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Abstract. Next Generation Sequencing is a 10-year old technology for
reading the DNA, capable of producing massive amounts of genomic
data - in turn, reshaping genomic computing. In particular, tertiary data
analysis is concerned with the integration of heterogeneous regions of
the genome; this is an emerging and increasingly important problem
of genomic computing, because regions carry important signals and the
creation of new biological or clinical knowledge requires the integration of
these signals into meaningful messages. We specifically focus on how the
GeCo project is contributing to tertiary data analysis, by overviewing the
main results of the project so far and by describing its future scenarios.
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1 Introduction

Genomics is a relatively recent science. The double helix model of DNA, due
to Nobel prizes James Watson and Francis Crick, was published on Nature in
April 1953 and the first draft of the human genome, produced as result of the
Human Genome Project, was published on Nature in February 2001, with the full
sequence completed and published in April 2003. The Human Genome Project,
primarily funded by the National Institutes of Health (NIH), was the result of a
collective effort involving twenty universities and research centers in the United
States, the United Kingdom, Japan, France, Germany, Canada, and China.

In the last fifteen years, the technology for DNA sequencing has made gigan-
tic steps. Figure 1 shows the cost of DNA sequencing in the last fifteen years;
by inspecting the curve, one can note a huge drop around 2008, with the intro-
duction of Next Generation Sequencing, a high-throughput, massively parallel
technology based upon the use of image capturing [22]. The cost of producing a
complete human sequence dropped to 1000 US$ in 2015 and is expected to drop
below 100 US$ in the next two-three years.

Each sequencing produces a mass of information (raw data) in the form of
“short reads” of genome strings. Once stored, the raw data of a single genome
reach a typical size of 200Gbyte; it is expected that between 100 million and 2
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Fig. 1. Cost of DNA Sequencing, Source: NIH

billion human genomes will be sequenced by 2025, thereby generating the biggest
“big data” problem for the mankind [23].

1.1 From strings to signals

Technological development also marked the generation of new methods for ex-
tracting signals from the genome, and this in turn is helping us in better un-
derstanding the information that the genome is bringing to us. Our concept of
genome has evolved, from considering it as a long string of 3.2 billions of base
pairs, encoding adenine (A), cytosine (C), guanine (G), and thymine (T), to that
of a living system producing signals, to be integrated and interpreted. The most
interesting signals can be classified as:

– mutations, telling us specific positions or regions of the genome where the
code of an individual differs from the expected code of the “reference” human
being. Mutations are associated with genetic diseases – which are inherited
and occur on specific positions of the genes – and other diseases such as
cancer – which are also produced during the human life and correlate with
factors such as nutrition and pollution.

– gene expression, telling us in which specific conditions genes are active (i.e.
they transcribe a protein) or inactive. It turns out that the same gene may
have an intense activity in given conditions and no activity in others.

– peaks of expression, indicating specific positions of the genome where there
is an increase of short reads due to a specific treatment of DNA; these in
turn indicate specific biological events, such as the binding of a protein to
the DNA.

These signals can be observed by using a genome browser, i.e. a viewer of
the genome. All signals are aligned to a reference genome (the standard se-



Genomic Data Management 3

Fig. 2. Signals on a genome browser, corresponding to genes (an annotation in the
header where genes are shown in black), gene expression (one track with red signal),
peaks (three tracks with blue signals) and mutations (three tracks with red segments
pointing to mutated positions of the genome)

quence characterizing human beings; such sequence is constantly improved and
republished by the scientific community). The browser is open on a window of a
given length (from few bases to millions of bases) and the signals are presented
as tracks on the browser; each track, in turn, displays the signal – either by
showing its intensity or just by showing its position.

Figure 2 presents a genome browser window; tracks of different colours de-
scribe gene expression, peaks of expressions, and mutations. The black line in-
dicates the position of (four) genes – these are known information, or “annota-
tions”, that can be included in the window. An interesting biological question
could be: “find the genes which are expressed where there are three peaks (rep-
resenting the fact that the specific event denoted by the peak is confirmed by
all experiments) and such that the gene is close to at least one mutation”. Such
question would, in this specific example, extract the second gene; GeCo’s objec-
tive is to allow the expression of such questions over genomic signals.

1.2 Tertiary Data Analysis

Signals can be loaded on the browser only after being produced as a result of
long and complex bioinformatics pipelines. In particular, analysis of NGS data
is classified as primary, secondary, and tertiary (see Figures 3 and 4): primary
analysis is essentially responsible of producing raw data - i.e. small sequences
in output from the sequencing machine; secondary analysis is responsible of ex-
tracting (“calling”) the signals from raw data and aligning them to the reference
genome; tertiary analysis is responsible of data extraction, integration, and anal-
ysis. Thousands of processed datasets are being produced at large sequencing
centers, are being assembled by large international consortia, and made available
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Fig. 3. Primary, secondary, and tertiary data analysis for genomics, from https://

goo.gl/ko6pCE

Fig. 4. The landscape of genomic computing tools; few of them are dedicated to tertiary
data analysis

https://goo.gl/ko6pCE
https://goo.gl/ko6pCE
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for secondary research use. International consortia include the Encyclopedia of
DNA Elements (ENCODE) [12], The Cancer Genome Atlas (TCGA) [24], and
the 1000 Genomes Project [1].

While many bioinformatics systems are dedicated to secondary data anal-
ysis, a few of them include tertiary analysis. Among these: SciDB, a scientific
database produced by the spin-off company Paradigm4, supports a genomic ad-
dition focused on genomic data integration [3]; DeepBlue, provides easy access
to datasets produced within the BluePrint consortium, with a language which
is quite similar to GeCo’s query language GMQL [2]; FireCloud, developed by
the Broad Institute, offers an integrated platform supporting cancer research
pipelines [13]. All these systems already support access to a huge number of
open datasets, including ENCODE and TCGA.

2 Overview of GeCo

The introduction has set the stage for discussing why GeCo is an important
project in the context of tertiary data analysis for genomics. We now illustrate
the main results achieved by the project, providing as well a short description
of the various publications where such results are presented.

2.1 Data Model

The Genomic Data Model (GDM) [18] is based on the notions of datasets and
samples and on two abstractions: one for genomic regions, which represent por-
tions of the DNA and their features, and one for their metadata. Datasets are
collections of samples and each sample consists of two parts: the region data,
which describe the characteristics of genomic features called during secondary
analysis, and the metadata, which describe general properties of the sample.

Genomic region/feature data describe a broad variety of molecular aspects,
which are individually measured, and therefore they are available in a variety of
formats which hamper their integration and comprehensive assessment. GDM
provides a schema to the genomic features of DNA regions; thus, it makes such
heterogeneous data self-describing and interoperable. We map data from data
files in their original format into the GDM format when they are used, without
including them into a database, so as to preserve the possibility for biologists
to work with their usual file-based tools. The provided data schema has a fixed
part, which guarantees the comparability of regions produced by different kinds
of processing, and a variable part reflecting the “feature calling process” that
produced the regions and describing the region features determined through
various processing types.

Metadata characterize the high heterogeneity of genomic data and their pro-
cessing; they are collected in a broad variety of data structures and formats
that constitute barriers to their use and comparison. To cope with the lack of
agreed standards for metadata, GDM models metadata simply as free arbitrary
semi-structured attribute-value pairs, where attributes may have multiple values
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Fig. 5. Genomic Data Model

(e.g., the Disease attribute can have both “Cancer” and “Diabetes” values). We
expect metadata to include at least the considered organism, tissue, cell line,
experimental condition (e.g., antibody target – in the case of NGS ChIP-seq
experiments, treatment, etc.), experiment type, data processing steps, feature
calling, and analysis method used for the production of the related data; in the
case of clinical studies, also individual’s descriptions including phenotypes.

Figure 5 shows a GDM dataset consisting of three samples, each associated
with a patient affected by Breast Cancer (BRCA). The region part has a sim-
ple schema, describing a particular value associated to each region; regions are
aligned along the whole genome and belong to specific chromosomes (not shown
in the figure). The metadata part includes free attribute-value pairs, describing
the patient’s age and sex; in GDM, attributes are freely associated to samples,
without specific constraints.

2.2 Query Language

The name ‘GenoMetric Query Language’ (GMQL) [17] stems from the language’s
ability to deal with genomic distances, which are measured as nucleotide bases
between genomic regions (aligned to the same reference) and computed using
arithmetic operations between region coordinates. The language supports a very
rich set of predicates describing distal conditions, i.e. distal properties of regions
(e.g., being at minimal distance above a given threshold from given genes). Fur-
thermore, the management of stranded regions (i.e. regions with an orientation)
is facilitated by predicates that deal with such orientation (e.g., to locate the
region’s start and stop coordinates according to the strand, or the upstream or
downstream directions with respect to the region’s ends).

GMQL operations include classic algebraic operations (SELECT, PROJECT,
UNION, DIFFERENCE, JOIN, SORT, AGGREGATE) and domain-specific op-
erations (e.g., COVER deals with replicas of a same experiment; MAP refers ge-
nomic signals of experiments to user selected reference regions; GENOMETRIC
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JOIN selects region pairs based upon distance properties); the full description
and language specification of GMQL is provided at the GMQL website1. A typi-
cal GMQL query starts with a SELECT operation, which creates a dataset with
only the data samples filtered out from an input dataset by using a predicate
upon their attributes. Then, the query proceeds by processing the selected sam-
ples in batch with operations applied on their region data and/or metadata.
Finally, it ends with a MATERIALIZE operation, which stores a dataset by
saving the region data of each of its samples and the related metadata. Tracing
metadata provenance during the processing of each operation is a unique aspect
of our approach; knowing metadata associated with resulting samples allows
tracing the input samples which contributed to results.

2.3 Implementations

The development of GMQL V1, reported in [10] was relatively fast, as the im-
plementation took about one year; Pig Latin [19] was chosen as target language
because GMQL syntactically recalls Pig Latin - both languages progressively
construct queries by introducing intermediate results and naming them by us-
ing variables; this style of query writing was considered similar to the scripting
style which is dominant in bioinformatics, although of course GMQL scripts are
high-level and not intertwined with programming language constructs.

The main problem with this approach is that the optimization strategies were
hard-coded within the software produced by the translator, which in turn was
focused on the specific features of our target language Pig Latin. Moreover, at the
end of 2014, it became clear that Apache Pig was no longer strongly supported,
while other engines were becoming much more popular; in particular Spark [6]
was achieving a dominant position, Flink [4] had very interesting capabilities as
a streaming engine, and SciDB [21] had a totally different approach to storage
through arrays. Therefore, at the beginning of 2015, we opted for a major system
redesign, starting the development of GMQL Version 2.

The design of GMQL V2 [16] has been centered around the notion of an
intermediate representation for the query language, developed as an abstract
operator tree (actually a directed acyclic graph or DAG, as operations can be
reused), that is at the center of the software architecture. The intermediate
representation carries the semantics of the query language in terms of elementary
operations that are applicable to metadata and to region data separately, and
opens up to various options for expressing the language’s syntax (which can be
expressed as relational expressions, or in embedded form within programming
or workflow languages, or in logical format by using a Datalog-like style) and for
deploying over different cloud-based engines. In particular, at various times we
used Spark, Flink, and SciDB.

1 http://www.bioinformatics.deib.polimi.it/GMQL/
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2.4 Comparison of Cloud-based Implementations

Compared to V1, V2 has a much more complex software organization. While
V1 was cooperatively developed by 3 PhD students, V2 has a larger group of
developers, which included in the past several master students; the use of GitHub
allowed for several branches to the main Spark implementation, which allowed
us to test also the use of Flink and SciDB, served by suitable implementation
branches. At the moment, the Spark implementation is fully supported, while the
Flink and SciDB implementations are only maintained for specific operations.

Comparative analysis, published in [8] and [9], shows that the performances
of Flink and Spark are remarkably similar, while the performances of Spark and
SciDB are very different, with SciDB being faster than Spark when operations
involve selections and aggregates (as they are facilitated by an array organiza-
tion), whereas Spark is faster than SciDB in JOIN and MAP operations (thanks
to the general power of the Spark execution engine).

2.5 Data Indexing

While many solutions for efficient data management of “sequence reads” have
been developed, in GeCo we concentrated on efficient data management for ge-
nomic intervals. GMQL is grounded on the efficient execution of operations for
the composition and comparison of (epi)genomic regions and their associated at-
tributes. To cope efficiently with complex region calculus, we have developed the
1D Interval Inverted Index (Di3), a multi-resolution single-dimension indexing
framework [14].

Di3 is independent from the data layer and adaptable to any key-value pair
persistence technology. These may range from NoSQL databases to classical B+
tree and simple in-memory key-value collections implemented by most of mod-
ern programming languages; such separation makes Di3 adaptable to a variety
of application scenarios, from small scale ad-hoc solutions (using B+ tree), to
large scale systemic solutions (using cloud-based key-value pair persistence tech-
nologies).

The most important contribution of Di3 is its extendable, orthogonal, and
comprehensive region calculus. Region-based operations include the identifica-
tion of co-occurrences or accumulations of regions, possibly from different bio-
logical tests and/or of distinct semantic types, within the same area of the DNA,
sometimes within a certain distance from each other and/or from DNA regions
with known structural or functional properties.

2.6 Desktop Data Analysis

We developed a rich set of abstractions for client-side data analysis, explo-
ration and visualization, supported by a tool named GenoMetric Space Explorer
(GeMSE) [15]; GeMSE supports primitives for data exploration spanning from
select, sort, and discretize, to clustering, and pattern extraction. GeMSE lever-
ages on GMQL as its back-end tertiary data retrieval framework, but can be
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used on any text files in standard BED (Browser Extensible Data), BroadPeak,
NarrowPeak, GTF (General Transfer Format), or general tab-delimited format.

GeMSE applies to a genometric space produced by a specific GMQL oper-
ation, called MAP [17], which applies to two datasets, denoted as reference and
experiment; the former typically corresponds to genes or transcription regula-
tory regions; the latter consists of multiple, possibly heterogeneous, samples,
each constituted by multiple regions. The result is a matrix structure, called
genometric space, where each row is associated with a reference region, each
column refers to a sample, and each matrix entry is computed by means of an
aggregate function (computed on a selected attribute of the experiment regions
which overlap with the reference regions). GeMSE data exploration consists of
three iterative phases:

– Transition, where a transformation function is applied on a genometric space
resulting in a new genometric space;

– Analysis, where a genometric space is analyzed using data analysis functions
(e.g., pattern analysis or statistical inference);

– Visualization, where a genometric space is visualized (e.g., on heatmaps or
graph views).

Tracking multiple transformations of genometric spaces is crucial for data ex-
ploration. GeMSE tracks such transitions in a graph data structure called State-
Transition Tree (STT), whose nodes represent different genometric spaces and
whose edges represent the transformations between genometric spaces. From
any data exploration state, one can view the related genometric space, visual-
izing it as a table or a heatmap, and also explore patterns contained into the
heatmap. STT visualization facilitates state examination with data exploration
and a trial-and-error approach.

3 Future Steps

3.1 Language Interfaces

Several activities are ongoing in GeCo. We fully developed a Python library
supporting an interface to the full GMQL language; the library is deployed within
the international Python library repository and does not require any installation
- as it is customary in Python. It supports a local and a remote execution mode,
the former runs in the client desktop, the latter runs on a remote server and as
such it connects to the global repository. Similar interfaces are being deployed
for R and Galaxy.

3.2 Distributed System

The availability of a core data model as a data interoperability solution and of
a high-level data processing language is a strong prerequisite for defining data
exchange protocols. We expect that each data repository will be the owner of the
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data that are locally produced, and that nodes of cooperating organizations will
be connected to form a federated database. In such systems, queries move from
a requesting node to a remote node; they are locally executed; then results are
communicated back to the requesting node. This paradigm allows for distributing
the processing to data, transferring only query results which are usually small
in size.

Supporting a high-level query interface to a server is already making one big
step forward, which is similar to the gigantic step made by SQL in the context
of client-server architectures (which dates a couple of decades). Indeed, once a
system supports an API for submitting GMQL queries, these have the following
properties: they are short texts and produce short answers. In contrast, most of
today’s implementations are centralized and require first the full data transmis-
sion and next the evaluation of server-side programs. This scenario opens up to
the design of simple interaction protocols, typically for:

– Requesting information about remote datasets, facilitated by the availability
of metadata (for locating data of interest) and of their region schemas (for
formalizing queries);

– Transmitting a query in high-level format and obtain data about its com-
pilation, not only limited to correctness, but including also estimates of the
data sizes of results;

– Launching query execution and then controlling the transmission of results,
so as to be in control of staging resources and of communication load.

3.3 Repository

Very large-scale sequencing projects are emerging; as of today, the most relevant
ones include:

– The Encyclopedia of DNA elements (ENCODE) [12], the most general and
relevant world-wide repository for basic biology research. It provides public
access to more than 4,000 experimental datasets, including the just released
data from its Phase 3, which comprises hundreds of epigenetic experiments
of processed data in human and mouse;

– The Cancer Genome Atlas (TCGA) [24], a full-scale effort to explore the
entire spectrum of genomic changes involved in human cancer;

– The 1000 Genomes Project [1], aiming at establishing an extensive catalogue
of human genomic variations from 26 different populations around the globe;

– The Roadmap Epigenomics Project [20], a repository of “normal” (not in-
volved in diseases) human epigenomic data from NGS processing of stem
cells and primary ex vivo tissues.

Data collected in these projects are open and public; all the Consortia re-
lease both raw and processed data, but biologists in nearly all cases trust the
processing, which is of high-quality and well controlled and explained. The use
of a high-level model and language, such as GDM and GMQL, is the ideal set-
ting for provisioning next generation services over data collected and integrated
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from these and other repositories, improving over the current state-of-the-art.
We already started to work towards an integrated repository: in [7] we discussed
a conceptual representation of metadata, where we presented a minimal con-
ceptual schema that includes data typically found in all platforms, albeit with
different names and formats; in [11] we discussed the transformation of TCGA
datasets into BED format, which is quite similar to GDM.

We are working towards the development of an integrated repository with
the following features:

– Processed datasets available in several sources, including the above ones, will
be provided with compatible metadata;

– Processed region datasets of other sources (beyond TCGA) will be translated
to GDM;

– It will be possible to choose among a set of custom queries, representing the
typical/most needed requests;

– It will be possible to provide user input samples to the services, whose privacy
will be protected;

– Deferred result retrieval will be possible, through limited amount of staging
at the sites hosting the services.

4 Conclusions

The progress in DNA and RNA sequencing technology has been so far coupled
with huge computational efforts in primary and secondary genomic data man-
agement. In this paper, we have shown that a new need is emerging: making
sense of data produced by these methods, in the so-called tertiary analysis; this
is the objective of GeCo, our five-year project. In this paper, we have shown
how GeCo is providing a new focus on data extraction, querying, and analysis
by raising the level of abstraction of models, languages, and tools.
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