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Abstract 

Bac kgr ound: Liter atur e a bout SARS-CoV-2 widel y discusses the effects of v ariations that hav e spr ead in the past 3 y ears. Suc h in- 
formation is dispersed in the texts of sev eral r esear c h articles, hindering the possibility of practically integrating it with related 

datasets (e.g., millions of SARS-CoV-2 sequences av aila b le to the community). We aim to fill this gap, by mining literature abstracts 
to extr act—for eac h v ariant/m utation—its r elated effects (in e pidemiological, imm unological, clinical, or viral kinetics terms) with 

labeled higher/lower levels in relation to the nonmutated virus. 

Results: The proposed fr amew ork comprises (i) the provisioning of a bstracts fr om a COVID-19–r elated big data corpus (CORD-19) and 

(ii) the identification of m utation/v ariant effects in abstracts using a GPT2-based prediction model. The above techniques enable the 
prediction of mutations/variants with their effects and levels in 2 distinct scenarios: (i) the batch annotation of the most r elev ant 
CORD-19 abstracts and (ii) the on-demand annotation of any user-selected CORD-19 abstract through the CoVEffect web application 

( http://gmql.eu/coveffect ), which assists expert users with semiautomated data labeling. On the interface, users can inspect the pre- 
dictions and correct them; user inputs can then extend the training dataset used by the prediction model. Our prototype model was 
trained through a carefully designed process, using a minimal and highly diversified pool of samples. 

Conclusions: The CoVEffect interface serves for the assisted annotation of abstracts, allowing the download of curated datasets 
for further use in data inte gr ation or analysis pipelines. The overall framework can be adapted to r esolv e similar unstructured-to- 
structured text translation tasks, which are typical of biomedical domains. 

Ke yw ords: dee p learning, langua ge models, machine learning interpr eta bility , CORD-19 dataset, SARS-CoV -2, viral variants, viral mu- 
tations, web interface 
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Introduction 

The COVID-19 pandemic has made SARS-CoV-2 one of the most 
studied viruses in the w orld, with resear ch on its variation, spread,
and impacts on the host immune system. At the start of 2020, it 
was estimated that 200,000 cor onavirus-r elated journal articles 
and preprints would be published by the end of the year [ 1 ]. As 
of today, about 3 years since the beginning of the pandemic, more 
than 1 million articles have become available. 

This wide COVID-19–related literature is still largely unex- 
plored but can be emplo y ed for data and text analysis. Most 
COVID-19 r esearc h outputs hav e been gather ed within the COVID- 
19 Open Research Dataset (CORD-19 [ 2 ]) by the Allen Institute.
The corpus includes preprints and papers from Semantic Scholar 
up to mid-2022, sourced fr om PubMedCentr al, PubMed, the World 

Health Organization’s Covid-19 Database, and the preprint servers 
bioRxi v, medRxi v, and arXi v. 

In par allel, ther e has been a worldwide spread of open data rep- 
resenting SARS-CoV-2 sequences (through the data sources GI- 
SAID [ 3 ], GenBank [ 4 ] and COG-UK [ 5 ]), gathered on repositories 
by public and private institutes . T he study of viral sequences has 
addr essed se v er al r esearc h questions r elated to the epidemiology 
and immunology aspects of the viral spread [ 6–8 ]. Much attention 

has also been dedicated to identifying amino acid–le v el m utations 
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or groups of them—coordinated within variants) that lead to par-
icular changes in the behavior of the virus and its ability to es-
ablish infections—when compared to the wild type [ 9–11 ]. Note
hat, curr entl y, it is hard to integrate data about sequences (with
ssociated mutations) with information about variation effects,
s the latter is not available in structured formats. 

Structured information can be retrieved resorting to Natural 
angua ge Pr ocessing (NLP) tec hniques. NLP models usuall y r e-
uire a considerable quantity of training data to learn their tasks.
o w e v er, r ecent br eakthr oughs with deep learning models such
s the Gener ativ e Pr etr ained Tr ansformer (e.g., GPT2 [ 12 ]) allo w ed
he design of multitask learners that use fewer data than classic
upervised machine learning techniques. 

In this w ork, w e use GPT2 to learn tuples that contain a SARS-
oV-2 variation, its effect and level, starting from CORD-19 ab-
tracts . T he model is trained on a small dataset that we car efull y
abricated, as no such ready-to-use dataset was a vailable . As our
ystem enables expert users to pr ovide mor e input annotations,
t is pr efer able to use a model that dynamically and efficiently
earns how to handle new annotations over time; in parallel, it is
esirable to augment the training dataset in a continuous manner.
o allow for this, we use a semiautomated data labeling system,
hich employs the predictive model to assist the human labeler,
 Open Access article distributed under the terms of the Cr eati v e Commons 
unrestricted reuse, distribution, and reproduction in any medium, provided 
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ombining manual annotations with automatic tuples extraction.
he model is used to recommend labels and automate basic func-
ions in a labeling interface . T he user can decide when to employ
he generated labeled data for augmenting the training dataset
nd r etr aining the model. A user-friendl y web interface CoVEffect
llows expert users to annotate abstracts with variation effects
ithout r equiring an y pr ogr amming or data mana gement knowl-

dge. 

elated Work 

urr entl y, the task of recognizing mutations and variants’ effects
eeds to be performed by hand. There are a very few resources
hat provide this kind of information; when this is the case, they
r e exclusiv el y manuall y cur ated. FaviCoV and ESC [ 13 , 14 ], re-
pectiv el y, stor e SARS-CoV-2 genetic mutations that are function-
ll y r ele v ant and ar e associated with imm une esca pe . T he anti-
enic role of amino acid replacements in the context of the human
mm une r esponse is also the focus of the COG-UK Mutation Ex-
lorer [ 15 ], while a list from the World Health Organization (WHO)
oncentrates on specific replacements that characterize variants
 16 ]. Torrens-Fontanals et al.[ 17 ] report on how variation impacts
an be predicted. Online resources such as CoVariants [ 18 ], Euro-
ean Centre for Disease Prevention and Control [ 19 ], WHO [ 20 ],
nd Centers for Disease Control and Prevention (CDC) [ 21 ] ex-
lain variants’ effects, commenting on how they ar e r eported in
he liter atur e. We pr e viousl y made extensiv e cur ation of effects
tored in CoV2K [ 22 ], a knowledge base of data and knowledge
bout SARS-CoV-2; our cumbersome manual curation approach
ad quic kl y become unfeasible, pr ompting us to explor e alterna-
ive solutions. 

Se v er al NLP tec hniques hav e been used and ada pted to
ioinformatics-r ele v ant pr oblems, as r eported in surv eys suc h as
 23 ] or [ 24 ]. Research applications concerned omics (e.g., predic-
ion of protein classification/structure [ 25 ], motifs [ 26 ], or drugs
o be de v eloped [ 27 ]) and biomedical ima ging/signal pr ocessing
 28 ]. 

Regarding biomedical text extraction, a wealth of studies is fo-
used on clinical NLP, r egarding electr onic health records and clin-
cal notes [ 29–31 ]. For extracting phenotype–genotype relation-
hips, Singhal et al. [ 32 ] proposed a 3-step pipeline that (i) recog-
izes 3 different kinds of entities (mutations , diseases , genes) with
ntity-specific tools of PubTator [ 33 ], (ii) links mutations with dis-
ases using a Machine Learning (ML) binary classifier [ 34 ], and (iii)
nter pr ets m utations in the context of specific genes. 

A v ery r ecent tool called ViMR T [ 35 ] emplo ys ad hoc opti-
ized rules and regular expressions for the extraction of viral
 utations; a whole infr astructur e is built with this sole pur pose,

emonstrating the complexity of the task, whose resolution re-
ains lar gel y uncov er ed. 
Instead, the most recent approaches to biomedical text extrac-

ion tasks have emplo y ed tr ansformer-based tec hniques, as r e-
iewed in [ 36 ] and [ 37–39 ]; the y re port that current works are
ainly focused on connections between entities [ 40 , 41 ]. Very few
orks addr essed r esults’ explainability combined with tr ansform-

rs in this domain [ 42 , 43 ]. 
In our past work [ 44 , 45 ], we employed deep learning

r ansformer-based tec hniques for NLP to infer attributes from
ene Expression Omnibus [ 46 ] experiment metadata, formulat-

ng the problem as a translation task. Cannizzaro et al. [ 44 ] and
erna Garcia et al. [ 45 ] ac hie v ed the r esult of translating Gene Ex-
ression Omnibus experiment descriptions into k e y:value pairs
e.g., cell line:K562, disease:m yeloid leuk emia, assembly:hg19,
ssay:Chip-Seq, target:H3K9me3). 

CoVEffect stems from this thread of works, but it is carefully
da pted to solv e a mor e complex task: that of pr edicting a series
f tuples from SARS-CoV-2–related abstracts where we consider
 variation, its effect, and the change of its level. Each of the cur-
 entl y av ailable systems supports onl y one user-driv en annota-
ion [ 47 ], predictions of single independent annotations with on-
ological terms [ 48 ], or biomedical gener al-pur pose triplets based
n existing knowledge gr a phs [ 49 ], especiall y tar geted to pr otein–
r otein inter actions [ 50 ]. These corr espond to differ ent tasks than
he one performed by CoVEffect, and the described a ppr oac hes do
ot allow for online modifications of the training dataset. Our pur-
ose is closer in spirit to the one targeted in Mahajan et al. [ 51 ];
o w e v er, their work is focused on clinical aspects (text is extracted

r om electr onic health r ecords instead of r esearc h abstr acts) and
s not supported by a user-oriented interface. 

All in all, to the best of our knowledge, CoVEffect is one of the
rst transformer-based approaches applied to biomedical tasks,
ombined with explainability a ppr oac hes. 

aterials and Methods 

igur e 1 ca ptur es the high-le v el arc hitectur e of the whole fr ame-
 ork. As our input, w e consider the w ealth of information con-

ained in the CORD-19 dataset. From the data corpus, we extract
nl y abstr acts that r eac h sufficient quality standards and pr ovide
ssential metadata. 

Two offline processes exploit the dataset: (i) data provisioning ,
here we perform data curation and prepare a dataset that sup-
orts indexed k e yw or d-based sear ch and similarity-based search,
nd (ii) prediction model setup , where we manually craft a dataset,
se it for training the model, check its performances (through a
alidation dataset), and evaluate the need to change or augment
he initial training dataset. 

The artifacts produced by these 2 processes are the indexed
urated dataset of CORD-19 abstracts and the tr ained pr ediction
odel. They feed 2 possible modes of use, sharing standardized

utput formats: 

� an offline Batch Annotator , which provides annotated data for
a selection of 7,230 r ele v ant abstr acts fr om the CORD-19 cor-
pus, and 

� an inter activ e online Web Application emplo y ed b y expert
users to annotate samples and inspect predicted annotations.

a ta pro visioning 

rom the latest and final CORD-19 release (issued in June 2022),
e collected metadata.csv , a table with metadata of all papers, and

ord_19_embeddings.tar.gz , a collection of precomputed SPECTER
 52 ] document embeddings for each paper. The data provisioning
ipeline aims to produce a curated set of abstracts (equipped with
etadata) to support the activities of the learning fr ame work. 

ata curation 

s described by Wang et al. [ 2 ], the CORD-19 dataset gathers
OVID-19–r elated pa pers fr om se v er al sources. In this dataset, pa-
ers are already harmonized and de-duplicated: in the metadata
able, eac h cord_uid r epr esents a cluster of pa pers with colliding
dentifiers, such as DOI or arxiv_id . For our system, we extracted
 portion of the original CORD-19 dataset: we k e pt only 1 record
or each paper, thereby avoiding duplicated entries and easing the
nnotation user experience. To this end, we designed a reconcili-
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ation step: for each cluster, w e fav ored the entry with the longest 
abstract and promoted values from other members of the clus- 
ter to fill in the missing information; then, we r emov ed the other 
members of the cluster, obtaining only 1 entry for each paper. We 
also r emov ed those pa pers for whic h an abstr act was not av ail- 
able. Additionally, we used langdetect [ 53 ]—a language detection 

libr ary ported fr om Google’s language-detection—to detect the lan- 
guage of the abstracts and filtered out the papers not written in 

English. 

Abstr act retriev al 
The curated dataset has been indexed to support search on the 
pa per abstr acts. Suc h a step is functional to the r etrie v al task of 
the learning system, where the user searches abstracts that are 
of interest. For the purpose, we built a search eng ine leverag ing 2 
existing libraries. 

� The keyword-based search is based on Whoosh [ 54 ], a full-text in- 
dexing and searching library, to let users search the abstracts 
using combinations of k e yw or ds. 

� The similarity-based discovery is based on Annoy [ 55 ], an ap- 
pr oximate near est-neighbor searc h libr ary, to let the users 
discov er abstr acts similar to those already selected. These 
r ecommendations ar e computed by exploiting the SPECTER 

embeddings of the pa pers, whic h ar e document-le v el v ector 
r epr esentations originated fr om citation-based tr ansformers.
For our purpose, we dramatically reduced the dimensional- 
ity of the vector space from 768 to 100. The 100 dimensions 
w ere selected b y means of a principal component anal ysis, r e- 
sulting in a r epr esentation with an explained variance ratio 
of 74%. In line with the recommendation task overviewed in 

[ 52 ], we chose cosine similarity as a similarity metric among 
papers by setting the distance parameter of the AnnoyIndex 
to “angular.”

Language model and task design 

Model 
In this w ork, w e fav or ed text-gener ativ e tr ansformer models ov er 
BERT-like models [ 56 ] because of their ability to perform multi- 
task learning [ 12 ] and to easily adapt to new tasks. Indeed, text- 
gener ativ e models form ulate m ultitask learning as a conditional 
distribution P ( output | input,task ), where the task to be performed 

can be easily expressed in the form of text. We also make a dis- 
tinction between general and domain-specific pretrained models. 
Gener al models ar e usuall y pr etr ained with lar ge datasets aim- 
ing to be as general as possible (e.g., BookCorpus [ 57 ] and En- 
glish Wikipedia). Domain-specific models, instead, are further pre- 
trained in order to fit a particular application (e .g., medicine , bi- 
ology). In our case, the specific domain knowledge is r epr esented 

by the CORD-19 dataset [ 2 ]. In the past years, se v er al ne w gener- 
ativ e models hav e been pr oposed (e.g., T5, B AR T, GTP3, BLOOM).
These models ac hie v ed incr easingl y better performances, mostl y 
by increasing the size of the model parameters and the size of the 
pr etr aining datasets. As a trade-off, bigger models are significantly 
slo w er. 

In our work, the model is also used in an inter activ e way (with 

a domain expert), and thus we pr eferr ed smaller models to large 
models. Considering all these aspects, we opted for a domain- 
specific version of a gpt2-small model available on the hugging- 
face model hub [ 58 ]; it r epr esents a r easonable compr omise be- 
tween model size and performances in a very specific domain. We 
propose it as a baseline for future works that could make use of 
our dataset. 
arget data format 
bstr acts ar e annotated by r ecognizing structur ed tuples of the

orm 〈 type,entity,effect,level 〉 . Possible types ar e “m utation” and
variant. ” W ith mutation , we refer to amino acid changes within
pecific proteins, occurring in a position where a r efer ence r esidue
as been changed into an alternative residue . T hese changes cor-
espond to nonsynonymous nucleotide mutations; we do not con- 
ider synonymous nucleotide mutations, as they typically do not 
nfluence the protein functionalities. In this w ork, w e focus on
ubstitutions , lea ving aside insertions and deletions as they would
 equir e substantial additional training due to their very heteroge-
eous formulations. With variant , we denote forms of the SARS-
oV-2 that are considerably different from the original wild-type 
 59 ], as they accumulated a set of amino acid changes that c har ac-
erize their phenotypic c har acteristics [ 60 ]. Variants ar e typicall y
ssociated with a name to easily address them. 

In our tuples, entities are the names of mutations (e.g.,
pike_N501Y or NSP12_P323L) or of variants—for example, Alpha,
elta, Omicron (as named by WHO [ 20 ]) or B .1.1.7, B .1.617, B .1.519

as named by Pangolin [ 61 ]). 
Effects are chosen from a taxonomy, that is, a controlled vo-

abulary of terms, including, for example, transmissibility, dis- 
ase se v erity, r esistance to antivir al drugs, or c hange in the pr o-
ein kinetics (flexibility or stability properties). We previously pro- 
osed an initial version of this vocabulary [ 22 , 62 ], which has now
 volv ed into a complete list of effects organized by category (“epi-
emiology ,” “immunology ,” “viral kinetics and dynamics,” or “diag- 
osis, pr e v ention, and tr eatments”). The full list can be found the
d ditionalFile1-effects-taxonom y [ 63 ]. 
Finall y, eac h effect has an associated level , that is, higher, lo w er,

naffected, undefined, or no evidence (see AdditionalFile2levels- 
axonomy [ 63 ] for detailed definitions). 

ask 

he macro-task performed by our prediction model is a text-to- 
able task, translating a full paper abstract into a table of tuples,
ach one with the fields described abo ve . Each tuple is composed
tself by solving 3 subtasks: 

i) entity extraction of mutations/variants (from which also the 
type is inferred); 

ii) classification of effects ; and 

iii) classification of levels . 

Tasks (ii) and (iii) are classic classification tasks, targeting a
nown set of values. Instead, the entity extraction task (i) is more
omplex than a classical Named-Entity-Recognition (NER) task: 
e extract mutations and variants with an associated effect and

orr esponding le v el. The complexity of this macr o-task incr eases
lso because the number of tuples of the table output for each
bstract is not fixed a priori . Instead, it depends on the number of
xtracted entities and on the number of effects exhibited by the
ntities. Text-gener ativ e models allow to fine-tune a single model
hat is able to perform this macro-task. 

Figur e 2 illustr ates the working principle of our prediction task
n a real abstract [ 64 ]. Three different tuples are recognized in
he text, all referring to the Spike V367F mutation, but predicating
n different effects with higher levels. Note that the information
bout the protein on which the mutation occurs is positioned in
 part of the text that is far apart from the signature of the muta-
ion. In the figure, we can also appreciate the difference between
he predictions obtained by our a ppr oac h v ersus the ones that a
ypical NER task could obtain. 
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Figure 1: CoVEffect fr ame work ov ervie w. 

The current pandemic of COVID-19 is caused by a novel coronavirus, severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 spike protein receptor-binding domain 
(RBD) is the critical determinant of viral tropism and infectivity. To investigate whether naturally 
occurring RBD mutations during the early transmission phase have altered the receptor binding 
affinity and infectivity, we first analyzed in silico the binding dynamics between SARS-CoV-2 RBD 
mutants and the human angiotensin-converting enzyme 2 (ACE2) receptor. Among 32,123 
genomes of SARS-CoV-2 isolates (December 2019 through March 2020), 302 nonsynonymous 
RBD mutants were identified and clustered into 96 mutant types. The six dominant mutations 
were analyzed applying molecular dynamics simulations (MDS). The mutant type V367F 
continuously circulating worldwide displayed higher binding affinity to human ACE2 due to the 
enhanced structural stabilization of the RBD beta-sheet scaffold. The MDS also indicated that it 
would be difficult for bat SARS-like CoV to infect humans. However, the pangolin CoV is 
potentially infectious to humans. The increased infectivity of V367 mutants was further validated 
by performing receptor-ligand binding enzyme-linked immunosorbent assay (ELISA), surface 
plasmon resonance, and pseudotyped virus assays. Phylogenetic analysis of the genomes of 
V367F mutants showed that during the early transmission phase, most V367F mutants clustered 
more closely with the SARS-CoV-2 prototype strain than the dual-mutation variants 
(V367F+D614G), which may derivate from recombination. The analysis of critical RBD mutations 
provides further insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic 
origin under negative selection pressure and supports the continuing surveillance of spike 
mutations to aid in the development of new COVID-19 drugs and vaccines.

Our task

SPIKE_V367F binding_to_host_receptor higher

                        infectivity higher

                        protein_stability higher

Typical NER task

spike - protein

V367F  - mutation

D614G - mutation

Figure 2: Difference between tasks r esolv ed by an NER a ppr oac h (onl y r ecognizing entities fr om a text excer pt) and our tr anslation-based a ppr oac h 
(targeting entities with connected effects and levels). The abstract excerpt is extracted from a paper by Ou et al. in the Journal of Virology [ 64 ]. 
Information used to form our tuples is connected through blue lines. Yellow identifies information on type and entity , gray on effect , and blue on level . 
Gr een r ectangles identify the typical entity extr action performed by an NER a ppr oac h. 
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egEx-based prediction filtering 

 common issue for text-gener ativ e models is the instability of
he generated text (i.e., these models tend to repeat w or ds or to
enerate meaningless w or ds). To mitigate this effect, we make use
f a filter based on r egular expr essions that onl y allows outputs
f the model corresponding to predefined legal values . T he RegEx
lter is applied after the extraction of mutations and variants to

nclude only predictions that follow these patterns: 

� Mutations: ∧ ([A-Z0-9] + _)[A-Z] \ d{1,4}[A-Z]$ 
� Variants: ∧ ([A-Z]{1,2} \ .[0–9]{1,3})( \ .[0–9]{1,3}){,2}$ 

rediction model setup 

he pr e viousl y described task is mor e complex than a classical
ER task, as it r equir es to connect differ ent linked information.

n biomedical liter atur e, tr aining datasets for supervised learning
r e typicall y av ailable for gener al biomedical terms [ 38 ], whic h
re of no use for our purpose; therefore, we prepared our own
raining dataset. This operation requires a costly manual cura-
ion, oper ated by highl y expert users . T his is an inevitable effort
o handle data scarcity, analyzed in [ 65 ] in general terms, becom-
ng e v en mor e r ele v ant in biomedical fields [ 66 , 67 ]. To minimize
uch effort in our case, we implemented a process that supports
he building of small high-quality training datasets. 

We started with a small number of initial abstracts (corre-
ponding to a first set of 30 papers). Using this seed, we used an
ter ativ e pr ocess of 4 steps (r epr esented in Fig. 3 ): 

(1) Training dataset enhancement. Except for the first round
(30 abstracts), at each iteration, we include (typically 5) new
abstr acts, allowing str onger tr aining on insufficientl y r epr e-
sented cases. 

(2) Model tr aining. This pr ocedur e includes par ameter tuning
and possible changes based on previously obtained results. 

(3) Validation scores computation. The model prediction per-
formances are evaluated on a validation dataset of 50 pa-
pers, car efull y c hosen to be as r epr esentativ e as possible of
the problem at hand. By comparing expert-provided anno-
tations and predicted annotations on the validation dataset,
we compute performance scores. 



CoVEffect: mining the effects of SARS-CoV-2 mutations and variants | 5 

Figure 3: Iter ativ e pr ocess for the pr ediction model setup. 
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(4) Evaluation of results and errors . T he obtained scores are 
consider ed; the iter ation is r epeated until satisfactory scor es 
are obtained. 

Training dataset preparation 

The set of abstracts used for initial training was built by following 
a number of criteria: 

� priority was given to published articles over preprints, exclud- 
ing papers that duplicated the same research; 

� priority was given to simple abstracts over abstracts with nu- 
merous and complex annotations; 

� a wide selection of mutations (from different proteins) and 

variants (both WHO- and Pangolin-based names) was em- 
plo y ed; 

� abstracts involving mutations of insertion/deletion types 
were excluded at this stage, due to their highl y heter ogeneous 
r epr esentations; 

� abstracts associating effects to groups of mutations (rather 
than to a single mutation or variant) were also excluded not 
to ov erl y complicate the pr ediction task; and 

� no effect of our taxonomy (see AdditionalFile1-effects- 
taxonomy [ 63 ]) was underr epr esented in the dataset. 

Table 1 shows compr ehensiv e counts of abstracts con- 
taining information on each effect of our taxonomy, both 

for the training and the validation datasets; AdditionalFile3- 
tr aining_dataset_tar get [ 63 ] contains the manual annotations as- 
sociated with the 221 abstracts selected for training (after several 
iterations on the process shown in Fig. 3 ). 

Model training 

In the iter ativ e pr ocess, the “model tr aining” phase is run in 2 dif- 
ferent modes: (i) short-cycle training and (ii) long-cycle training: 

(i) Long-c ycle training emplo ys the whole training dataset col- 
lected thus far to train the pretrained gpt2-model [ 58 ] all at 
once. It is triggered when a relevant number of annotations 
(60) have been collected. A manual inspection of the learning 
curves is conducted to perform a ppr opriate hyper par ameter 
tuning; the number of epochs is determined by performing 
an early stopping (using the validation set). When the train- 
ing concludes, we generate a model freezed version (check- 
point) to be used in the following phases (validation and er- 
r ors c hec king). 

(ii) Short-cycle training is triggered when 5 new abstracts are 
added to the training set, aiming to update the system as 
soon as the new annotations are a vailable . Here , no hyper- 
par ameters ar e used, and the learning rate is set to half of
the long-cycle training one, in order to avoid overfitting. 

In both modes, the used maximum token length is 1,000, and
damW [ 68 ] is used as the optimizer. The final model was trained

or 12 epochs with a learning rate of 1 e − 5 and a batch size of 1. 

cores computation 

he target annotations performed by our expert r esearc hers 
r e av ailable at AdditionalFile4v alidation_dataset_tar get [ 63 ]
nd are supported by the text document AdditionalFile5- 
 alidation_dataset_highlighted [ 63 ], wher e w e highlighted in y el-
ow information used by experts to inform the annotation process
nd derive the target tuples. 

We compare the expert annotations with the predictions of 
he model (see AdditionalFile6-v alidation_dataset_pr ediction). Six 
cor es ar e computed for 2 different scenarios: (i) we e v aluate enti-
ies , effects , and le v els separ atel y (note that types are not included
s they can easily be inferred from the syntax of the entity), and
ii) we e v aluate whole tuples, including an entity with its linked ef-
ect and linked le v el. By comparing the target tuples—from zero
o many in each abstract—with the predicted tuples, we assess
he number of true positives, false positives, and false negatives.
ased on these observations, we compute the accuracy , precision ,
nd F1 score of eac h abstr act. Then, we obtain 2 a ggr egate scor es as
 simple av er a ge of the single-abstr act scor es (i.e., eac h abstr act
ontributes equally) and a weighted av er a ge (i.e., eac h abstr act
ontributes pr oportionall y to the number of contained target tu-
les). 

In Table 2 , we show the results on the 50 papers of the val-
dation dataset. Evaluating fields separately and using a nor- 

al av er a ge, the tr ained model r eac hed 0.79 F1 score on muta-
ion/variants, 0.63 on the effects (independently on their link to
n existing entity), and 0.76 on their le v els (independentl y on their
ink to an existing entity or effect). Especially for entities and ef-
ects, precision was higher than recall, indicating that the model
erformed well in identifying actual positiv es. Specificall y, out of
ll the predicted entities , almost 88% were actually present in the
bstracts; out of all effects , 74% were actually present; and out
f all levels , about 76% were actually present. Recall was slightly
o w er for entities and effects, indicating that the model missed
ome target information in the abstract. Specifically, recall was 
bout 77% for entities , meaning that about 23% of actual entities
ere not recognized in abstracts; similarly, about 38% effects were 
ot recognized and 24% levels were not recognized. Performances 
omputed with the weighted av er a ge ar e gener all y lo w er, suggest-
ng that simple abstracts (with few annotations) are the ones that
ontribute to improving the scores. 

Finall y, performances ar e consider abl y lo w er for the complex
ask of connecting the 3 fields in an atomic tuple (0.46 F1 score,
.59 pr ecision, 0.44 r ecall). We defend that—for such a composite
ask—it is more important to have higher precision (less wrong
redicted annotations) at the expense of recall (missing some ex- 

sting annotations). The model pr oduces fe w r esults, but in gen-
r al, they ar e of good quality. Performances can impr ov e by aug-
enting the training dataset; this indeed occurs thanks to the use

f the CoVEffect Web Application presented later in the article. 

esults 

esults include a double contribution: on the one hand, we pro-
ide complete predictions on a set of more than 7,000 abstracts
rom CORD-19 that are relevant to SARS-CoV-2 variation effects; 
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Table 1: Number of abstracts representing each effect in the validation and train datasets 

Category Effect # training abs # valid. abs # training tuples # valid. tuples 

Viral kin. and dyn. protein_flexibility 8 3 16 11 
protein_stability 29 3 47 9 
host–virus interactions 5 1 12 1 
binding_to_host_receptor 45 7 94 10 
binding_to_antibodies 16 3 30 3 
viral_load 27 7 30 9 
viral_incubation_period 8 1 9 1 
vir al_r eplication 16 2 22 2 
viral_fitness 14 4 21 10 
intermolecular_interactions 20 2 0 2 
protein_functioning 19 2 32 5 
protein_conformational_optimization 28 4 60 6 
entry_efficiency 9 1 14 1 

Immunology sensitivity_to_antibodies 18 9 24 20 
sensitivity_to_conv alescent_ser a 20 6 32 10 
sensitivity_to_v accinated_ser a 20 6 35 11 
imm une_esca pe 35 11 69 21 

Epidemiology vir al_tr ansmission 66 18 95 33 
infectivity 44 13 65 24 
viral_virulence 9 3 22 5 
disease_se v erity 32 8 62 15 
risk_of_hospitalization 10 7 26 10 
risk_of_reinfection 11 3 11 7 
fatality_rate 20 9 36 12 
infection_duration 7 1 9 1 

Dia g/Pr e v/Tr eatm. effectiv eness_of_av ailable_dia gnostics 13 1 23 1 
effectiv eness_of_av ailable_v accines 37 13 50 29 
effectiv eness_of_av ailable_antivir al_drugs 23 6 50 10 
ct_value 12 2 14 2 

No relevant tuples found 9 1 — —

Distinct abstracts/tuples 221 50 1,051 282 

Table 2: Validation set results (run to set up the prediction model) 

Task Measure F1 score Precision Recall 

Entity Av er a ge 
Weighted av er a ge 

0.791 
0.668 

0.878 
0.806 

0.766 
0.613 

Effect Av er a ge 
Weighted av er a ge 

0.626 
0.561 

0.741 
0.716 

0.617 
0.531 

Level Av er a ge 
Weighted av er a ge 

0.762 
0.702 

0.763 
0.705 

0.761 
0.701 

Whole tuple Av er a ge 
Weighted av er a ge 

0.463 
0.354 

0.588 
0.519 

0.441 
0.300 
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n the other hand, we provide a user-friendly framework for ex-
ert users to annotate abstracts of interest and possibly con-
ribute to additional training of the learning model. 

nnotation of the biology-related CORD-19 

luster 
bstracts informing about SARS-CoV-2 variation effects can be
elected from CORD-19 via a 2-step process: (i) identification of
 biology-related cluster and (ii) tar geted searc h on the cluster
ased on particular k e yw or ds. 

Clusters . We built a clustering model to partition in topic-
ased classes the CORD-19 dataset curated by our provisioning
ipeline. For this purpose, we exploited the SPECTER document-

e v el embeddings dataset distributed as part of CORD-19 (pr e vi-
usly described in the similarity-based discovery ). Because of the
onsiderable size of the dataset, we opted for a re presentati ve-
ased clustering model (i.e., K-means). SPECTER embedding vec-
ors are known to be effective in predicting the topic class as-
ociated with a pa per [ 52 ]. Differ entl y fr om [ 52 ], we did not
now a priori the number of topic classes to be predicted. To
hoose an appropriate value for the number of clusters k of K-
eans, we plotted the silhouette score and the distortion for

ach candidate number of clusters, ranging from 2 to 50. The
alue K = 5 was chosen as it allo w ed us to visualize a spike
n the plot of the silhouette score and an elbow-like shape in
he plot of the distortion. For each of the 5 clusters, we gen-
rated WordCloud plots, including the most frequent w or ds in
apers’ titles abstracts and titles (top w or ds common to clus-
ers were excluded). This allowed us to manuall y r ecognize a
00 K abstracts cluster as the one mostly related to biological
spects. 
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Keywords . Out of the biology-related subset of CORD-19, we only 
tar geted abstr acts whose content r elates to m utation and v ariants 
effects—the focus of CoVEffect. To this end, we described the sub- 
set of interest with a logical query expressed through the Whoosh 
searc h libr ary [ 54 ]—pr e viousl y mentioned for the keyword-based 
search of the data provisioning pipeline. The library already in- 
cludes simple lemmatization ca pabilities; additionall y, we loaded 

the Oper atorsPlugin (whic h adds logical oper ators suc h as AND,
OR, NOT), the GroupPlugin (to group search clauses using paren- 
theses), and the SingleQuotePlugin (to specify single terms con- 
taining spaces by enclosing them in single quotes). Finally, we 
added a union set operation for the papers retrieved with each 

single query (equivalent to having all the queries in OR but with- 
out overloading the parsing process of Whoosh ). 

As a result of this procedure—employing the k e yword-based 

query listed in the Ad ditionalFile7-k e yw or ds_query_list [ 63 ]—w e 
could extract 7,230 papers from the cluster on biological aspects 
(see AdditionalFile8-CORD-19_batch_dataset_metadata [ 63 ]). We 
then ran the CoVEffect prediction on this dataset; the resulting 
predictions for the 7,230 abstracts are provided in AdditionalFile9- 
CORD-19_batc h_dataset_pr ediction [ 63 ] as a contribution to the 
scientific community. 

Testing results 
Out of this batch, we tested the prediction performances on 100 
r andoml y selected pa pers , ensuring that they did not o v erla p 

with the pr e viousl y used tr aining and v alidation sets . For these ,
we manuall y pr epar ed tar get annotations (see AdditionalFile10- 
test_dataset_target [ 63 ]). Then, we predicted the annotations 
of their abstracts using our model (see AdditionalFile11- 
test_dataset_prediction [ 63 ]). 

In Table 3 , we show the results on the 100 papers of the test 
dataset, based on the comparison between target and predicted 

annotations. Reassuringl y, performances wer e compar able to the 
ones obtained on the validation set. Indeed, they were only worse 
in the case of entities , whereas effects , levels , and also whole tuples 
impr ov ed their scores. 

Benc hmar king considerations 
As mentioned in the “Related Work” section, Singhal et al. [ 32 ] 
pr e viousl y pr oposed a method for extr acting entities and r ela- 
tionships from biomedical text; that approach is considered to- 
day’ s state-of-the-art. W e do not compar e our r esults with that a p- 
pr oac h because CoVEffect performs a significantl y differ ent task,
providing an output that could be read as the result of 4 separate 
steps: entity recognition (for mutations and variants), entity link- 
ing (protein with mutation), classification (effects and levels), and 

r elation extr action (among the pr e viousl y extr acted information).
In essence, CoVEffect should not be considered the best possible 
method for performing each one of these tasks. Instead, it offers 
an all-in-one annotation platform that allows experts to insert an- 
notations manually or to inspect, corr ect, and e v entuall y accept 
predictions of specific triples entity–effect–level. The proposed ap- 
pr oac h can be inter pr eted as a combination of automated extrac- 
tion and cro wdsour cing, as initially proposed in [ 69 ]. 

The CoVEffect web application 

As a second output, we implemented the CoVEffect web appli- 
cation; its front end provides 2 main functionalities: (i) a search 

interface for finding papers of interest and (ii) an interactive in- 
terface to label abstracts with a semiautomated fr ame work. The 
first functionality is based on a back-end retrieval module, which 
ses the methods described in the “Data provisioning” section 

i.e., k e yw or d-based sear ch and similarity-based search of papers).
he second functionality is fueled by a back-end extraction mod-
le, which uses the prediction model described in the “Language 
odel and task design” section and implements a fr ame work for

emiautomated data labeling by users, as detailed in the follow-
ng. 

emiautomated data labeling framework 

his fr ame work aims to facilitate and accelerate the abstract an-
otation pr ocess oper ated by an expert r esearc her. A typical an-
otation session with iter ativ e phases (shown in Fig. 4 ) follows. 

� The user provides a list of abstracts. 
� For each selected abstract: (i) the model generates a proposed

labeling in the form of predicted tuples, and (ii) the user may
edit each single prediction (i.e., 1 tuple field at a time). 

� Once the editing session is over, the user is provided the
choice of accepting the annotations and of r etr aining the
model with the new provided annotations. 

The user may modify or add abstracts to the list at any point in
ime. For each prediction (type, entity, effect, or level), the frame-
ork provides 2 types of visual feedback. First, it shows the pre-
iction confidence value with a color code: green for high con-
dence predictions > 0.8, yellow for medium-confidence predic- 
ions between 0.6 and 0.8, and black for low-confidence predic-
ions < 0.6. Second, it shows a saliency map built on the input ab-
tr act. Saliency ma ps ar e a mac hine learning inter pr etation mec h-
nism born in the field of explainable artificial intelligence; they
r e ma ps ov er the input that highlight the portions of the text
hat contributed the most to the extraction of given attributes.
ere, we exploited the generation of saliency maps that employ

he Gr adient tec hnique [ 70 ]. Suc h an idea was alr eady pr oposed
uccessfully in our previous work [ 45 ] where such a mechanism
 as w ell e v aluated b y the users of the system, as it allo w users

o understand whether a given result is not only predicted cor-
 ectl y, but also predicted by exploiting a correct information. As
n example, in Fig. 5 , w e sho w the salienc y map obtained for the
rediction of the “infectivity” effect on the abstract of Ou et al. [ 64 ]
r e viousl y intr oduced in Fig. 2 . 

pplication workflow and example 
he “Homepage” of CoVEffect accepts 2 kinds of input: a list of
 e yw or ds or a single DOI. Suppose that w e sear ch for the k e yw or ds
Neutralization of Q677H” (as shown in Fig. 6 ). The following work-
ow is explained by the activity dia gr am in Fig. 7 . 

Once the search is performed, we r eac h the “Search result
a ge,” whose r esults can be examined (based on their metadata
nd abstract) and exported as a tab-separated file. Extracted pa-
ers may be of interest for the user (especially when they are fo-
used on mutations or variants effects), in which case they can be
ncluded in the prediction stack. For each paper, users may also
xplore similar papers by opening the “Similar papers tab”; as be-
or e, pa pers of interest can be selected. When the user closes the
ab, they will have a complete list of the searched papers, where
apers selected are marked in gray and papers added for the sim-

lar ones are marked in green. Figure 8 shows an example where,
r om the pa pers obtained in the pr e vious searc h, we selected the
aper with DOI “10.1128/mbio.02510–21” [ 71 ] and its similar paper
ith DOI “10.1186/s12985-021-01,554–8” [ 72 ]. 
By pressing the green arrow on the top-right corner of the

cr een, we r eac h the “Annotation page .” T his page allows users
o inspect results and suggest changes for one abstract at a time.
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T able 3: T est set r esults (run to e v aluate the pr edictions on 100 abstr acts r andoml y selected fr om the CORD-19 biology-r elated cluster) 

Task Measure F1 score Precision Recall 

Entity Av er a ge 
Weighted av er a ge 

0.762 
0.688 

0.802 
0.822 

0.755 
0.822 

Effect Av er a ge 
Weighted av er a ge 

0.792 
0.656 

0.855 
0.656 

0.781 
0.656 

Level Av er a ge 
Weighted av er a ge 

0.832 
0.624 

0.832 
0.625 

0.832 
0.624 

Whole tuple Av er a ge 
Weighted av er a ge 

0.578 
0.324 

0.631 
0.440 

0.569 
0.288 

Figur e 4: T he iter ativ e phases of the online semiautomated data 
labeling fr ame work. 

Figur e 5: T he gr adient-based saliency ma p implemented in the 
CoVEffect tool. The example shows the abstract of the paper by Ou et al. 
[ 64 ] also used in Fig. 2 to motivate our task. The text fr a gments 
highlighted with different shades of blue are used by the model to 
predict the effect of the SPIKE_V367F mutation, here corresponding to 
the value “infectivity.”

F  
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Figur e 6: Homepage , with a section for k e yw or d sear ch and a section for 
DOI search. 
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or each abstract, the framework extracts a list of predicted tu-
les, each composed of 4 fields (type, entity, effect, and le v el). For
ac h of suc h annotations, the user can inspect the saliency map
nd decide if the annotation is correct (thus should be a ppr ov ed)
r needs correction. Missing annotations can also be added man-
ally. 

Figur e 9 r epr esents the status of the “Annotation page” for pa-
er [ 71 ]. Panel A provides user utilities. Panel B shows the saliency
a p r eferring to the pr ediction of the v alue “higher” for the le v el

f the first predicted tuple (selected in panel D). Panel C shows the
etadata of the curr entl y inspected pa per and informs that the

r ediction stac k contains 2 pa pers (of whic h none has yet been
nnotated, as we have not clicked on “SAVE”). Panel D shows pre-
ictions 1, 2, 3, 4, and 6 as pr oduced by the pr ediction fr ame work,
ith the exception of the le v el v alues of 2, 4, and 6 that have
een manually corrected into the “lo w er” value (which had been
r ongl y pr edicted), b y emplo ying the drop-do wn menu in panel
. 

In addition, a full tuple annotation has been added (number
) regarding the single mutation Spike Q677H, which leads to an
ncrease in infectivity of the SARS-CoV-2 virus. 

When the user is satisfied with all the annotations associated
ith an abstract, these can be saved and are accordingly stored in

he “Annotated P a pers” list (panel A, top-right corner), where they
an also be downloaded for further processing. Note that anno-
ated abstracts that can be saved are the result of either a model
rediction or of a user manual correction/addition. 

When saving annotations for the first time, the user is
rompted to name the current session. Sessions can be down-

oaded as JSON files and reloaded at a later time . T hen, the user
s asked if they wish to r etr ain the model immediately. This pro-
ess is computationally intensive and may require several min-
tes based on the occupation of the servers. Users may also wait
o annotate additional papers and retrain the model only at a later
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Figure 7: Activity dia gr am of the user’s interactions with the CoVEffect web application. 

Figure 8: P a per List scr een, obtained after searc hing for “Neutr alization of Q677H” and inspecting pa pers similar to the first one (DOI 
“10.1128/mbio.02510–21” [ 71 ]). P a pers that are selected by the user are highlighted in color: gray for the ones corresponding to the initial search, green 
for the ones corresponding to the similarity-based search. 
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stage . T he application can be installed on other machines using 
the Docker distribution available on our GitHub repository. 

Discussion 

In this article, we described two contributions. On one hand,
we provide the identification of SARS-CoV-2 variants and muta- 
tions’ effects over a relevant set of CORD-19 abstracts. On the 
other hand, we make this annotation extendable, as training 
data can be augmented by using the CoVEffect interface . T he 
project stems from the need of providing a complete framework 
that supports semiautomatic extraction of structured informa- 
ion on SARS-CoV-2 variation effects. We had pr e viousl y emplo y ed
r ansformer-based text extr action for ca pturing k e y-value pairs
rom genomic experiments (from Gene Expression Omnibus). The 
ask performed in this case is more complex, as it aims to iden-
ify attributes that ar e interdependent: m utation or v ariants with
heir effect and le v el. 

A consider able impr ov ement of the initial GPT2 model was nec-
ssary to address this new challenge. In addition, no preexist-
ng training dataset was available; we thus designed a method-
logy to build a small manually crafted dataset of good qual-
ty. The trajectory to evaluate the performances of our method
s as follo ws: w e chose an initial dataset with minimal size,
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Figure 9: Ov ervie w of the CoVEffect interface , with a top bar and 4 panels , ca ptur ed during the annotation of a pa per by Zeng et al. [ 71 ]. Panel A 

includes the top bar; the commands on the left allow to return to the k e yword search screen, open a new user session, save the current one, or load a 
pr e viousl y closed one . T he commands on the right allow to inspect the list of already processed papers or the list of papers selected through the 
k e yw or d sear c h. P anel B shows the abstr act of the selected pa per to be annotated, inter activ el y highlighted using the gr adient-based saliency ma p 
related to the tuple fragment selected in panel D. Panel C shows the metadata of the selected paper and the size of the stack of papers chosen by the 
user. Panel D shows the predicted tuples for the selected abstract, using the color-code for informing on the accuracy of the prediction. Panel E allows 
users to activ el y modify the prediction of the model and save the suggestions. 
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nd at each small delta increase, we evaluated the changes
n performances on a test dataset until a satisfactory result
as r eac hed. This pr ocess was necessary to find a tr ade-off be-

ween 2 needs: the minimization of the effort of expert man-
al annotation and maximization of prediction performances.
his effort has paid off in terms of recognizing single concepts;
o w e v er, the linked tuple prediction still has m uc h r oom for

mpr ov ement. 
To inspect the most challenging aspects of the predic-

ion task, we performed an err or anal ysis divided into 3 cat-
gories: (i) entity name pr ediction (nonconstr ained to an y
 alue, filter ed with a RegEx filter), (ii) effect/le v el pr ediction
restricted to our taxonomy values), and (iii) association be-
ween entity, effect, and le v el. Table 4 presents an overview
f the most r epr esentativ e err ors eac h with an associated
xample. 

Types of errors captured in the entity name prediction mainly oc-
urred when the abstract included: 

� Mutation/variant named with uncommon terminology. The typi-
cal way to name a mutation is to declare the protein where
the m utation occurr ed follo w ed b y a m utation signatur e
( 〈 r efer ence amino acid, coordinate in pr otein, alternativ e
amino acid 〉 , e .g., Spike D614G). T he most adopted terminolo-
gies to name a SARS-CoV-2 variant are Pango lineages [ 61 ] or
WHO Greek letters [ 20 ]; ho w ever, there are other ways to re-
fer to variants (e.g., GISAID or Nextstrain clades), which are
curr entl y not supported in CoVEffect. Table 4 shows an ex-
ample from [ 73 ] where a different naming scheme is used
for a mutation of interest, which makes the model’s mission
harder. 

� Effect/level associated with a named group of variants. The WHO
has classified variants into variants of concern and other
classes according to their impacts [ 20 ]. In publications, we
often find r efer ence to effects studied on a group of vari-
ants, r eferr ed to with such terms. Table 4 shows one such
case [ 71 ], where CoVEffect can miss 1 or more entities in
the list. 

� Mutations/variants written as long lists. Some publications—
noticeably the ones using computational methods to analyze
their variants of interest—tend to deal with long lists of mu-
tations . CoVEffect model ma y miss some entities in such sce-
narios (as happened in [ 74 ]). 

Mor eov er, issues occurring in the entity/level prediction mainly
ccurred when the abstract included: 

� Effects misclassification. The model does not always recognize
effects as they are expressed in our taxonomy, especially
when there exist connections between different effects . T his
case may happen when an effect is a special case of another
effect (e.g., binding to a host receptor is a special case of a
host–virus interaction); in this case, only using a broad con-
text and expert user knowledge does it become possible to
understand the correct target effect. Table 4 shows 1 such ex-
ample from [ 75 ]. 

� Levels misclassification. The changes of some effects
ar e mor e easil y expr essible thr ough the higher/lo w er
comparators (i.e., higher transmissibility, lo w er sever-
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Table 4: Typical issues detected in the prediction task. The first column groups issues by macro-category, the second describes the 
scenario that leads to an Issue , and the third and fourth provide the r efer ence DOI to an abstr act and a short text excer pt fr om the 
abstract. Words in orange show the relevant information for the expected values (Target) as opposed to the obtained prediction. 

Issue DOI Text excerpt from abstract Target Prediction 

Entity name 
prediction 

Uncommon 
naming (muta- 
tions/variants) 

[ 73 ] The S:655Y substitution was transmitted 
mor e efficientl y than …

SPIKE_H655Y —

Mutations/variants 
r eferr ed to as a 
group 

[ 71 ] … major VOCs , including Alpha, Beta, and 
Gamma . We demonstrate that the Q677H 

m utation incr eases vir al infectivity and 
syncytium formation, as well as enhancing 
resistance to neutralization for VOCs . 

Alpha Alpha 

Beta Beta 

Gamma —

Mutations/variants 
reported as long 
lists 

[ 74 ] To understand the impact of spike protein 
mutations on the binding interactions 
r equir ed for virus infection and the 
effectiveness of neutralizing monoclonal 
antibody (mAb) ther a pies, m utants D614G, 
N501Y, N439K, Y453F, and E484K were 
assessed. 

SPIKE_D614G —

SPIKE_N501Y SPIKE_N501Y 

SPIKE_N439K —

SPIKE_Y453F SPIKE_Y453F 

SPIKE_E484K SPIKE_E484K 

Effect and/or 
le v el pr ediction 

Effect 
terminology 

[ 75 ] The increased ACE2-binding affinity of 
variants containing the N501Y or E484K 

mutations can be traced to the 
time-dependent disruption and/or 
formation of interfacial salt bridges , not 
necessaril y a ppar ent fr om structur al 
models but detected by extensive molecular 
dynamics simulations. 

SPIKE_N501Y 

binding to host 
receptor 

SPIKE_N501Y 

binding to host 
receptor 

SPIKE_N501Y 

intermolecular 
interactions 

SPIKE_N501Y 

protein 
conformational 
optimization. 

SPIKE_E484K 

binding to host 
receptor 

SPIKE_E484K 

binding to host 
receptor 

SPIKE_E484K 

intermolecular 
interactions 

SPIKE_E484 protein 
conformational 
optimization. 

Va gue r esults 
presentation 

[ 73 ] We demonstrate that the substitution 
S:655Y, r epr esented in the Gamma and 
Omicron VOCs, enhances viral replication 
and spike protein clea vage . All VOCs tested 
exhibited increased spike cleavage and 
fusogenic capacity . 

GAMMA viral 
replication 

GAMMA viral 
replication 

GAMMA protein 
functioning 

- 

Association Multiple effects 
connected to 
same entity 

[ 76 ] Infections caused by the delta variant 
increases the risk of hospitalization within 
14 days after symptom onset, and the high 
viral load correlates with COVID-19 
associated morbidity and mortality . 

DEL T A, risk of 
hospitalization 

DEL T A, risk of 
hospitalization 

DEL T A, viral load DEL T A, viral load 

DEL T A, fatality rate - 

Differ ent le v els 
for same entity 
effect (not 
supported) 

[ 77 ] Natur all y occurring v ariants in Orf3a (Q57H) 
and nsp2 (T85I) were associated with poor 
replication in Vero-CCL81 cells but not in 
BEpCs. 

ORF3a_Q57H 

vir al r eplication, 
lo w er 

- 

ORF3a_Q57H 

vir al r eplication, 
unaffected 

ORF3a_Q57H 

vir al r eplication, 
unaffected 
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ity). Unfortunately for other effects (e.g., protein con- 
formational optimization), comparators are less used 

in text. 
� Unclear results presentations . Effects reported in abstracts 

with a v a gue pr esentation of the r esults can be missed. For 
example, some publications that report on the effectiveness 
of a specific ther a peutic measur e might not declare that the
measure is indeed a drug. Other publications (see [ 73 ] for
an example) study the effect of a mutation on the functions
of vir al pr oteins without making explicit that the topic dis-
cussed is a protein function—making it hard for the model
to predict the effect. 
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Finall y, pr oblems occurring in predicting the association between
n entity and its effect level mainly occurred when the abstract in-
luded: 

� Multiple effects for 1 entity. The model can miss the association
of 1 (or more) effects that are part of a list (as happened in
[ 76 ]). 

� Multiple levels for 1 entity effect. Giv en abstr acts may include the
specification of an entity and associated effect with multiple
le v els (e.g., in [ 77 ]). This scenario is likely to be found when
the specific effect has been studied under multiple conditions
(e.g., measuring the viral loads of a variant in different tissues
or studying the binding of a specific variant with a wide range
of antibodies). CoVEffect current data model does not support
m ultiple disa gr eeing le v els for an entity–effect pair. This im-
pacts on the recall of our results. 

Notabl y, the pr ediction model r eac hed quite good perfor-
ances, as shown in Tables 2 and 3, and still has m uc h space for

mpr ov ement thanks to the expected enhancements on the train-
ng dataset. An interesting result is that mutation entities were
ery well predicted even when the protein information was far
part in the text from the mutation signature (see our motivat-
ng example in Fig. 2 , where Spike is far from V367F, but they are
orr ectl y associated); the inter pr etability mec hanism of saliency
aps is of great support to highlight these cases . Moreo ver, the
odel worked well in detecting our tar gets: pr otein amino acid–

ased mutations rather than genomic nucleotide-based muta-
ions and lineages rather than clades. 

CoVEffect brings a number of tangible results to the scientific
omm unity, whic h we here describe. Immediate integrated use
f our resulting annotated database was made within our CoV2K
 22 ] system by updating the AA_changes, Variant, and Effect enti-
ies. Other data-driv en anal ysis r esources de v eloped by our gr oup
such as V irusV iz [ 78 ] and V iruClust [ 79 ]) could immediately ben-
fit from the addition of structured tuples connecting mutations
nd effects. At the same time, any other resource employed in the
urr ent pr actice of vir ologists and phylogenetists (suc h as CoV-
pectrum [ 80 ] and Outbreak.info [ 81 ]), studying the trend of spe-
ific mutations and variants, can benefit from the provisioning of
 dataset with this structured information. Our output can be ap-
reciated in the AdditionalFile9 [ 63 ], containing the predicted an-
otations for the whole biology-related CORD-19 cluster. External
sers may also annotate other abstracts by installing CoVEffect
hr ough our Doc ker distribution and running the batch annotator
available as a Python notebook on our GitHub repository). 

Next, we aim to extend the scope of CoVEffect by includ-
ng the possibility of recognizing also alternative formulations of

utation and variant names, tuples reporting on different lev-
ls for the same entity and effect, groups of mutations lead-
ng collabor ativ el y to the same effect, insertions and deletions,
he method used to establish the effect (epidemiological, exper-
mental, computational or inferred), and effects reported with
omplex—possibl y quantitativ e—form ulations. We will also add a
m utation v alidation” module to c hec k the semantic consistency
f mutation signatures, on top of the RegEx-based check. 

In the future, we aim to apply CoVEffect to other subparts of
he CORD-19 dataset as well as to expand to other liter atur e cor-
uses, focusing on different, well-defined, and delimited domains.
ore in general, our framework is suitable to resolve similar prob-

ems where the prediction task attempts to recognize in text the
ssociations between given entities and related values (within ex-
sting taxonomies). One additional possibility regards predicting
uples of individual mutations, with their associated genetic back-
r ound, and their m utual inter action; this has been demonstr ated
o be important for SARS-CoV-2, possibly supporting the explana-
ion/prediction of new variants. 

vailability of Source Code and 

equirements 

roject name: CoVEffectProject 
omepage: https:// gmql.eu/ coveffect/ 
ode repository: https:// github.com/armando2603/coveffect/ 
perating system: Platform independent 
r ogr amming langua ge: The source code of the data pr ovision-
ng module and the deep learning–based prediction framework
re implemented in Python. The CoVEffect web interface to an-
otate abstracts is implemented in Python (Flask fr ame work) and

avaScript (Vue framework). 
ther r equir ements: The a pplication can be installed on any ma-
hine with its Docker image version. 
icense: MIT 

RID:SCR _ 023415 
iotools ID: CoVEffect 

a ta Av ailability 

ll supporting data and materials ar e av ailable in the GigaScience
igaDB database [ 63 ] and on Zenodo [ 82 ]. 

dditional Files 

dditionalFile1-effects-taxonomy. Descriptions of legal values
or the “Effect” field, based on a categorized taxonomy. 
dditionalFile2-le vels-taxonom y. Descriptions of legal values for

he “Le v el” field. 
dditionalFile3-tr aining_da taset_target. List of target tuples

manually annotated) of 221 abstracts considered for training
he model. For each abstract, target tuples follow the schema ID,
OI, title, entity, effect, le v el, type (m utation or v ariant), and tu-
les_count ( > 1 when an effect/le v el is shar ed by m ultiple entities,
abstracts containing the same effect described in the tuple). 
dditionalFile4-v alida tion_da taset_target. List of target tuples

manually annotated) of 50 abstracts considered for validating the
r epar ed pr ediction model. For eac h abstr act, tar get tuples follow
he schema defined for AdditionalFile3. 
dditionalFile5-v alida tion_da taset_highlighted. Textual ab-

tracts of the 50 manuscripts considered for validation; the
ext used to support the manual target annotations has been
ighlighted in y ello w. 
dditionalFile6-v alida tion_da taset_prediction. List of predicted
nnotations of 50 abstr acts consider ed for validating the pr epar ed
rediction model; it contains 4 sheets, respectively for entity, ef-
ect, le v el, and whole tuple predictions. 
dditionalFile7-ke yw ords_query_list. K eyword-based searc h run
n the CORD-19 dataset to extract a relevant subset of abstracts
egarding the scope of interest of CoVEffect. The Boolean logic
sed to combine k e yw or ds is explained in the section “Annota-
ions of the biology-related CORD-19 cluster.”
dditionalFile8-CORD-19_ba tch_da taset_metada ta. Metadata of

he 7,230 papers extracted by the k e yword-based query in Addi-
ionalFile7. These abstracts have been annotated by the prediction
r ame work. 

http://gmql.eu/coveffect/
https://github.com/armando2603/coveffect/
https://scicrunch.org/resolver/RRID:SCR_023415
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AdditionalFile9-CORD-19_ba tch_da taset_prediction. List of pre- 
dicted annotations of 7,230 abstracts extracted from the biology- 
related cluster of CORD-19. 
AdditionalFile10-test_dataset_target. List of target tuples (manu- 
ally annotated) of 100 abstracts randomly selected from the 7,230 
extracted as in AdditionalFile8. For each abstract, target tuples 
follow the schema defined for AdditionalFile3. 
AdditionalFile11-test_dataset_prediction. List of predicted an- 
notations of 100 abstracts considered for testing the prediction 

model on a subset of the CORD-19 biology-related cluster. As Addi- 
tionalFile6, it contains 4 sheets, r espectiv el y for entity, effect, le v el,
and whole tuple predictions. 
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