers or the list of papers selected through the
keyword search. Panel B shows the abstract of the selected paper to be annotated, interactively highlighted using the gradient-based saliency map
related to the tuple fragment selected in panel D. Panel C shows the metadata of the selected paper and the size of the stack of papers chosen by the
user. Panel D shows the predicted tuples for the selected abstract, using the color-code for informing on the accuracy of the prediction. Panel E allows
users to actively modify the prediction of the model and save the suggestions.

and at each small delta increase, we evaluated the changes
in performances on a test dataset until a satisfactory result
was reached. This process was necessary to find a trade-off be-
tween 2 needs: the minimization of the effort of expert man-
ual annotation and maximization of prediction performances.
This effort has paid off in terms of recognizing single concepts;
however, the linked tuple prediction still has much room for
improvement.

To inspect the most challenging aspects of the predic-
tion task, we performed an error analysis divided into 3 cat-
egories: (i) entity name prediction (nonconstrained to any
value, filtered with a RegEx filter), (i) effect/level prediction
(restricted to our taxonomy values), and (iii) association be-
tween entity, effect, and level. Table 4 presents an overview
of the most representative errors each with an associated
example.

Types of errors captured in the entity name prediction mainly oc-
curred when the abstract included:

® Mutation/variant named with uncommon terminology. The typi-
cal way to name a mutation is to declare the protein where
the mutation occurred followed by a mutation signature
((reference amino acid, coordinate in protein, alternative
amino acid), e.g., Spike D614G). The most adopted terminolo-
gies to name a SARS-CoV-2 variant are Pango lineages [61] or
WHO Greek letters [20]; however, there are other ways to re-
fer to variants (e.g., GISAID or Nextstrain clades), which are
currently not supported in CoVEffect. Table 4 shows an ex-
ample from [73] where a different naming scheme is used

for a mutation of interest, which makes the model’s mission
harder.

® Effect/level associated with a named group of variants. The WHO
has classified variants into variants of concern and other
classes according to their impacts [20]. In publications, we
often find reference to effects studied on a group of vari-
ants, referred to with such terms. Table 4 shows one such
case [71], where CoVEffect can miss 1 or more entities in
the list.

® Mutations/variants written as long lists. Some publications—
noticeably the ones using computational methods to analyze
their variants of interest—tend to deal with long lists of mu-
tations. CoVEffect model may miss some entities in such sce-
narios (as happened in [74]).

Moreover, issues occurring in the entity/level prediction mainly
occurred when the abstract included:

® Effects misclassification. The model does not always recognize
effects as they are expressed in our taxonomy, especially
when there exist connections between different effects. This
case may happen when an effect is a special case of another
effect (e.g., binding to a host receptor is a special case of a
host-virus interaction); in this case, only using a broad con-
text and expert user knowledge does it become possible to
understand the correct target effect. Table 4 shows 1 such ex-
ample from [75].

® Levels misclassification. The changes of some effects
are more easily expressible through the higher/lower
comparators (i.e, higher transmissibility, lower sever-
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Table 4: Typical issues detected in the prediction task. The first column groups issues by macro-category, the second describes the
scenario that leads to an Issue, and the third and fourth provide the reference DOI to an abstract and a short text excerpt from the

abstract. Words in orange show the relevant information for the expected values (Target) as opposed to the obtained prediction.

Issue DOI Text excerpt from abstract Target Prediction

Entity name Uncommon [73] The S:655Y substitution was transmitted SPIKE_H655Y —

prediction naming (muta- more efficiently than ...
tions/variants)

Mutations/variants [71] ... major VOCs, including Alpha, Beta, and Alpha Alpha
referred to as a Gamma. We demonstrate that the Q677H
group mutation increases viral infectivity and Beta Beta
syncytium formation, as well as enhancing
resistance to neutralization for VOCs. Gamma -
Mutations/variants [74] To understand the impact of spike protein SPIKE_D614G —
reported as long mutations on the binding interactions
lists required for virus infection and the SPIKE_N501Y SPIKE_N501Y
effectiveness of neutralizing monoclonal
antibody (mAb) therapies, mutants D614G, SPIKE_N439K -
N501Y, N439K, Y453F, and E484K were
assessed. SPIKE_Y453F SPIKE_Y453F
SPIKE_E484K SPIKE_E484K
Effect and/or Effect [75] The increased ACE2-binding affinity of SPIKE_N501Y SPIKE_N501Y
level prediction terminology variants containing the N501Y or E484K binding to host binding to host
mutations can be traced to the receptor receptor
time-dependent disruption and/or
formation of interfacial salt bridges, not SPIKE_N501Y SPIKE_N501Y
necessarily apparent from structural intermolecular protein
models but detected by extensive molecular ~ Interactions conformational
dynamics simulations. optimization.
SPIKE_E484K SPIKE_E484K
binding to host binding to host
receptor receptor
SPIKE_E484K SPIKE_E484 protein
intermolecular conformational
interactions optimization.
Vague results (73] We demonstrate that the substitution GAMMA viral GAMMA viral
presentation S:655Y, represented in the Gamma and replication replication
Omicron VOCs, enhances viral replication
and spike protein cleavage. All VOCs tested GAMMA protein -
exhibited increased spike cleavage and functioning
fusogenic capacity.

Association Multiple effects [76] Infections caused by the delta variant DELTA, risk of DELTA, risk of
connected to increases the risk of hospitalization within hospitalization hospitalization
same entity 14 days after symptom onset, and the high

viral load correlates with COVID-19 DELTA, viral load DELTA, viral load
associated morbidity and mortality.
DELTA, fatality rate -
Different levels [77] Naturally occurring variants in Orf3a (O5/H)  ORF3a_Q57H -

for same entity
effect (not

and nsp2 (T85I) were associated with poor
replication in Vero-CCL81 cells but not in

viral replication,
lower

supported) BEpCs.
ORF3a_Q57H ORF3a_Q57H
viral replication, viral replication,
unaffected unaffected

ity). Unfortunately for other effects (e.g, protein con-

formational optimization), comparators are less used

in text.

® Unclear results presentations. Effects reported in abstracts
with a vague presentation of the results can be missed. For
example, some publications that report on the effectiveness

of a specific therapeutic measure might not declare that the
measure is indeed a drug. Other publications (see [73] for

an example) study the effect of a mutation on the functions

of viral proteins without making explicit that the topic dis-
cussed is a protein function—making it hard for the model
to predict the effect.
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Finally, problems occurring in predicting the association between
an entity and its effect level mainly occurred when the abstract in-
cluded:

® Multiple effects for 1 entity. The model can miss the association
of 1 (or more) effects that are part of a list (as happened in
[76]).

® Multiple levels for 1 entity effect. Given abstracts may include the
specification of an entity and associated effect with multiple
levels (e.g., in [77]). This scenario is likely to be found when
the specific effect has been studied under multiple conditions
(e.g., measuring the viral loads of a variantin different tissues
or studying the binding of a specific variant with a wide range
of antibodies). CoVEffect current data model does not support
multiple disagreeing levels for an entity-effect pair. This im-
pacts on the recall of our results.

Notably, the prediction model reached quite good perfor-
mances, as shown in Tables 2 and 3, and still has much space for
improvement thanks to the expected enhancements on the train-
ing dataset. An interesting result is that mutation entities were
very well predicted even when the protein information was far
apart in the text from the mutation signature (see our motivat-
ing example in Fig. 2, where Spike is far from V367F, but they are
correctly associated); the interpretability mechanism of saliency
maps is of great support to highlight these cases. Moreover, the
model worked well in detecting our targets: protein amino acid-
based mutations rather than genomic nucleotide-based muta-
tions and lineages rather than clades.

CoVEffect brings a number of tangible results to the scientific
community, which we here describe. Immediate integrated use
of our resulting annotated database was made within our CoV2K
[22] system by updating the AA_changes, Variant, and Effect enti-
ties. Other data-driven analysis resources developed by our group
(such as VirusViz [78] and ViruClust [79]) could immediately ben-
efit from the addition of structured tuples connecting mutations
and effects. At the same time, any other resource employed in the
current practice of virologists and phylogenetists (such as CoV-
Spectrum [80] and Outbreak.info [81]), studying the trend of spe-
cific mutations and variants, can benefit from the provisioning of
a dataset with this structured information. Our output can be ap-
preciated in the AdditionalFile9 [63], containing the predicted an-
notations for the whole biology-related CORD-19 cluster. External
users may also annotate other abstracts by installing CoVEffect
through our Docker distribution and running the batch annotator
(available as a Python notebook on our GitHub repository).

Next, we aim to extend the scope of CoVEffect by includ-
ing the possibility of recognizing also alternative formulations of
mutation and variant names, tuples reporting on different lev-
els for the same entity and effect, groups of mutations lead-
ing collaboratively to the same effect, insertions and deletions,
the method used to establish the effect (epidemiological, exper-
imental, computational or inferred), and effects reported with
complex—possibly quantitative—formulations. We will also add a
“mutation validation” module to check the semantic consistency
of mutation signatures, on top of the RegEx-based check.

In the future, we aim to apply CoVEffect to other subparts of
the CORD-19 dataset as well as to expand to other literature cor-
puses, focusing on different, well-defined, and delimited domains.
More in general, our framework is suitable to resolve similar prob-
lems where the prediction task attempts to recognize in text the
associations between given entities and related values (within ex-
isting taxonomies). One additional possibility regards predicting
tuples of individual mutations, with their associated genetic back-

ground, and their mutual interaction; this has been demonstrated
to be important for SARS-CoV-2, possibly supporting the explana-
tion/prediction of new variants.

Availability of Source Code and
Requirements

Project name: CoVEffectProject

Homepage: https://gmql.eu/coveffect/

Code repository: https://github.com/armando2603/coveffect/
Operating system: Platform independent

Programming language: The source code of the data provision-
ing module and the deep learning-based prediction framework
are implemented in Python. The CoVEffect web interface to an-
notate abstracts is implemented in Python (Flask framework) and
JavaScript (Vue framework).

Other requirements: The application can be installed on any ma-
chine with its Docker image version.

License: MIT

RRID:SCR_023415

biotools ID: CoVEffect

Data Availability

All supporting data and materials are available in the GigaScience
GigaDB database [63] and on Zenodo [32].

Additional Files

AdditionalFile1-effects-taxonomy. Descriptions of legal values
for the “Effect” field, based on a categorized taxonomy.
AdditionalFile2-levels-taxonomy. Descriptions of legal values for
the “Level” field.

AdditionalFile3-training dataset_target. List of target tuples
(manually annotated) of 221 abstracts considered for training
the model. For each abstract, target tuples follow the schema ID,
DO, title, entity, effect, level, type (mutation or variant), and tu-
ples_count (>1 when an effect/level is shared by multiple entities,
#abstracts containing the same effect described in the tuple).
AdditionalFile4-validation_dataset_target. List of target tuples
(manually annotated) of 50 abstracts considered for validating the
prepared prediction model. For each abstract, target tuples follow
the schema defined for AdditionalFile3.
AdditionalFile5-validation_dataset_highlighted. Textual ab-
stracts of the 50 manuscripts considered for validation; the
text used to support the manual target annotations has been
highlighted in yellow.
AdditionalFile6-validation_dataset_prediction. List of predicted
annotations of 50 abstracts considered for validating the prepared
prediction model; it contains 4 sheets, respectively for entity, ef-
fect, level, and whole tuple predictions.
AdditionalFile7-keywords_query_list. Keyword-based search run
on the CORD-19 dataset to extract a relevant subset of abstracts
regarding the scope of interest of CoVEffect. The Boolean logic
used to combine keywords is explained in the section “Annota-
tions of the biology-related CORD-19 cluster.”
AdditionalFile8-CORD-19_batch_dataset_metadata. Metadata of
the 7,230 papers extracted by the keyword-based query in Addi-
tionalFile7. These abstracts have been annotated by the prediction
framework.
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AdditionalFile9-CORD-19_batch_dataset_prediction. List of pre-
dicted annotations of 7,230 abstracts extracted from the biology-
related cluster of CORD-19.
AdditionalFile10-test_dataset_target. List of target tuples (manu-
ally annotated) of 100 abstracts randomly selected from the 7,230
extracted as in AdditionalFile8. For each abstract, target tuples
follow the schema defined for AdditionalFile3.
AdditionalFile11-test_dataset_prediction. List of predicted an-
notations of 100 abstracts considered for testing the prediction
model on a subset of the CORD-19 biology-related cluster. As Addi-
tionalFile6, it contains 4 sheets, respectively for entity, effect, level,
and whole tuple predictions.
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Transformer 2; NER: Named Entity Recognition; NLP: Natural Lan-
guage Processing; WHO: World Health Organization.

Competing interests

The authors declare that they have no competing interests.

Funding

This research is supported by the PNRR-PE-AI FAIR project funded
by the NextGenerationEU program.

Authors’ Contributions

G.G.S.: formal analysis, investigation, methodology, software
(back-end prediction model, front end, evaluation). R.A.K.: data
curation, investigation, validation. FI.: formal analysis, method-
ology, software (data provisioning, keyword search), validation.
S.C.: funding acquisition, writing—review & editing. A.B.: con-
ceptualization, project administration, supervision, visualization,
writing—original draft.

Acknowledgments

The authors thank Mark J. Carman for inspiring the first proto-
type of the semiautomated data labeling framework and Giuseppe
Cannizzaro for building the first prototype of the transformer-
based prediction model.

References

1. Else, H. How a torrent of COVID science changed research
publishing—in seven charts. Nature 2020;588(7839):553—4.

2. Wang, LL, Lo, K, Chandrasekhar, Y, et al. CORD-19: the COVID-
19 open research dataset. In: Proceedings of the 1st Workshop on
NLP for COVID-19 at ACL 2020 Online: Association for Computa-
tional Linguistics; 2020. https://www.aclweb.org/anthology/202
0.nlpcovid19-acl.1

3. Shu, Y, McCauley, J. GISAID: global initiative on sharing all in-
fluenza data—from vision to reality. Eurosurveillance 2017;22(13).

4. Sayers, EW, Cavanaugh, M, Clark, K, et al. GenBank 2023 update.
Nucleic Acids Res 2023;51 D1:D141-D144.

S.  The COVID-19 Genomics UK (COG-UK) consortium. An inte-
grated national scale SARS-CoV-2 genomic surveillance net-
work. Lancet Microbe 2020;1(3):e99.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Bernasconi, A, Mari, L, Casagrandi, R, et al. Data-driven analy-
sis of amino acid change dynamics timely reveals SARS-CoV-2
variant emergence. Sci Rep 2021;11(1):1-10.

Chiara, M, Horner, DS, Gissi, C, et al. Comparative genomics re-
veals early emergence and biased spatiotemporal distribution
of SARS-CoV-2. Mol Biol Evol 2021;38(6):2547-65.

Huang, Q, Zhang, Q, Bible, PW, et al. A new way to trace SARS-
CoV-2 variants through weighted network analysis of frequency
trajectories of mutations. Front Microbiol 2022;13.

Korber, B, Fischer, WM, Gnanakaran, S, et al. Tracking changes in
SARS-CoV-2 spike: evidence that D614G increases infectivity of
the COVID-19 virus. Cell 2020;182(4):812-27.

Hodcroft, EB, Zuber, M, Nadeau, S, et al. Spread of a SARS-
CoV-2 variant through Europe in the summer of 2020. Nature
2021;595(7869):707-12.

Li, Q, Wu, J, Nie, J, et al. The impact of mutations in SARS-CoV-2
spike on viral infectivity and antigenicity. Cell 2020;182(5):1284-
94.

Radford, A, Wu, J, Child, R, et al. Language models are unsuper-
vised multitask learners. OpenAl Blog 2019;1(8):9.

Rophina, M, Pandhare, K, Mangla, M, et al. FaviCoV-a comprehen-
sive manually curated resource for functional genetic variants
in SARS-CoV-2. OSF Preprints 2020. https://doi.org/10.31219/0sf
do/wp5tx https://doi.org/10.31219/osf.io/wp5tx

Rophina, M, Pandhare, K, Shamnath, A, et al.. ESC: a compre-
hensive resource for SARSCoV-2 immune escape variants. Nu-
cleic Acids Res 2022;50(D1):D771-6.

Wright, DW, Harvey, WT, Hughes, J, et al. Tracking SARS-CoV-2
mutations and variants through the COG-UK-mutation Explorer.
Virus Evol 2022;8(1):veac023.

Subissi, L, von Gottberg, A, Thukral, L, et al. An early warning sys-
tem for emerging SARS-CoV-2 variants. Nat Med 2022;28(6):1110-
5.

Torrens-Fontanals, M, Peralta-Garcia, A, Talarico, C, et al
SCoV2-MD: a database for the dynamics of the SARS-CoV-
2 proteome and variant impact predictions. Nucleic Acids Res
2022;50(D1):D858-66.

Hodcroft, EB. Covariants: SARS-CoV-2 mutations and variants of
interest. 2021. https://covariants.org/. Accessed 2023 April 11.
European Centre for Disease Prevention and Control. SARS-CoV-
2 variants of concern. 2021. https://www.ecdc.europa.eu/en/co
vid-19/variants-concern. Accessed 2023 April 11.

World Health Organization. Tracking SARS-CoV-2 variants.
2021 . https://www.who.int/en/activities/tracking- SARS-CoV-2-
variants/. Accessed 2023 April 11.

Centers for Disease Control and Prevention. SARS-CoV-2 vari-
ant classifications and definitions. 2022. https://www.cdc.go
v/coronavirus/2019-ncov/variants/variant-info.html. Accessed
2023 April 11.

Alfonsi, T, Al Khalaf, R, Ceri, S, et al.. CoV2K model, a compre-
hensive representation of SARS-CoV-2 knowledge and data in-
terplay. Sci Data 2022;9:260.

Min, S, Lee, B, Yoon, S. Deep learning in bioinformatics. Briefings
Bioinf 2017;18(5):851-69.

Lan, K, Wang, Dt, Fong, S, et al.. A survey of data mining and deep
learning in bioinformatics. ] Med Syst 2018;42:139.

Ofer, D, Brandes, N, Linial, M. The language of
proteins:  NLP, machine learning &  protein se-
quences. Computational  Structural Biotechnol ] 2021;19:
1750-8.

He, Y, Shen, Z, Zhang, Q, et al. A survey on deep learn-
ing in DNA/RNA motif mining. Briefings Bioinf 2021;22(4):
bbaa229.

€202 ke g uo Jasn | I'IINITOd@VESY-ILSINOIV-OYLNIO Ad |1 29.1 2/9e0pelb/aousiosebib/e601 01 /10p/a[ole/eouslosefib)/wod dno-olwapese//:sdjy woly papeojumoq


https://www.aclweb.org/anthology/2020.nlpcovid19-acl.1
https:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ doi.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 10.31219\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ osf.io\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ wp5tx
https://covariants.org/
https://www.ecdc.europa.eu/en/covid-19/variants-concern
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html

14

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

| GigaScience, 2023, Vol. 12, No. 0

Bhatnagar, R, Sardar, S, Beheshti, M, et al. How can natural lan-
guage processing help model informed drug development? A re-
view. JAMIA Open 2022;5(2):00ac043.

Pandey, B, Pandey, DK, Mishra, BP, et al. A comprehensive survey
of deep learningin the field of medical imaging and medical nat-
ural language processing: challenges and research directions. J
King Saud Univ 2022;34(8):5083-99.

Velupillai, S, Suominen, H, Liakata, M, et al. Using clinical natu-
ral language processing for health outcomes research: overview
and actionable suggestions for future advances. ] Biomed Inform
2018;88:11-19.

Sheikhalishahi, S, Miotto, R, Dudley, JT, et al. Natural language
processing of clinical notes on chronic diseases: systematic re-
view. JMIR Med Inform 2019;7(2):e12239.

Wu, H, Wang, M, Wu, ], et al. A survey on clinical natural language
processing in the United Kingdom from 2007 to 2022. NPJ Digital
Med 2022;5(1):186.

Singhal, A, Simmons, M, Lu, Z. Text mining genotype-phenotype
relationships from biomedical literature for database cura-
tion and precision medicine. PLoS Comput Biol 2016;12(11):
€1005017.

Wei, CH, Kao, HY, Lu, Z. PubTator: a web-based text mining
tool for assisting biocuration. Nucleic Acids Res 2013;41(W1):
W518-22.

Singhal, A, Simmons, M, Lu, Z. Text mining for preci-
sion medicine: automating disease-mutation relationship ex-
traction from biomedical literature. ] Am Med Inform Assoc
2016;23(4):766-72.

Tong, Y, Tan, F, Huang, H, et al. VIMRT: a text-mining tool and
search engine for automated virus mutation recognition. Bioin-
formatics 2023;39(1):btac721.

Kalyan, KS, Rajasekharan, A, Sangeetha, S. AMMU: a survey
of transformer-based biomedical pretrained language models. J
Biomed Inform 2022;126:103982.

Kalyan, KS, Rajasekharan, A, Sangeetha, S. Ammus: a survey of
transformer-based pretrained models in natural language pro-
cessing. arXiv. 2021. https://arxiv.org/abs/2108.05542.

Wang, B, Xie, Q, Pei, ], et al. Pre-trained language models in
biomedical domain: a systematic survey. arXiv. 2021. https://ar
xiv.org/abs/2110.05006.

Zhang, S, Fan, R, Liu, Y, et al. Applications of transformer-
based language models in bioinformatics: a survey. Bioinform Adv
2023;3(1):vbad001.

Warikoo, N, Chang, YC, Hsu, WL. LBERT: lexically aware
transformer-based  bidirectional encoder representation
model for learning universal bio-entity relations. Bioinformatics
2021;37(3):404-12.

Lai, PT, Lu, Z. BERT-GT: cross-sentence n-ary relation ex-
traction with BERT and Graph Transformer. Bioinformatics
2021;36(24):5678-85.

Clauwaert, J, Menschaert, G, Waegeman, W. Explainability in
transformer models for functional genomics. Briefings Bioinf
2021;22(5):Bbab060.

Sokhansanj, BA, Zhao, Z, Rosen, GL. Interpretable and predic-
tive deep neural network modeling of the SARSCoV-2 spike
protein sequence to predict COVID-19 disease severity. Biology
2022;11(12):1786.

Cannizzaro, G, Leone, M, Bernasconi, A, et al. Automated inte-
gration of genomic metadata with sequence-to-sequence mod-
els. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases Springer; 2020:187-203. https://doi.org/10
.1007/978-3-030-67670-4_12

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Serna Garcia, G, Leone, M, Bernasconi, A, et al. GeMI: interactive
interface for transformer-based Genomic Metadata Integration.
Database 2022;2022:baac036.

Barrett, T, Wilhite, SE, Ledoux, P, et al. NCBI GEO: archive
for functional genomics data sets—update. Nucleic Acids Res
2012;41(D1):D991-5.

He, H, Fu, S, Wang, L, et al. MedTator: a serverless annotation tool
for corpus development. Bioinformatics 2022;38(6):1776-8.

Feng, Y, Qi, L, Tian, W.. PhenoBERT: a combined deep learn-
ing method for automated recognition of human pheno-
type ontology. IEEE/ACM Trans Comput Biol Bioinf 2022.20 (2):
1269-1277.

Balabin, H, Hoyt, CT, Birkenbihl, C, et al. STonKGs: a sophisticated
transformer trained on biomedical text and knowledge graphs.
Bioinformatics 2022;38(6):1648-56.

Balabin, H, Hoyt, CT, Gyori, BM, et al. ProtSTonKGs: a sophis-
ticated transformer trained on protein sequences, text, and
knowledge graphs. In: SWAT4HCLS; K. Wolstencroft, A. Splen-
diani, M. Scott, et al. CEUR Workshop Proceedings 2022:103-7.
https://ceur-ws.org/Vol-3127/

Mahajan, D, Liang, JJ, Tsou, CH. Toward understanding clini-
cal context of medication change events in clinical narratives.
In: AMIA Annual Symposium Proceedings. American Medical Infor-
matics Association; 2021:833.

Cohan, A, Feldman, S, Beltagy, I, et al. SPECTER: document-level
representation learning using citation-informed transformers.
arXiv. 2020. https://arxiv.org/abs/2004.07180.

Danildk, M. Port of Nakatani Shuyo’s language-detection library
to Python. 2022. https://github.com/Mimino666/langdetect. Ac-
cessed 2023 April 11.

Chaput, M. Whoosh search engine library. 2022. https://github.c
om/mchaput/whoosh. Accessed 2023 April 11.

Spotify. Annoy (Approximate Nearest Neighbors Oh Yeah). 2022.
https://github.com/spotify/annoy. Accessed 2023 April 11.
Devlin, J, Chang, M, Lee, K, et al.. BERT: pre-training of deep bidi-
rectional transformers for language understanding. arXiv. 2018.
http://arxiv.org/abs/1810.04805.

Zhu, Y, Kiros, R, Zemel, RS, et al. Aligning books and movies:
towards story-like visual explanations by watching movies and
reading books. arXiv. 2015. http://arxiv.org/abs/1506.06724.
Romero, M. GPT-2-finetuned-CORD19. https://huggingface.co/m
rm8488/GPT-2-finetuned-CORD19. Accessed 2023 April 11.
Wu, F, Zhao, S, Yu, B, et al. A new coronavirus associated with
human respiratory disease in China. Nature 2020;579(7798):265—
9.

Lauring, AS, Hodcroft, EB. Genetic variants of SARS-CoV-2—
What do they mean? JAMA 2021;325(6):529-31.

Rambaut, A, Holmes, EC, O'Toole, A, et al. A dynamic nomen-
clature proposal for SARS-CoV-2 lineages to assist genomic epi-
demiology. Nat Microbiol 2020;5(11):1403-7.

Al Khalaf, R, Alfonsi, T, Ceri, S, et al.. CoV2K: a knowledge base
of SARS-CoV-2 variant impacts. In: S Cherfi, A Perini, S Nurcan,
editors. Research Challenges in Information Science. Cham, Switzer-
land: Springer International; 2021:274-82.

Serna Garcia, G, Al Khalaf, R, Invernici, F, et al.. Supporting
data for "CoVEffect: Interactive System for Mining the Effects of
SARS-CoV-2 Mutations and Variants Based on Deep Learning".
GigaScience Database 2023. http://dx.doi.org/10.5524/102386

Ou, ], Zzhou, Z, Dai, R, et al. V367F mutation in SARS-CoV-2 spike
RBD emerging during the early transmission phase enhances vi-
ral infectivity through increased human ACE2 receptor binding
affinity. J Virol 2021;95(16):¢00617-21.

€202 ke g uo Jasn | I'IINITOd@VESY-ILSINOIV-OYLNIO Ad |1 29.1 2/9e0pelb/aousiosebib/e601 01 /10p/a[ole/eouslosefib)/wod dno-olwapese//:sdjy woly papeojumoq


https://arxiv.org/abs/2108.05542
https://arxiv.org/abs/2110.05006
https:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ doi.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 10.1007\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 978-3-030-67670-4\begingroup \count@ "005F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 12
https:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ ceur-ws.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ Vol-3127\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "00A0\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 
https://arxiv.org/abs/2004.07180
https://github.com/Mimino666/langdetect
https://github.com/mchaput/whoosh
https://github.com/spotify/annoy
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1506.06724
https://huggingface.co/mrm8488/GPT-2-finetuned-CORD19
http:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ dx.doi.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 10.5524\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 102386

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

CoVEffect: mining the effects of SARS-CoV-2 mutations and variants | 15

Bansal, MA, Sharma, DR, Kathuria, DM. A systematic review on
data scarcity problem in deep learning: solution and applica-
tions. ACM Computing Surveys (CSUR) 2022;54(10 s):1-29.

Tinn, R, Cheng, H, Gu, Y, et al. Fine-tuning large neural lan-
guage models for biomedical natural language processing. Pat-
terns 2023;4:100729.

Chen, T, Wu, M, Li, H. A general approach for improving deep
learning-based medical relation extraction using a pre-trained
model and fine-tuning. Database 2019;2019:baz116.

PyTorch. 2022. https://pytorch.org/docs/stable/generated/torch.
optim.AdamW.html. [Accessed 2023 April 11].

Burger, JD, Doughty, E, Khare, R, et al. Hybrid curation of gene-
mutation relations combining automated extraction and crowd-
sourcing. Database 2014;2014:bau094.

Atanasova, P, Simonsen, JG, Lioma, C, et al. A diagnostic study
of explainability techniques for text classification. EMNLP. 2020.
https://aclanthology.org/2020.emnlp-main.263. [Last accessed
2023 April 9]

Zeng, C, Evans, JP, Faraone, JN, et al. Neutralization of SARS-CoV-
2 variants of concern harboring Q677H. Mbio 2021;12(5):e02510-
21.

Cheng, L, Song, S, Zhou, B, et al. Impact of the N501Y substitu-
tion of SARS-CoV-2 Spike on neutralizing monoclonal antibodies
targeting diverse epitopes. VirolJ 2021;18(1):1-6.

Escalera, A, Gonzalez-Reiche, AS, Aslam, S, et al. Mutations in
SARS-CoV-2 variants of concern link to increased spike cleavage
and virus transmission. Cell Host Microbe 2022;30(3):373-87.
Raghu, D, Hamill, P, Banaji, A, et al. Assessment of the binding
interactions of SARS-CoV-2 spike glycoprotein variants. ] Pharm
Anal 2022;12(1):58-64.

75.

76.

77.

78.

79.

80.

81.

82.

Cheng, MH, Krieger, JM, Banerjee, A, et al. Impact of
new variants on SARS-CoV-2 infectivity and neutral-

ization: a molecular assessment of the alterations in
the spike-host protein interactions. Iscience 2022;25(3):
103939.

Kim, JM, Rhee, JE, Yoo, M, et al. Increase in viral load in patients
with SARS-CoV-2 delta variant infection in the Republic of Ko-
rea. Front Microbiol 2022;13.

Pohl, MO, Busnadiego, I, Kufner, V, et al. SARS-CoV-2 variants re-
veal features critical for replication in primary human cells. PLoS
Biol 2021;19(3):€3001006.

Bernasconi, A, Gulino, A, Alfonsi, T, et al. VirusViz: com-
parative analysis and effective visualization of viral nu-
cleotide and amino acid variants. Nucleic Acids Res 2021;49(15):
€90.

Cilibrasi, L, Pinoli, P, Bernasconi, A, et al.. ViruClust: direct com-
parison of SARSCoV-2 genomes and genetic variants in space
and time. Bioinformatics 2022;38(7):1988-94.

Chen, C, Nadeau, S, Yared, M, et al. CoV-spectrum: anal-
ysis of globally shared SARS-CoV-2 data to identify
and characterize new variants. Bioinformatics 2022;38(6):
1735-7.

Gangavarapu, K, Latif, AA, Mullen, JL, et al. Outbreak.Info
genomic reports: scalable and dynamic surveillance of
SARS-CoV-2 variants and mutations. Nat Methods 2023;20(4):
512-22.

Serna Garcia, G, Al Khalaf, R, Invernici, F, et al. . Supporting
data for "CoVEffect: Interactive System for Mining the Effects
of SARS-CoV-2 Mutations and Variants Based on Deep Learning"
[Data set]. .2023 https://doi.org/10.5281/zenodo.7817520

Received: December 5, 2022. Revised: April 11, 2023. Accepted: April 27,2023
© The Author(s) 2023. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

€202 ke g uo Jasn | I'IINITOd@VESY-ILSINOIV-OYLNIO Ad |1 29.1 2/9e0pelb/aousiosebib/e601 01 /10p/a[ole/eouslosefib)/wod dno-olwapese//:sdjy woly papeojumoq


https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://aclanthology.org/2020.emnlp-main.263
https:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ doi.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 10.5281\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ zenodo.7817520
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Materials and Methods
	Results
	Discussion
	Availability of Source Code and Requirements
	Data Availability
	Additional Files
	Abbreviations
	Competing interests
	Funding
	Authors Contributions
	Acknowledgments
	References

