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Abstract

Thousands of new experimental datasets are becoming available every day; in many cases they are
produced within the scope of large cooperative efforts, involving a variety of laboratories spread all
over the world, and typically open for public use. Although the potential collective amount of available
information is huge, the effective combination of such public sources is hindered by data heterogeneity,
as the datasets exhibit a wide variety of notations and formats, concerning both experimental values and
metadata. Thus, data integration is becoming a fundamental activity, to be performed prior to data analysis
and biological knowledge discovery, consisting of subsequent steps of data extraction, normalization,
matching and enrichment; once applied to heterogeneous data sources, it builds multiple perspectives
over the genome, leading to the identification of meaningful relationships that could not be perceived by
using incompatible data formats.
In this paper, we first describe a technological pipeline from data production to data integration; we then
propose a taxonomy of genomic data players (based on the distinction between contributors, repository
hosts, consortia, integrators, and consumers), and apply the taxonomy to describe about thirty important
players in genomic data management. We specifically focus on the integrator players and analyze
the issues in solving the genomic data integration challenges, as well as evaluate the computational
environments that they provide to follow up data integration by means of visualization and analysis tools.
Keywords: data integration, genomics, metadata, interoperability, genomic databases, bio-ontologies.

1 Introduction
In recent years, benefiting from high-throughput technologies [1],
increasing amounts of genomic data of multiple types – deriving from
microarray, next-generation sequencing, or single-cell technologies –
have become widely available. Gene expression, mutation and variation,
transcriptome analysis, chromatin immunoprecipitation sequencing, are
only some of the heterogeneous types of data that genomic researchers use
and combine in their everyday work.

Genomic data includes experimental observations, representing
genomic sequences (in raw stages) or regions with their properties (in
processed stages) and metadata, carrying information about the biological
phenomena observed and the performed experiment (i.e., biological
material, preparation, donor, etc.), the associated clinical elements, the
used technology and assay, and the management aspects, such as case
studies and projects/organizations behind data production. As genomic
datasets originated from disparate sources are inherently heterogeneous
and not interconnected, the use of multiple genomic datasets for analysis

and knowledge discovery has raised pressing demands for enhanced data
and metadata integration methodologies.

With “genomic data integration” we define the process of combining
different types of genomic data and their associated metadata – each
of which provides a different and complementary view on the genome
– into a single representation, which allows to understand aspects
of the genome that cannot otherwise be inferred; metadata are the
drivers for the integrated management and linking of data. Genomic
data integration must address several technical issues: (i) the need for
continually updated data, to guarantee higher quality of results; (ii) the
lack of normalization/harmonization between the processing pipelines [2];
(iii) the limited structured metadata information and agreement among
models [3]; (iv) the unsystematic use of controlled terminology to allow
interoperability [4].

In this review article we focus on human genomic datasets; the
term “genomic” is not restricted to DNA data, but used in its typical
broader meaning, which includes also transcriptomic, epigenomic, and
miRNomic data; however, we do not include other kinds of “omics” data,
e.g., proteomics or metabolomics. A rich literature has been produced
about genomic data integration (see [5] as specific for genomics, [6] for
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metabolomics, and [7; 8] for ‘omics’ in general). However, to the best
of our knowledge, a comprehensive review illustrating the actors that are
currently playing a role in the integration of genomic data and metadata
has not been reported yet. In the following we illustrate how the rest of
this review is arranged.

In Section 2, dedicated to the technological pipeline of genomic
data, from data production to final use of genomic datasets, we describe
the steps required for data and metadata production and integration.
Each data source and platform may perform only some of these steps,
depending on their engagement in the pipeline. We also discuss services
and characteristics of the data access options provided to end users.

Section 3 is dedicated to a taxonomy of the players involved in data
production and integration and their interplay; we describe five main
roles of these players and the relationships between them. Specifically,
in the landscape of genomic production and integration, we identified the
following types: contributors, such as laboratories that produce the wet-lab
data and associated information; repository hosts, organizations handling
primary and secondary data archives, such as the well-known Gene
Expression Omnibus (GEO, [9]); consortia, international organizations
who have agreed on broad data collection actions (The Encyclopedia
of DNA Elements, ENCODE [10], is a notable example); integrators,
initiatives whose main objective is combining data collections from other
players and provisioning high quality access to integrated resources; and
consumers, the actual users of the exposed data platforms and pipelines.
We also discuss the interactions among different players.

Finally, in Section 4 we describe the main players in the three central
categories (including 4 repository hosts, 12 consortia, and 13 integrators),
specifying which parts of the technological pipeline discussed in Section 2
they address. In particular, we provide a detailed description of the
integrative strategy operated by our group within the Genomic Computing
project (GeCo, [11; 12; 13]), which has dedicated huge efforts to the whole
genomic data integration problem.

2 Technological pipeline of genomic data
Data and their corresponding descriptions, i.e., metadata, are first
produced, then integrated. In this section, we give an overview of the
relevant technological phases towards final use, distinguishing between
data, metadata, and also services and access interfaces built on top
of them. Relevant steps are highlighted in the following in bold and
comprehensively depicted in Figure 1 (data steps are in grey, metadata ones
in purple, service/access ones in green), along with supporting objects (in
orange) that guide the definition of each step.

2.1 Production

Every genomic research study starts with nucleic acid sample collection
and preparation; ensuring high quality samples is important to maximize
research efforts and validity of data analysis. This phase deals with privacy
issues, for example, related to the use of clinical samples in research; it is
impossible to create fully anonymized samples and this leads to issues of
identifiable population data.

Methods that determine the nucleotide sequence of DNA and RNA
molecules are called sequencing. Next-generation sequencing (NGS) is a
high-throughput sequencing technology that enables the reading of billions
of nucleotides in parallel. Sequencing (or “primary analysis”) includes:
(i) raw data generation; (ii) analysis of hardware generated raw data; (iii)
generation of sequencing reads and their quality score, i.e., billions of short
sequencing reads that are stored in text files in FASTQ format.

Typically, production is not driven by any imposed wet-lab standard,
unless laboratories are guided by a consortium or other organization (e.g.,

ChIP-seq can have antibody standards, RNA-seq and DNase-seq can have
specific protocols and replicate numbers).

The metadata generation is usually performed by the laboratories
that generate the raw data; they document it in a rich way, yet approximate
in the structure and possibly imprecise in the content. Basic information,
about the performed assay, the used sequencing platform, and the analyzed
biological material, are collected.

Researchers can then submit data through one of the several data
brokers that act as links between production laboratories and ingestion
application programming interfaces (APIs) provided by collecting
platforms—at times these include web interfaces or web services. Upon
submission, the ingestion services sometimes perform basic quality
assurance and checking of format consistency, and then deposit the data
into their data stores.

2.2 Integration

We describe as part of “data integration” all the steps that follow data
production and their preliminary publication. Along the way, a number
of issues may be encountered. Thus, we hint at existing methodological
solutions chosen by players addressing the mentioned aspects.

During data processing, also referred to as “secondary analysis”,
genomic sequences are reconstructed in a computational way by exploiting
overlaps between short sequencing reads. After quality assurance filtering
on raw reads, typically the data processing workflow includes alignment of
reads to a reference genome, which produces BAM files. The differences
between the sequenced genome and the reference one can be identified,
for example, by performing variant calling and filtering, which produce
VCF files. Other secondary analysis workflows output different file
formats1, e.g., Browser Extensible Data (BED) files from peak calling, or
Gene Transfer Format (GTF) files from the identification of differentially
expressed genes.

The following steps are at times performed together with the previous
ones, other times delegated to other data players that follow up with other
data manipulations.

Quality control (QC) is vital for NGS technology experiments. It can
be performed during three phases: on the initial extracted nucleic acids (in
case they are degraded), after the sequencing library preparation (to verify
that the insert size is as expected and that there are no contaminating
substances), and after sequencing (most common tools are Sequence
Analysis Viewer and FastQC). The more time and effort spent on QC,
the better quality results will be. Many players report some kind of QC
check in one of these phases; sometimes even just producing quality studies
and reporting is considered as QC.

Some players may decide to reprocess part of the data collected
elsewhere. Reasons for taking this approach may be several and of different
nature, mainly including the need for normalized pipelines, as a means to
obtain more homogeneous data ready for analysis. The normalization
of the pipelines deals with the problem of converting raw data to
numerical data such that any expression differences between samples are
due solely to biological variation, and not to technical variation introduced
experimentally; for example, in microarrays-based experiments technical
bias can be introduced during sample preparation, array manufacture and
array processing. Selected data types require some processing to achieve
compliance to standards (e.g., alignment to a reference sequence, uniform
peak calling, thresholding of signal peaks, consistent signal normalization,
consistency check between replicates, ...).

Among post-processing activities tailored at enhancing interoperability
among different datasets, we mention data normalization procedures

1 https://genome.ucsc.edu/FAQ/FAQformat.html

https://genome.ucsc.edu/FAQ/FAQformat.html
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Fig. 1. Diagram of production steps, integration steps, and objects supporting the activities. By reading the diagram from left to right and from top to bottom, we find: the steps involved in
producing data (in grey) and metadata (in purple); the steps that are part of integration challenges concerning data (in grey), metadata (in purple), and also information access and provided
services (in green). Steps are linked to the supporting objects in orange: these are external data structures or abstract entities needed to define the step execution. Optionality of steps in the
diagram is indicated by octagonal shapes, while compulsory steps, which are mainly in production, are rendered as rounded rectangles.

(such as format conversions like normalization of coordinates or re-
formatting into narrowPeak or broadPeak standard format in ENCODE),
data transformation (e.g., matrix-based data formatted as BED data), and
data annotation. Examples of the latter include: (i) providing positional
information (i.e., genomic coordinates) and associated known genomic
regions (e.g., genes) in a standardized framework; (ii) allowing joined use
of different data types (e.g., gene expression and methylation) based on
common gene and sequence identifiers, such as gene IDs from HGNC [14],
Entrez Gene [15], or Ensembl [16] terminologies; (iii) merging together
in same files multiple expression measures obtained through different
calculations, such as FPKM, FPKM-UQ, and counts in gene expression
data. As terminologies for structural and functional sequence annotation
are various, most integration strategies keep multiple representations
together, as a conservative solution for allowing interoperability.

For what concerns metadata, which is the information associated
with produced data, it may be organized in a structured format. In
some cases, integrators apply tailored integration pipelines to extract the
needed information to fill their own agreed data models, thus performing
schema-level integration. Generally, the idea is to redistribute metadata
over a few essential entities, e.g., Project-Sample-File or Investigation-
Study-Assay [17], as proposed in the general-purpose ISA-Tab format
for structuring metadata [18] and now adopted by the FAIRsharing
resource [19]. A number of questions are usually answered during this
process: Is this set of entities minimal? Is it enough to hold all information?
Is something lost at this granularity? Note that, depending on the specific
sources, metadata elements have been linked to different entities, and a
different base entity has been selected at times. To mention some notable
choices:

• ENCODE has centered everything on the Experiment, which includes
a number of Biosamples, from which many Replicates are produced,

to which Items belong (sometimes with a many-to-many cardinality
as files may be combined from multiple replicas).2

• Genomic Data Commons (GDC, [2]) is centered on the Patient
concept, from which multiple Samples are derived. From another
perspective, data are divided by Project, associated with a Tumor Type,
for which many Data Types are available.

• GEO is organized into Series that include Samples (whereas these latter
ones can be employed in multiple Series), sequenced with a Platform.
A higher-order classification organizes Series and Samples in Datasets
and Profiles.

Most platforms offer a metadata-based search strategy, exploiting
the querying possibilities over the new metadata schema. However,
sometimes such a search functionality is available even when no new data
schema has been applied.

Some players, especially the ones working in connection with a
Data Coordination Center, perform manual curation and additions to
metadata. Within such activities, we mention in particular two: assigning
labels to replicas and cleaning metadata names.

The first activity is used for managing technical and biological
replication, which is a common and recommended practice in genomic
experiments [20; 21; 22]. In a data model where information is organized
based on a hierarchy (e.g., Experiment/Replicate/File), it is very likely
that metadata will be replicated inside each element. Metadata format such
as JSON or XML have a hierarchical structure and can easily represent
such data models, by encapsulating each element inside its parent. When
a de-normalization of such structures is produced (e.g., to associate
with a materialized file also information about the ancestor Replicate or
Experiment), integrators face the problem of assigning labels to metadata
in such a way that the one/many-to-many relationship, which is implicit in
the JSON or XML syntax, can stay explicit in the data. To overcome this

2 A complete list of entities is available at https://www.
encodeproject.org/profiles/.

https://www.encodeproject.org/profiles/
https://www.encodeproject.org/profiles/
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problem while flattening hierarchical formats, it is customary to assign
labels to metadata that belong to ancestors, in such a way that they can be
recognized also in the de-normalized version.

The second activity, cleaning metadata names, is needed because,
after label assignment, attribute names may become too long. It is
highly preferable to make names minimal, so they still express their
information without loosing their meaning, even if the semantics
of nesting is removed; in this way they are more easily usable
within a metadata-based search system and in the connected analysis
platforms. As an example, a rather complicated attribute such as
replicates.biosample.donor.organism.scientific_name,
derived from flattening five hierarchical levels in a JSON document,
may be simplified into donor.organism to facilitate understanding.
Redundant information, including duplicated attributes deriving from a
comprehensive download approach from the source, may also be removed
using similar rule-based mechanisms.

Other widely adopted processes to enhance metadata interoperability
include ontological/terminological annotation on top of the original
or curated metadata. Annotation is a means to achieve metadata
normalization, needed to compare metadata terms. Genomics, as many
other fields in Bioinformatics, is greatly helped by specialized ontologies,
which mediate among terms and enable interoperability. A considerable
number of key ontologies are used by many genomic actors: Uber
Anatomy Ontology [23] for tissues, Cell Ontology [24] and Experimental
Factor Ontology [25] for primary cells and cell lines, Ontology for
Biomedical Investigations [26] for assays, Gene Ontology [27] for
biological processes, molecular functions and cellular components. All
these are employed by ENCODE, that has dedicated great efforts to the
systematization of official term names for the description of its data.
Experimental Factor Ontology is used by the Genome-Wide Association
Studies (GWAS) Catalogue [28] that curates all trait descriptions by
mapping them to terms of this ontology. Moreover, GDC enforces a
standardization using the National Institutes of Health (NIH3) Common
Data Elements (CDE4) rules. Many attributes present codes referencing
terms from the CDE Repository controlled vocabularies. Other relevant
resources include: the National Cancer Institute (NCI5) Thesaurus [29]
for clinical care, translational/basic research, and administrative/public
information, and the National Center for Biotechnology Information
(NCBI6) Taxonomy [30], providing curated nomenclature for all of the
organisms in the public sequence databases. Several search services, which
integrate a high number of ontologies, are employed in the landscape of
genomic data integration. Examples include: BioPortal [31] and Ontology
Lookup Service (OLS, [32]), two repositories of biomedical ontologies
and terminologies that provide services to annotate search keywords with
ontological terms; Ontology Recommender [33], a BioPortal service that
annotates free text with a minimal set of ontologies containing terms
relevant to the text; Zooma7, an OLS service providing mappings between
textual input and a manually curated repository of text-to-ontology-
term mappings. Annotation can also include adding external identifiers
pointing to different databases that contain same real-world entities. While
redundancy is not accepted within a single source, in the genomics domain
it is common across sources, provided that resources are well interlinked
and representations are coherent between each other (i.e., metadata values
have the same level of detail).

3 https://www.nih.gov/
4 https://cde.nlm.nih.gov/
5 https://www.cancer.gov/
6 https://www.ncbi.nlm.nih.gov/
7 https://www.ebi.ac.uk/spot/zooma/

2.3 Services and Access

Organizations operating in the integration field also provide interfaces to
access the result of their service. To this end, they must address the issues
related to the synchronization of their local database with the original
data one. As data size is significant, when updating the interface content,
downloading everything from scratch from the original sources should be
avoided. Instead, it is necessary to precisely define metrics to compare
contents: What is new, what has been updated, and what is not present
anymore? One possible strategy is defining a partitioning schema. In
many cases this is not the simplest possible one (i.e., file by file) since
information is typically structured in a complex and hierarchical way. For
example, when considering the source ENCODE, metadata can be used
to partition the source data repository. API requests can be composed in
order to extract always the same partition of data, specifying parameters
such as “type = Experiment”, “organism = Homo Sapiens” and “file.status
= released”. Consequently, a list of corresponding files is downloaded; the
identifying characteristics of the files (typically including size, last update
date, checksum) can be compared with the ones saved in the local database
at a previous download session of the same partition. Making a distinction
between genomic region data and metadata, the latter are typically smaller
in size; in case comparing versions becomes too complicated, metadata
may be downloaded each time, as often there are no such things as a data
release version or pre-computed checksum values to be checked.

Besides offering updated content, genomic players that host data and
make it available through any kind of interface, usually offer also other
supporting services. Typically these include: application programming
interfaces to directly download and extract specific portions of data, or
perform rich and structured queries; free-text search over metadata,
sometimes only on selected kinds of metadata, such as gene names
or functional annotations; direct metadata export, at times included
within the API options, other times as bulk download; visualization
tools or ready-to-use connections to common visualization browsers (e.g.,
UCSC or Ensembl genome browser); embedded integrated analysis
tools to further process and analyze the results retrieved in the interface
(diverse use cases include clustering [34], spatial reconstruction [35],
visualization [36], and graph-based analysis [37]); possibility to perform
computations on cloud in a dedicated space, with reserved computational
resources.

In addition to openly available datasets, some sources also feature
controlled data, whose access is only given upon authorization; some just
require a registration step to access the download functionality. Many
players make available legacy versions of data, rarely of metadata.

A few players accept user-data submissions, either to be included as
future content of the platform or to be processed together with publicly
available datasets in further computations and analysis.

3 Taxonomy of the players involved in data
production and integration and their interplay

The landscape of institutions, private actors and organizations within the
scope of genomics is broad and quite blurred. The authors of [9] had
previously proposed a tentative classification of sources: primary resources
publish in-house data; secondary resources publish both in-house data
and collaborator data; tertiary resources accept data to be published from
third, unrelated parties. More recently, the Global Alliance for Genomics
and Health (GA4GH, [38]), an international, nonprofit alliance formed
in 2013, built the Catalogue of Genomic Data Initiatives8, where they
include the following types, not mutually exclusive: Biobank/Repository,

8 https://www.ga4gh.org/community/catalogue/

https://www.nih.gov/
https://cde.nlm.nih.gov/
https://www.cancer.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/spot/zooma/
https://www.ga4gh.org/community/catalogue/
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Consortium/Collaborative Network, Database, GA4GH Driver Project,
Industry, National Initiative, Ontology or Nomenclature Tool, Research
Network/Project, Standards, and Tool.

We expand the taxonomy of [9], whereas we compact the one proposed
by GA4GH – which in any case only includes initiatives under the
alliance’s umbrella – by identifying five categories to classify every
entity that plays a role in this field, named genomic data player. In
general terms, data are produced at laboratories (corresponding to the
player: contributor), deposited at data archives (player: repository host),
harmonized within programs (player: consortium), integrated by systems
or platforms that aggregate data from different sources and add value to
it (player: integrator), and employed by end users, mainly biologists and
bioinformaticians (player: consumer). These categories are not intended
to completely represent the whole possibilities, nor to be exclusive
with respect to each other. In the following, we detail each category’s
characteristics and the interactions among categories, carrying genomic
data from production to its integrative use.

Contributor. A contributor generates raw data with any high-throughput
platform, using next-generation sequencing or any other technology; it
takes care of annotating wet-lab experiment data with a set of descriptive
metadata, as well as encrypting and uploading data to archives. A
contributor can be a laboratory or hospital, which reports directly to a
Principal Investigator holding an independent grant and leading the grant
project. In other cases laboratories are part of a bigger program, led by
a consortium or national institution. In both cases, it is customary for
laboratories to send their data to other players, who carry on the publication
and integration process.

Repository host. We call “repository hosts” the organizations standing
behind primary data archives (also referred to as “data storage”), recently
grown exponentially in size. They host data not only from independent
laboratories and companies that gain visibility in this way, but also from
consortia that wish to make their data available from such general archives.
Moreover, it is customary for authors of biological publications to deposit
their raw and processed datasets on these repositories—some journals even
require it upon submission [39]. Primary data archives currently face a
number of challenges:

• Their primary goal is to pool disparate data into a single location,
giving priority to quantity and typically not demanding a structure.
However, without any homogenization effort, data is barely useful,
impeding analysis and cross-comparison that build an added value
with respect to individual experiments [40].

• They archive raw sequencing data, which is usually not immediately
usable by the scientific community. The majority of these archives
do not provide access to pre-processed published data, leaving this
cumbersome task to individual scientists who need to analyze them.

• Usually metadata deriving from contributors’ submissions are not
sufficient to ensure that each dataset/experiment is reproducible and
that the data can be re-analysed. As new technologies, protocols and
corresponding annotation vocabularies are constantly emerging, new
metadata fields are required and need curation to accurately reflect the
data.

Consortium. Consortia provide evolved forms of primary repositories.
They usually include many participants and projects, which have to abide
to certain policies (see, for example, policies of GDC9) and operational
conventions for participation (see, for example, experiment guidelines of

9 https://gdc.cancer.gov/about-gdc/gdc-policies/

ENCODE10). These policies have to ensure agreement among the parts
about sensitive matters such as data access, data submission, and privacy.
Guidelines guarantee compatibility among datasets, in order to establish
an infrastructure that enables data integration, analysis, and sharing.

Many consortia refer to a Data Coordination Center (DCC) in charge
of data and metadata normalization and cleaning, and of all the activities
that stand between production and publication. Most well-known DCCs
include the ones of ENCODE [41], BLUEPRINT [42], ICGC [43],
and 1000 Genomes [44]; Roadmap Epigenomics Consortium [45] has
a Data Analysis and Coordination Center (EDAAC11) and GTEx has
a Laboratory, Data Analysis, and Coordinating Center (LDACC [46]).
Along with repository hosts, consortia are required by their own policies
to submit their raw sequencing reads and other primary data to controlled
access public repositories. The ones that serve this purpose are mainly
the European Nucleotide Archive [47], the European Genome-phenome
Archive [48], and the Database of Genotypes and Phenotypes [49].

Integrator. An integrator may be a platform, an initiative, or a project
whose objective is to overcome the constant need of users to learn how to
navigate new query interfaces and to transform data from different sources
to be integrated in the analysis. As a secondary purpose, an integrator
usually aims at providing visualization and integrative analysis tools for
the research community. Integrators do not point to raw data; they instead
always reference the sources of their data (either with links to the source
portals, or by reporting original identifiers for each data unit).

Consumer. Genomic data and metadata are finally used by biologists,
bioinformaticians and data scientists, who download them from sources’
platforms and FTP servers to feed a wide variety of tertiary analysis
pipelines, including applications in pharmacology, biotechnology, and
cancer research.

Interactions among genomic data players are described in Figure 2.
Experimental genomic data and metadata are first produced – occasionally
also preliminarily processed – by contributors, then published on
repositories or directly on consortia’s platforms. Within consortia
themselves, re-processing may happen, as their pipeline for raw
data processing uses community-agreed or consortium’s guideline-based
algorithms. Intermediate derived results are generated to be later published.
In some cases data curated by consortia are re-published also on general
archives, such as ENCODE and Roadmap Epigenomics on GEO12. Data
are finally collected by integrators that expose them on tertiary interfaces,
tailored at enhancing interoperability and use. Simpler interfaces are
provided to consumers also by many repository hosts and consortia. In
rare cases, not depicted in Figure 2 as they are exceptional, integrators
may consider important to re-process data of some sources with normalized
pipelines to enhance the possibilities of integration. Two long arrows show
the taxonomy from different points of view: from a data perspective,
contributors deal with raw data, repository hosts and consortia with
processed data, while integrators make data interoperable and fit for use of
consumers; from a process perspective, data is produced by contributors,
submitted to aggregating platforms, that take care of dissemination to
tertiary players, who make it available for its consumption.

As an instantiation of the diagram described in Figure 2, we apply the
same taxonomy to a number of relevant genomic players, which will be

10 https://www.encodeproject.org/about/
experiment-guidelines/
11 http://www.roadmapepigenomics.org/overview/
edaac
12 https://www.ncbi.nlm.nih.gov/geo/info/ENCODE.
html, https://www.ncbi.nlm.nih.gov/geo/roadmap/
epigenomics/

https://gdc.cancer.gov/about-gdc/gdc-policies/
https://www.encodeproject.org/about/experiment-guidelines/
https://www.encodeproject.org/about/experiment-guidelines/
http://www.roadmapepigenomics.org/overview/edaac
http://www.roadmapepigenomics.org/overview/edaac
https://www.ncbi.nlm.nih.gov/geo/info/ENCODE.html
https://www.ncbi.nlm.nih.gov/geo/info/ENCODE.html
https://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/
https://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/
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Fig. 2. Diagram of interactions among genomic data players. Nodes are players; arrows,
with different colors and textures represent their interactions. Contributors publish either
on repositories or consortia platforms; data are then integrated. Consumers retrieve data
from repositories, consortia or integrators. The data view represents the perspective of data
stage, while the business view shows the process applied to genomic datasets.

described thoroughly in the following. Figure 3 thus shows interactions
between example players, starting from the laboratories where data are
primarily generated, throughout repositories where data are deposited,
consortia where they are curated, and finally integrator interfaces where
they are used and explored. The used notation and colors reflect the ones
adopted in Figure 2.

We drew the relationships between these players according to their
specifications in the documentation and relevant publications, to the best
of our knowledge at the time of writing. Some consortia, for instance
The Cancer Genome Atlas (TCGA) [50] and GDC, accept submissions
both from laboratories gathered under the same organization and from
individual submitters that observe the submission guidelines. There are
labs that contribute to more projects. Raw experimental data are usually
deposited to SRA [51], while GEO (the most used by researchers) and
ArrayExpress [52] are employed for publication of data at later stages of
processing; complete studies are uploaded to BioStudies [53]. Note that,
in the Figure 3 diagram, even primary archives reference to each other.

4 Main genomic data players
We propose a systematic overview of a number of genomic data players,
guided by Table 1. The first column of the table contains a list of data
sources that contribute to produce, integrate and promote the use of
genomic data for research, grouped by the categories of the taxonomy
introduced in the previous section. The list is in no way meant to be
comprehensive, but should be received as a starting reference. For each
mentioned player we show which steps/functionalities are provided. The
following columns in Table 1 represent steps described in Section 2 in bold
font and depicted in Figure 1.

Inside Table 1 cells, the notation × indicates a step included by
the player; an empty cell stands for a step not provided by the player;
~ is used when an answer is only partially positive (e.g., some parts of
the step are performed while others not, or the step is only performed
under certain conditions); ? is used for an unknown answer, when the
documentation and publications describing the player and its services did
not allow us to determine an answer. All information contained in the table

are filled up to the best of our knowledge, being retrieved from the player’s
main publications or from the linked online documentation. Our discussed
overview is divided in subsections, one for each player type.

4.1 Contributors

As it can be observed from Table 1, contributors, including both
independent labs, private submitters, and consortium labs as depicted in
Figure 3, are the only ones in charge of sample collection, preparation
and primary analysis, followed by generation of metadata; only in some
cases they also apply quality control measures before or during secondary
analysis activities.

4.2 Repository hosts

Gene Expression Omnibus (GEO, [9]) is the most general and widely
used among repositories. It started in 2002 as a versatile, international
public repository for gene expression data [54]; it then consequently
adopted a more flexible and open design to allow submission, storage and
retrieval of a variety of genomic data types, such as from next-generation
sequencing or other high-throughput technologies. To include also non-
expression data, in 2008 GEO created a new division called “Omix”,
standing for a mixture of ‘omic data’ [55].

Data can also be deposited into Sequence Read Archive (SRA, [51])
as supporting evidence for a wide range of study types: primarily raw
sequence reads and alignments generated by high-throughput nucleic acid
sequencers (BAM file format), now expanded to other data including
sequence variations (VCF file format) and capillary sequencing reads. As
a part of the International Nucleotide Sequence Database Collaboration
(INSDC), the SRA is materialized in three instances, one at the European
Bioinformatics Institute (EBI13), one at the NCBI [56], and one at the
DNA Data Bank of Japan (DDBJ, [57]).

ArrayExpress [52] was first established in 2002 only for microarray
data. It is now an archive of functional genomics data ranging from gene
expression and methylation profiling, to chromatin immunoprecipitation
assays. Recently, it also increased the number of stored experiments
investigating single cells, rather than bulk samples (i.e., single-cell
RNA-seq).

The EBI BioStudies [53] database holds high-level metadata
descriptions of biological studies, with links to the underlying data
databases hosted at the EBI or elsewhere, including general-purpose
repositories. Also those that have not been already deposited elsewhere
can be hosted at BioStudies.

Discussion. By observing the repository-related rows of Table 1, we
conclude that repositories are quite diverse with respect to the data
integration steps included in their practice. Generally, they do not perform
specific steps on data, however they often require submitters to ensure
quality control checks, as GEO and ArrayExpress do, while SRA mentions
it as future work. Metadata are not treated uniformly; some organization is
enforced, but much information is left also in unstructured format. While
services offered by their interfaces are various, they all allow submissions
from any user; this is a characterizing feature of the repositories.

Since repositories were growing in diversity, complexity and
(unexpressed) interoperability [58], the need for organization and
annotation of the available data became primary. To this end, NCBI
and EBI have implemented additional, complementary, initiatives on
top of repositories. NCBI BioProject and BioSample databases [59] and
EBI Biosamples [60] were initiated to help addressing these needs by
facilitating the capture and management of structured metadata and data

13 https://www.ebi.ac.uk/

https://www.ebi.ac.uk/
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Fig. 3. Diagram of example players and their most important interactions. Note that, with respect to rows referring to consortia in Table 1, two more nodes are shown here: TCGA and
TARGET, as they contribute with their data to many other players. They are not discussed separately in Table 1 as, currently, their data is only made available through other platforms (the
most important are GDC and ICGC); the old TCGA portal was dismissed and TARGET does not have its own one.

for diverse biological research projects and samples represented in their
archival databases.

4.3 Consortia

Consortia are usually focused on particular aspects of what we generically
call “genomics”. The following four work all on matters related to
epigenomics.

The Encyclopedia of DNA Elements (ENCODE) Consortium [10] is
an ongoing international collaboration of research groups funded by the
National Human Genome Research Institute (NHGRI). Primary goal of the
project is to characterize functional features in DNA and RNA expression
in a wide number of cell lines. The project’s integrative effort is presented
in [61]; ENCODE DCC also published interesting results regarding its
achievements [41; 62; 63; 64], respectively reporting on ontologies used
for annotation, metadata organization, storage system, and duplication
prevention.

BLUEPRINT [65] is an EU-funded consortium under the umbrella
of the International Human Epigenome Consortium (IHEC). It was set
up to develop new high-throughput technologies to perform epigenome
mapping, and to analyze diverse epigenomic maps comprehensively,
making them available to the scientific community as an integrated
resource. Besides being available through IHEC resources, the
BLUEPRINT built its own Data Analysis Portal [42], as the first platform
based on EPICO, an open access reference set of libraries to be used to
develop data portals for comparative epigenomics.

The Roadmap Epigenomics Consortium [45] was born in 2015 from
the NIH with the aims of: (i) understanding the biological functions of
epigenetic marks and evaluate how epigenomes change; (ii) designing
and improving technologies, i.e., standardized platforms, procedures,
and reagents, that allow researchers to perform epigenomic analysis and
to study epigenetic marks efficiently; (iii) creating a public resource of
disease-relevant human epigenomic data to accelerate the application of
epigenomics approaches.
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FANTOM [66] is an international research consortium created to
perform functional annotations of the mammalian genomes, including
Homo Sapiens. The object of the project has recently moved from
understanding the transcripts to understanding the whole transcriptional
regulatory network.

The following three consortia are instead working on problems related
to cancer genomics.

Genomic Data Commons (GDC, [2]) is an information system for
storing, analyzing and sharing genomic and clinical data from cancer
patients. It aims to give democratic access to such data, improve sharing
and promote approaches of precision medicine that can diagnose and treat
cancer. Ultimately, the goal is to become the one-stop cancer genomics
knowledge base; however, consolidation and harmonization of genomic
and clinical data are ongoing and they will require a long process. GDC
was created mainly to help individual investigators and small programs to
meet NIH and the NCI genomic data sharing requirements, and thus to store
their data in a permanent home. In addition, GDC now includes data from
big cancer programs, such as The Cancer Genome Atlas (TCGA, [50]) and
the Therapeutically Applicable Research to Generate Effective Treatments
(TARGET), also shown as consortia nodes in Figure 3. While GDC is
technically a cancer knowledge network, we classify it as a consortium
as it has a very broad mission: it accepts user submissions, it performs
quality control, it provides storage and it also redistributes the data.
What particularly distinguishes it from a simple repository host or an
integrator is the great effort dedicated to harmonizing data (standardizing
metadata, re-aligning data and re-generating tertiary analysis data using
new pipelines [67]) deriving from incoming submissions and from the
included cancer programs. TCGA, instead, is a terminated program; it no
longer accepts samples for characterization. It used to expose the data by
means of its own portal, while now it relies on the GDC infrastructure.
As its concluding project, in 2018 the TCGA program produced the Pan-
Cancer Atlas [68], a collection of analysis performed cross-cancer type.
In addition to including many single-cancer-type projects, the last datasets
that GDC platform makes available are the ones produced within the
context of the Pan-Cancer project.

The International Cancer Genome Consortium (ICGC, [43]) was
established in 2011 to launch and coordinate a large number of research
projects de-centralized in many countries of the world, sharing the common
goal of explaining the genomic changes present in many forms of cancer.
Its Data Portal hosts data from other large-scale projects focused on cancer
research, such as TCGA and TARGET, as shown by the two dotted
incoming arrows in Figure 3.

The Cancer Cell Line Encyclopedia (CCLE, [69]), for almost 1,500
human cancer cell lines, collects gene expression, chromosomal copy
number and massively parallel sequencing data.

The last five consortia we mention are instead focused on various
matters, such as variation across populations, transcriptomics, exome
sequencing, and annotation.

Launched to become one of the largest distributed data collection and
analysis projects in genomics, the goal of the 1000 Genomes Project [44]
was to find most genetic variants with frequencies of at least 1% in the
studied populations. In 2015 the International Genome Sample Resource
(IGSR, [70]) was established to expand and improve the legacy inherited
from the 1000 Genomes Project.

The Genotype-Tissue Expression Consortium (GTEx, [46]),
supported by the NIH Common Fund, aims at establishing a resource
database and associated tissue bank to study the relationship between
genetic variation and gene expression and other molecular phenotypes
in multiple reference tissues. The results of this transcriptomics-focused
project help the interpretation of findings from genome-wide association

studies (GWASs) by providing data and resources on expression
quantitative trait loci in many tissues and diseases.

The GENCODE project [71] produces high-quality reference gene
annotations and experimental validation for human and mouse genomes. It
aims at building an encyclopedia of genes and gene variants, by identifying
all gene features in the human and mouse genomes, using a combination
of computational analysis and manual annotation.

The NCBI RefSeq project [72] provides a comprehensive manually
annotated set of reference sequences of genomic DNA, transcripts, and
proteins—including, for example, genes, exons, promoters, enhancers,
etc.. Exploiting the data from the INSDC, it provides a stable reference for
genome annotation, analysis of mutations and studies on gene expression.

The Exome Aggregation Consortium (ExAC, [73]) unites a group of
investigators who are aggregating and harmonizing exome sequencing
data from other large-scale projects. According to the most updated news
(end of 2016, [74]), the ExAC provided sequences from almost 61,000
individuals belonging to studies about different diseases and populations.
Recently, the ExAC browser has been dismissed in favour of the Broad
Institute Genome Aggregation Database (gnomAD, [75]), which more
than doubles the previous sample size.

Discussion. From Table 1 we observe that consortia are generally
concerned with coordination of data transformation, from secondary
analysis activities, to quality control filtering and normalization/annotation
of data. Almost all the analyzed consortia definitely include a pipeline
normalization step in their activities, as this is the characterizing step of
this type of player (only BLUEPRINT and GENCODE did not mention
information about uniform workflows in their documentation). Instead,
the approach towards metadata curation and tertiary analysis tools is
diversified and does not show a unique trend. As to the “metadata-based
search strategy” column in Table 1, we specify that some consortia just
provide a very limited functionality of this kind (e.g., 1000 Genomes can
only filter by population, technique and data collection, and Roadmap
Epigenomics by tissue and data type only). While ENCODE and GDC
present sophisticated search interfaces, other ones are quite basic. As to
providing APIs and visualization tools, GENCODE and 1000 Genomes
were assigned the ~ symbol since they do not offer such services natively,
but exploit the ones of Ensembl.

4.4 Integrators

As consortia, also integrators tend to clusterize based on the sub-branch of
genomics they cover. This happens mostly because rules and common-
practices are better shared within a same branch, following similar
purposes, while cross-branch projects are more rare. We first mention
four integration organizations that collect data from epigenomics-focused
consortia.

The International Human Epigenome Consortium (IHEC, [76])
coordinates large-scale international efforts towards the production of
reference epigenome maps. For a wide range of tissues and cell types, the
regulome, methylome, and transcriptome are characterized. As a second
phase, the consortium is expanding its focus from data generation to the
application of integrative analyses and interpretation on these datasets,
with the goal of providing a standardized framework for clinical translation
of epigenetic knowledge. We classified the IHEC as an integrator rather
than a consortium as the normalization work is mainly carried on by the
members institutions (or consortia themselves) that are part of it (for
instance ENCODE, BLUEPRINT, Roadmap Epigenomics). The main
outcome of the IHEC is instead its Data Portal, which can be used to view,
search, download, and analyse the data already released by the different
associated projects.

DeepBlue [80] is a data server that was developed to mitigate the lack
of mechanisms for searching, filtering and processing epigenomic data,
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Table 1. Overview of the steps towards data integration included by genomic data players. Rows represent players (with reference of main publication, when
available) and are grouped by player type. Columns represent the steps for genomic data integration described in Section 2 and are grouped according to their
progression in a typical pipeline. Used notation: × indicates that a certain step is included/performed by the player; ~ indicates an uncertain answer (i.e., in some
cases the service/step is provided just in few studies or for some data types); ? indicates that the player’s documentation and publications did not allow determining
an answer; empty cell indicates that the service/step is not provided.
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Laboratories × × × ~ ~

R
ep

os
ito

ry ArrayExpress [52] × × × × × × ? × × × × ×
BioStudies [53] × × × ? × ~ ~ ×
Gene Expression Omnibus (GEO, [9]) × ~ ~ ~ × × × × × ×
Sequence Read Archive (SRA, [51]) ~ × × × × × ? ×

C
on

so
rt

iu
m

1000 Genomes Project Consortium [44] × × × × × ~ ~ ~ × ~ ×
BLUEPRINT [65; 42] ? ? ? × ? × × × × × × × × ?
Cancer Cell Line Encyclopedia (CCLE, [69]) × × × × × × × × × × × ×
ENCODE [10] Consortium × × × × × × × × × × × × × ? ? × ×
FANTOM [66] × × × ? × × × ×
GENCODE [71] × ? × × ~ ~ ×
Genome Aggregation Database (gnomAD, [75]) × × × × ×
Genomic Data Commons (GDC, [2]) × × × × × × × × × × × × × × ×
Genotype-Tissue Expression Consortium (GTEx, [46]) × × × × × × × × ×
International Cancer Genome Consortium (ICGC, [43]) × × × × × × × × × × × × ~ × ×
RefSeq [72] × × × × × ~
Roadmap Epigenomics Consortium [45] × × × ? × × ~ × ×

In
te

gr
at

or

Broad Institute Firehose/FireBrowse ? ? ? ? ? × × ~ × × × ×
Broad Institute Terra × × ~ ~ × × × × × × ×
cBioPortal [77] × × × × × × ~ × × × × ~
Cistrome [78] × × × × × × × × × × × × × ×
COSMIC [79] × × × × × × × × × × × ×
DeepBlue [80] × × × × × × × × × × ×
GeCo GenoSurf & GMQL [12] × × × × × × × × × × × × × × ×
GWAS Catalog [28] × × × × × × × × × × × × ×
International Human Epigenome Consortium (IHEC, [76]) × × × × × × × × × × × × × ~ × ×
ISB Cancer Genomics Cloud [81] × × × × × × × × ×
MGA Repository [82] × × × × × × × × × ×
Seven Bridges Cancer Genomics Cloud [83] × × ? ? × ~ × × × × × × × ×
UCSC Xena [84] × ? × ? × × × × × × ×

within the scope of the IHEC. DeepBlue made a precise work of data
integration by homogenizing many epigenomic sources, including data
from ENCODE, BLUEPRINT, Roadmap Epigenomics among others. It
uses a clear distinction between region data and metadata, manages both
experiment and annotation related datasets, defines a set of mandatory
metadata attributes – while storing additional ones as key-value pairs –
and uses metadata to locate region data.

In the Cistrome Data Portal [85] users can find data relevant
to transcription factor and chromatin regulator binding sites, histone
modifications and chromatin accessibility. Such data is useful to
a number of studies, including differentiation, oncogenesis and
cellular response to environmental changes. As to the last available
publication [78], its database contains about 100,000 samples, both for
human and mouse organisms. It includes data of ChIP-seq and chromatin

accessibility from ENCODE, Roadmap Epigenomics and GEO, which
has been carefully curated and homogeneously re-processed with a new
streamlined analysis pipeline, detailed at http://cistrome.org/
db/#/about/. Comparison between Cistrome enriched region signal
peaks and the ones in ENCODE, which they are derived from, showed
that they are significantly different.

The MGA repository [82] is a database of both NGS-derived and other
genome annotation data, which are completely standardized and equipped
with metadata. It does not store raw sequence files, but instead lists of
base positions in the genome corresponding to reads from experiments,
e.g., ChIP-seq. Ten model organisms are represented.

The following seven integrators are mainly working in the field of
cancer genomics. Notice that, in Figure 3, the cluster formed by consortia

http://cistrome.org/db/#/about/
http://cistrome.org/db/#/about/
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and integrators working in the cancer domain is the most connected—
integrators retrieve datasets from the most important consortia portals.

The Catalogue Of Somatic Mutations In Cancer (COSMIC, [79])
catalogue is the most comprehensive global resource for information on
somatic mutations in human cancer. It contains 6 million coding mutations
across 1.4 million tumour samples, which have been (primarily) manually
curated from over 26,000 publications.

Broad Institute maintains both Firehose/FireBrowse14 and Terra15

platforms as aggregators of genomic data. The first one mainly imports
TCGA data and offers a number of visualization options over it. The second
one is a new large-scale project that also includes cloud computational
environments.

Along with the Broad Institute, the Seven Bridges Cancer Genomics
Cloud [83] and the Institute for Systems Biology (ISB) Cancer
Genomics Cloud [81] are the other two systems funded by the NCI to
store massive public datasets (first of all TCGA ones) and together provide
secure scalable computational resources for analysis.

The cBio Cancer Genomics Portal (cBioPortal, [77]) was designed
to address the data integration problems that are specific of large-scale
cancer genomics projects, such as TCGA—including the Pan-Cancer Atlas
datasets, TARGET, and ICGC. In addition, it also makes the raw data
generated by large projects more easily and directly available to cancer
researchers.

UCSC Xena [84] is a high-performance visualization and analysis tool
that handles both large public repositories (e.g., CCLE, GDC Pan-Cancer,
TARGET and TCGA) and private datasets. Its characterizing aspects are
strong performances and a privacy-aware architecture, working across
multiple hubs simultaneously. Target users are cancer researchers with
and without computational expertise.

The NHGRI-EBI GWAS Catalog [28] is a collection of all published
genome-wide association studies that enable investigations to identify
causal variants, understand disease mechanisms, and establish targets for
novel therapies. It adds manually curated metadata for publication, study
design, sample and trait information. Many information from GTEx are
also integrated.

As a last player, we present the ERC-funded data-driven Genomic
Computing project (GeCo, [11]), which aims at providing a new focus on
data extraction, querying, and analysis by raising the level of abstraction
of models, languages, and tools for genomic tertiary analysis. The main
research product the project has developed is a cloud-based data engine for
genomic region-based data and metadata supporting a new query language
for genomics, called GenoMetric Query Language (GMQL, [86]), based
on the data model described in [87]. The associated GMQL query
system [12] uses Apache Spark16 on arbitrary servers and clouds.

Within the project, we analyzed thoroughly the issues related to the
integration pipeline described in Section 2, and we proposed a unique
approach implemented in a software architecture provided at https:
//github.com/DEIB-GECO/Metadata-Manager/; it keeps our
(meta)data repository updated periodically and, as indicated in Table 1,
includes all the integration steps for data and metadata that follow
secondary analysis. Specifically, we already integrate data from ENCODE,
TCGA, GDC, Roadmap Epigenomics, 1000 Genomes, GENCODE, and
Refseq (plus metadata from Cistrome), and we are currently considering
ICGC and Chip-seq data from GEO. Among the analysed integrators, the
GeCo approach is the only one that joins together a broad range of genomic

14 Firehose: https://gdac.broadinstitute.org/;
FireBrowse: http://firebrowse.org/
15 https://terra.bio/
16 https://spark.apache.org/

data, which spans from epigenomics to all data types typical of cancer
genomics (e.g., mutation, variation, expression, etc.), until annotations.

For what concerns data downloading from sources, we follow a
partition-driven approach to sync our local instances with the origin
ones. We do not re-process data, but perform many transformation and
normalization tasks, as proven by our work on TCGA data [88], where
we reported the development of an automatic pipeline to transform into
BED format the data available at the original TCGA portal (https:
//tcga-data.nci.nih.gov/ – now deprecated), based on the
hg19 reference assembly. The TCGA data has now been migrated
to the GDC portal, which provides data for the GRCh38 assembly;
we transformed into BED format also this updated version of the
TCGA data (seehttp://www.bioinformatics.deib.polimi.
it/openGDC/). Metadata are transformed by keeping information about
replicates and cleaned to only maintain relevant information. Then, they are
imported into a unique conceptual representation, the Genomic Conceptual
Model (GCM, [89]), including 40 attributes.

We performed an assessment of different ontology search services
and selected the best ones to annotate ten GCM metadata attributes with
ontological terms, their definitions, synonyms, ancestors, and descendants,
in order to instrument a semantically enriched search of datasets linked
to such metadata [90]. On the basis of our experience, too many levels
of ontological enrichment would bring to unnecessary sophistication,
which would not be appreciated by users. Thus, we included ontology
terms’ super- and sub-concepts up to a small number of levels of depth,
typically between three and five, as a reasonable trade-off that also
guarantees acceptable query performances. We expose a fast metadata-
based search engine over the GMQL repository of genomic datasets at the
GenoSurf17 web interface [13]; the interface is designed to allow user-
friendly surfing upon integrated data. It has been evaluated and improved
thanks to user feedback, by using a survey submitted to a large audience of
bioinformaticians and genomics practitioners [91], who are the main target
of our systems. So far GeCo’s achievements have employed principally
a model/system-driven approach, leading to significant limitations of
usability and intuitiveness of the interfaces. We have become aware of the
need for treating applications as first-class citizens to feed and consolidate
the system; thus, major ongoing efforts are directed to produce a workflow-
driven approach that makes data search and analysis processes more
attractive for domain experts—with strong domain expertise, but small
computer science and programming knowledge.

Discussion. Integrators, as reported in Table 1, are in general concentrated
on metadata and services; however, some of them do re-process also data
(e.g., Cistrome), and many of them transform and augment it in various
ways. Table 1 also proves that genomic data integration means going
through the pipeline described in Section 2.

5 Conclusion
In this paper we reviewed the steps and characteristics of production,
integration, and accessibility of genomic data and related metadata. We
presented a broad set of actors involved in the data life cycle, dividing
them in taxonomical categories and inspecting their relationships. In
the collection we provided, international initiatives are either focused
on given diseases (e.g., cancer for TCGA), or on specific technologies
(e.g., epigenetics for Roadmap Epigenomics). Meanwhile, we are
assisting world-wide to the emergence of a new generation of large-
scale genomic national initiatives [92]: some employ population-based
sequencing (see All of US [93] from NIH in the United States—aiming

17 http://www.gmql.eu/genosurf/

https://github.com/DEIB-GECO/Metadata-Manager/
https://github.com/DEIB-GECO/Metadata-Manager/
https://gdac.broadinstitute.org/
http://firebrowse.org/
https://terra.bio/
https://spark.apache.org/
https://tcga-data.nci.nih.gov/
https://tcga-data.nci.nih.gov/
http://www.bioinformatics.deib.polimi.it/openGDC/
http://www.bioinformatics.deib.polimi.it/openGDC/
http://www.gmql.eu/genosurf/
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at sequencing 1 million American volunteers’ genomes, ChinaâŁ™s
Precision Medicine Initiative [94], GenomeDenmark [95], Estonian
Genome Project [96], Qatar Genome Programme [97]); others are testing
large numbers of cancer or rare disease patients (for example 100,000
Genomes Project [98]—a UK Government project that is sequencing
whole genomes from UK National Health Service patients, Saudi Human
Genome Program [99], Turkish Genome Project [100]). Still other nations
are focused on developing infrastructure to later achieve similar results (for
instance FinnGen [101] and GenomeCanada [102]). As their data access
models are unarguably not open for research (with rare exceptions), we did
not discuss them in this review; no integrators include them yet either. All
these projects share issues of data governance and privacy protection [103],
but they certainly also represent a wealth of information, which will be
considered within the scope of future data integration efforts, giving a
new and substantial boost to the potential of genomic data analysis. In
the specific, GeCo will continue its mission towards data integration to
support clinical and biological research, using powerful data extraction and
analysis models and implementations, towards user-friendly platforms.
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