
This is the accepted manuscript of the article published in the VLDB Journal, ©Springer 2025.
The final published version is available at https://doi.org/10.1007/s00778-025-00934-8.
Please cite the published version.

MINE GRAPH RULE: A New GQL Operator for Mining Association
Rules in Property Graph Databases

Francesco Cambria · Francesco Invernici · Anna Bernasconi · Stefano

Ceri

Received: 27 January 2025 / Accepted: 17 June 2025

Abstract Mining information from graph databases is

becoming overly important. To approach this problem,

current methods focus on identifying subgraphs with

specific topologies; as of today, no work has been dedi-

cated to jointly expressing the syntax and semantics of

mining operations over rich property graphs.

We define MINE GRAPH RULE, a new operator for

mining association rules from property graph databases,

by following a research trend that has already been pur-

sued for relational and XML databases. We describe

the syntax and semantics of the operator, which allows

measuring the support and confidence of each rule, and

then we show many examples of increasing complexity,

thereby providing a gentle introduction to the rich ex-

pressive power of the language, which is designed to be

easy-to-use by GQL experts.

Although the emphasis of this paper is on providing

the syntax and semantics of the MINE GRAPH RULE op-

erator, with several examples of use, we also developed

an implementation of the operator on top of Neo4j,

the most successful/adopted graph database system to

date; the implementation is available as a portable Neo4j

plugin, which we use to showcase real-world applica-

tions.

F. Cambria
Via Ponzio 34/5, Politecnico di Milano, DEIB
E-mail: francescoluciano.cambria@polimi.it

F. Invernici
Via Ponzio 34/5, Politecnico di Milano, DEIB
E-mail: francesco.invernici@polimi.it

A. Bernasconi
Via Ponzio 34/5, Politecnico di Milano, DEIB
E-mail: anna.bernasconi@polimi.it

S. Ceri
Via Ponzio 34/5, Politecnico di Milano, DEIB
E-mail: stefano.ceri@polimi.it

At the end of our paper, we show the execution

performance in a variety of synthetically generated set-

tings, by varying the text of operators, the size of the

graph, the ratio between node types, the method for

creating relationships, and the maximum support and

confidence; we also show our operator at work on two

real-life graphs respectively describing music playlists

and archived literature, and provide interesting exam-

ples of extracted association rules.

1 Introduction

Association rules for relational datasets take the form

X ⇒ Y , where the left-hand side X is denoted as

body and the right-hand side Y is denoted as head
Both are sets instantiated from the same underlying do-

main (e.g., items), and their pairing within rules occurs

statistically more often than “normal” in the context

of certain groups of tuples within the same relational

dataset (e.g., all tuples referring to the same transac-

tion) [6,7,55]. Statistical significance is measured by

two indexes, called support and confidence; the former

is the probability of having both items X and Y within

all transactions; the latter is the probability of having

the Y item in the transactions with the X item.

Association rules satisfy a classical antimonotonic-

ity property stating that, for any two rules r1 : X1 ⇒ Y

and r2 : X2 ⇒ Y , with X1 ⊃ X2 (e.g., X1 properly con-

tains all the items of X2), the support of r1 is smaller

or at most equal than the support of r2. The antimono-

tonicity property and the constraint on minimum sup-

port allow, when the support for a given association

rule r : X ⇒ Y is below the threshold, to exclude also

all rules whose body strictly includes X [59]. This prop-

erty is at the basis of efficient mining rule methods, such

https://doi.org/10.1007/s00778-025-00934-8

2 Francesco Cambria et al.

as Apriori [30,48] or Equivalence Class Transformation

Algorithm (ECLAT) [62,35], which organize the search

by arranging extracted bodies in a tree and cease ex-

ploring descendants of nodes that are not supported.

The classical interpretation of association rules in

recommender systems [16,36,44] is to propose items

that are often purchased in the same transaction, as

an indication that they are jointly chosen by customers

who – in turn – may share the same taste, although

it is possible to have different interpretations of asso-

ciation rules for many other contexts of application,

e.g., in the medical domain symptoms of patients af-

fected by the same disease [57,42,58], or in social net-

works interests that are shared by users [54]. Pattern

languages have been designed for extracting given rules

based upon application needs, e.g., focusing on given

items in purchases (e.g., bread and butter), on given

habits/morbidities in patients (e.g., male smokers), and

on given interests among users (e.g., movies and music).

One such pattern language is the MINE RULE opera-

tor, defined in [40], which extracts semantically mean-

ingful association rule patterns on relational datasets.

The operator uses the expressive power of SQL and con-

sists of several clauses, each mimicking an SQL query

or predicate. Typically, MINE RULE extracts tables with

four columns [BODY, HEAD, SUPPORT, CONFIDENCE], each

corresponding to an association rule, extracted from

an underlying target table, constructed as an arbitrary

SQL query expression whose tuples can be arbitrarily

grouped and further partitioned; the table extracts all

rules having support and confidence beyond a given

threshold.

In the digital age, vast amounts of data are being

generated and collected at an unprecedented pace [5,

45]. Relational databases are very effective in manag-

ing structured data, but face limitations when han-

dling complex and interconnected data [52,41]; graph

databases are emerging as the leading data manage-

ment technology for storing large knowledge graphs [60,

47]. Therefore, there is a strong need to express asso-

ciation rules in this context. The main challenge when

extending the broad work on relational association rule

mining to graph-based association rule mining is to

move from a simple, tabular data model, where asso-

ciations are discovered within simple groups, to a com-

plex graph-based data model, where associations can

be semantically richer, and at the same time adapt the

notions of support and confidence so as to preserve the

antimonotonicity property, guaranteeing good conver-

gence of the discovery methods.

In this work, we present a new operator for graph

databases, called MINE GRAPH RULE, which is inspired

by the relational MINE RULE operator [40]; the opera-

tor provides a declarative definition that takes advan-

tage of the schema description available for property

graphs (essentially labeled nodes and relationships with

properties). We redefine the notion of ‘items’ (intro-

ducing the novel concept of ‘anchor nodes’) and pro-

gressively define the left and right sides of the asso-

ciation rules extracted by the MINE GRAPH RULE oper-

ator; left and right sides are built by arbitrarily con-

structed orthogonal structures that support semanti-

cally rich path expressions, whose syntax and seman-

tics are inspired by GQL, the emerging standard for

graph query languages [20,50]. Our operator adapts the

relational notion of enclosing transactions to property

graphs, thereby allowing the computation of support

and confidence for the pair of left and right sides ex-

tracted by the operator, along the classic semantics of

association rules; as in [40], we extract association rules

whose support and confidence is above given thresholds.

This work is different from most previous work in

graph data mining, which typically focuses on search-

ing for regular structures that form interesting sub-

graphs that reflect given constraints upon their nodes or

edges, without taking full advantage of the availability

of schema description. Another main difference between

our method and related work is that our declarative

patterns can be translated to GQL-compliant Cypher

and therefore be executed on graph database engines,

taking advantage of their physical organization and query

optimization methods, whereas most previous work is

concerned with algorithmic approaches over ad-hoc data

structures built from imported files, using programming

languages such as Java [24] or C++ [22].

Contributions

This article presents five significant contributions:

– Syntax and semantics of the MINE GRAPH RULE op-

erator. The operator supports the extraction of many

items in the body and in the head, defined by a con-

junction of relationship chains of GQL-compliant

expressions of arbitrary length, which can be orthog-

onally composed.

– A rich set of progressive examples, which showcase

the expressive power of the operator by extract-

ing association rules of increasing complexity, both

for what concerns the operator expressions and the

complex tabular structure which returns the associ-

ation rules whose support and confidence are above

threshold.

– Implementation and deployment of the operator to a

real GQL-compliant [20,50] graph database. Among

existing graph databases, ranked in [2], we choose

MINE GRAPH RULE: A New GQL Operator for Mining Association Rules in Property Graph Databases 3

the top-ranked Neo4j system [34,27]. We then de-

scribe how the MINE GRAPH RULE operator can be

installed as a Neo4j plugin. The mining algorithm

takes advantage of built-in optimizations of the Neo4j

engine as well as optimizations that take advantage

of the Apriori approach.

– Performance evaluation of several data mining op-

erators on artificially generated graphs, by varying

several settings (including the artificial graph gener-

ation, graph size, relationship density, and minimum

support/confidence).

– Application of the operator to two large real-life

datasets, respectively describing Spotify playlists and

archived literature, and extraction of interesting as-

sociation rules that showcase the potential of the

approach.

Outline

This article is organized as follows: Section 2 presents

the related work; Section 3 describes the syntax and

semantics of the MINE GRAPH RULE Operator and Sec-

tion 4 illustrates several examples of increasing com-

plexity, also showing the operator’s output, produced

as a table with several rows, one for each association

rule, listing body, head, support, and confidence. Sec-

tion 5 describes the implementation and the genera-

tion of the example graph database, and Section 6 de-

scribes the evaluation of our approach. Section 7 com-

pares our work with PARM, a recently presented ap-

proach which also applies to property graphs. Finally,

Section 8 presents the discussion and conclusion.

2 Related Work

According to the panel discussion reported in [11], one

of the key needs to improve graph database analytics

is the development of more expressive languages, capa-

ble of supporting complex and diverse analyses. MINE

GRAPH RULE aims to address this challenge, by provid-

ing a declarative pattern language that defines complex

association rules for property graph databases.

Declarative approaches for association rule

mining. In the existing data mining literature, several

declarative pattern languages have been defined; among

them, the highly cited MINE RULE operator (by Meo,

Ceri, and Psaila) [40,39] presents an SQL-based pattern

language that extracts association rules calculated by

using arbitrary data grouping and partitions; the op-

erator produces readable outputs in tabular form, tak-

ing advantage of the NF2 model [4], where each rule

is associated with given support and confidence, en-

abling their filtering and ordering based on such statis-

tical properties. The same authors provided a pipeline

and framework to translate the MINE RULE opera-

tor to NF2 tables, using SQL [39]. The MINE RULE

approach and framework were then exploited by Bouli-

caut, Klemettinen, and Mannila, who define inductive

databases as databases augmented by generic patterns

and by an evaluation function telling how the pattern

occurs in the data. In [12], they explain that the MINE

RULE approach perfectly fits the inductive database

vision, being a serious step towards an implementation

framework for inductive databases. The adaptation of

MINE RULE to XML was proposed by Braga, Campi,

Klemettinen, and Lanzi [13], who defined XMINE as

an operator to discover association rules based on the

XQuery language.

Graph pattern mining.Most works in graph data

mining look for regular structures in a graph, without

taking advantage of a schema description; they search

for interesting networks of nodes and edges, extracted

from the graph, which reflect given constraints. For do-

ing so, they typically read the graph into a memory

structure and propose optimal algorithms, executed us-

ing programming languages such as Java or C++. Of

course, the various definitions of pattern (GPAR, GFD,

GAR, REE, PARM: see below) reflect the antimono-

tonicity property, which is the core of association rule

mining.

A framework for Graph Pattern Association Rule

(GPAR) Mining is defined by Fan et al. in [24], where

a pattern is a subgraph is an arbitrary selection of

nodes and edges from the graph (e.g., extracted by a

query), and a rule is defined as follows: when a pattern

in which two designated nodes x and y are present is

frequent in the graph, then also an edge between x and

y is present; for computing rule support, they use the

minimum image-based support, as introduced in [14],

with a suitable revision to satisfy the antimonotonicity

constraint. Their D-MINE algorithm uses ad-hoc auxil-

iary structures and takes advantage of parallelization to

extract rules that are very interesting (emerging from

a top-k selection for diversified patterns).

This work was extended by Wang and Xu [61], who

redefine GPAR, as rules are between two patterns such

that each pattern is connected (includes connected nodes

and edges) and two patterns cannot share any edge. The

method is based on bisimulation as pattern matching

semantics. They show that the problem can be decom-

posed into two steps, called frequent pattern mining

and rule generation; their algorithm (FPMiner) exploits

parallelism as well as look-ahead and backtracking to

4 Francesco Cambria et al.

discover frequent patterns, defined as those above a

minimal given threshold.

Another interesting approach, also proposed by Fan

et al., is concerned with mining graph functional de-

pendencies (GFDs) [25], i.e. attribute-value dependen-

cies and topological structures of entities, using an al-

gorithm that explores trees progressively built out of

graphs; the problem is coNP-complete, hence they de-

velop an efficient parallel version that can cope with

such complexity in specific contexts. Parallelism was

later applied, by Fan et al. [22], with application-driven

reduction and sampling, to efficiently extract Graph As-

sociation Rules (GARs) from big graphs.

Recent work by Fan et al. [23] has discussed how to

exploit parallelism and sampling in order to mine an

extended set of Entity Enhancing Rules (REEs), which

subsume functional dependencies and many other cases

of dependencies – named conditional dependencies, de-

nial dependencies, and match dependencies (see [23])

suggested by Rock, an industrial system for data clean-

ing. Their method, called PRMiner, includes sampling

and parallelism. Along this line of thought, recent work

by Liu et al. [37] has proposed a comprehensive frame-

work designed to define and extract graph patterns by

exploiting oracles, i.e., abstract machines developed for

making decisions, typically either by importing exter-

nal knowledge or by using internal computations such

as aggregate operators or machine learning methods.

Other works address a broader problem, i.e. solving

the so-called Frequent Subgraph Mining (FSM) prob-

lem [29], defined as finding all the subgraphs within a

graph that appear frequently (more than a give thresh-

old); in general, the solution consists of two steps: gen-
erating candidate subgraphs and calculating their sup-

port, along with the Apriori method. [21] presents a

method to prune options in the step generation, [31]

presents a solution in a single pass.

More recently, Sasaki and Karras defined Path As-

sociation Rule Mining (PARM) [49] as the problem of

finding all the Path Association Rules (PAR) with spe-

cific thresholds on the paths’ lengths and the rules’ sup-

port. Given that PARM applies to property graphs and

employs a similar approach to ours for the definition of

graph association rules, it will be explored in greater

detail in a dedicated section.

Association rules mining using graphs man-

aged by Neo4j. Some works, with an application-

oriented approach, address the extraction of associa-

tion rules in real-world scenarios supported by Neo4j.

Interesting case studies are reported in [17] (evaluating

groups of artists appreciated by the same users) and

in [56] (studying combinations of teaching methods that

are more effective than others). In both works, data is

only extracted from Neo4j and structured in a way that

the association rules are calculated thanks to estab-

lished Python packages [1,46]. [15] implements a case

study in Neo4j to find popular Twitter hashtags that

are posted together; the work includes an evaluation

of the effect of pre-processing techniques that enhance

the performance of the rule mining algorithm. In [51], a

recommender system is fully developed in Neo4j. Note

that all the mentioned works apply algorithms and the

concepts of association rules to graph data, without for-

malizing rules and without fully exploiting the richness

given by the natural structure of graphs.

3 Operator Syntax and Semantics

In graphs, the definition of association rules r : X ⇒ Y

can be expanded considering X and Y not as unique

data entries but as patterns of nodes and relationships.

Our operator aims to define precisely and effectively

these graph patterns.

The syntax of MINE GRAPH RULE is shown in Fig. 1;

it is inspired by the MINE RULE operator [40], but

it is significantly more complex to exploit the many

ways of building associations by using property graph

databases. It embeds some constructs of GQL [20,

50], so that it can easily be adapted for all the GQL-

compatible database systems, and it is also more read-

able for graph database programmers.

Fig. 1 MINE GRAPH RULE syntax. Uppercase bold type is used
for terminal symbols. Lowercase is for non-terminal symbols;
bold symbols are not explained in the grammar, as their
meaning is well-defined in the context of property graphs.
Note that square brackets are used to indicate optionality
([]) in the grammar; moreover, since GQL uses the sym-
bols -[and]- for denoting relationships, square brackets
are also used in bold-type to enclose the three expressions of
<relPattern>. Note as well that the < and > symbols, used
to delimitate non-terminal symbols, are also used -in larger
font size- to make comparisons in the pattern language: >
is used to denote a ‘greater-than’ comparison in the sup-
port/confidence threshold definition and in the <countRel>

grammar production.

MINE GRAPH RULE: A New GQL Operator for Mining Association Rules in Property Graph Databases 5

To each operator we associate a <name>, allowing

users to uniquely associate each operator with a set of

extracted association rules. Rules are built according to

three expressions, respectively defining the GROUPING,

the rule’s BODY, and the rule’s HEAD. The grouping ex-

pression defines, through the <anchorLabel>, the set

of anchor nodes of the graph that need to satisfy, when

present, the WHERE condition. They provide the con-

text of evaluation of association rules; by analogy, the

anchor acts as a pivot for the set of rules in the same

way the purchase transaction groups the basket of items

that are bought together. The BODY and HEAD expres-

sions build respectively the left and right parts of an as-

sociation rule; they are both defined by the <itemSet>

production.

An itemSet is defined as a conjunction of expres-

sions, each called <pattern>, that extract the sets of

items forming the head and body; the cardinality of

each <pattern> varies between 1 (the default case) and

a value <n> (the cardinality must be defined only if <n>

is greater than 1). A <pattern> generally consists of a

linear path of relationships that starts from the anchor

nodes (i.e., the nodes defined in the grouping expres-

sion) and can include an arbitrary number of relation-

ship patterns (<relPattern>); thanks to an optional

alias clause, introducing a user-defined <patternName>,

users can assign a custom name to each <pattern>.

Note that in patterns, every node needs a corresponding

variable associated with a node label; using the same

variable name is allowed only upon nodes with the same

label, and implies the identity of the nodes extracted by

the operator.

Recursion is introduced by the <patternTail> pro-

duction, which can either close the current recur-

sion step with a final node or recursively include an-

other <patternTail>. Relationship patterns include

three options (respectively denoted as <singleRel>,

<countRel>, and <anyRel>) whose explanation is post-

poned to three specific subsections. Note that -for

simplicity- we assume that each relationship pattern is

to be traversed from left to right, as explicitly expressed

by the arrow direction.

The three expressions, GROUPING, BODY, and HEAD,

extract nodes that are referenced by variables; these

can be used both to build any GQL-legal predicate

(<wherePredicate>) for evaluating restricted parts of

the graph database or for adding other grouping con-

ditions defined by the optional IGNORE clause with a

list of at least one <variable>. The operator syntax

is closed by setting two independent conditions for the

minimum support <minsupp> and minimum confidence

<minconf> that must be satisfied by the extracted rules.

Concerning the semantics of pattern expressions, an

important aspect is that the MINE GRAPH RULE uses the

“trail” path mode semantics [3]; essentially, nodes can

be revisited, but each relationship is used only once per

path, to resolve the issue of cyclic instances. This is the

most widely used semantics in graph database engines1.

Concerning the extraction of association rules, we

need to calculate both support and confidence. We de-

fine A as the set of anchor nodes; we denote A’s cardi-

nality as C(A). Evaluating the body and head expres-

sion matched with a set of anchor nodes a ∈ A generates

pairs Ri = ⟨Bi, Hi⟩, which are candidate association

rules. Next we discuss how Bi and Hi are built.

Consider that, both in the BODY and HEAD of

a rule, each <itemSet> is associated with an ordered

list of m conjunctive expressions of <pattern>s Pm,

where each pattern corresponds to a list Lm of named

variables that are neither anchors nor included in the

IGNORE list of the pattern. Then, an operator evalua-

tion, under trail semantics and different edges match-

ing, maps each anchor node a ∈ A (conceptually equiv-

alent to a transaction) to a list P of lists Pj , with

1 ≤ j ≤ m, such that each Pj is a list of nodes of the

graph obtained by matching the corresponding named

variables Lm; a list P is separately computed for the

body (producing Bi) and head (producingHi). We then

consider the mapping from the set A of anchor nodes

to the lists Bi and Hi and we denote as C(Bi) the

cardinality of the set of anchor nodes matched to Bi

and as C(Ri) the cardinality of the set of anchor nodes

matched to both Bi and Hi.

Then, for a given rule Ri, its support is C(Ri)/C(A)

(by analogy: the fraction of transactions having both

the body and head items in the basket). Its confidence

is C(Ri)/C(Bi) (by analogy: the fraction of transac-

tions that have both the body and the head over the

transactions that have only the body). Finally, the op-

erator extracts those candidate association rules that

satisfy minimal constraints on support and confidence.

Each operator execution over a graph produces a

non-normalized table (along the NF2 model [4]); the

table is named as the operator and has four top-level

columns. The first two columns carry names which are

progressively constructed to reflect the specific pattern

expressions for body and head (path expressions can be

renamed using aliases); the third and fourth columns

contain support and confidence.

Each row of the table corresponds to an extracted

association rule; the first and second columns respec-

1 In addition to “trail”, path modes include “walk”,
“acyclic”, and “simple”. These path modes provide alterna-
tive path bindings, as discussed in Section 4.11.7 of the GQL
standard [3].

6 Francesco Cambria et al.

tively contain the complex structures Bi and Hi, de-

scribing the rule’s body and head. Each node form-

ing the structures Bi and Hi is represented by system-

generated node identifiers ([3], Section 3.1.7); for ease of

readability, for each node used in operators, we provide

a map (<NodeLabel>: <IdentifyingPropertyList>),

where the latter list is a user-provided identifier, made

of suitable node properties, which are used instead of

internal node identifiers for providing readable associa-

tion rule instances2.

Note that, in the search for association rules, it

is customary to exclude tautological rules, i.e., rules

whose body and head are identical. Similarly, in the

evaluation of the MINE GRAPH RULE pattern, we will ex-

clude those rules whose body and head are identical.

4 Progressive Illustration of the Expressive

Power of MINE GRAPH RULE

We next proceed to illustrate the expressive power of

the operator, starting with a simple case that mimics

the market basket analysis and then progressively ad-

dressing more complex cases.

4.1 Running Example

Fig. 2 reports the schema of a property graph database,

storing information about people’s purchases that may

reflect their social interactions; for easing interpreta-

tion, nodes and relationships of the running example

are partitioned into subsets and each subset is associ-

ated with a specific label. The PERSON nodes represent

users of a social network, who can FOLLOW each other

and who can RECOMMEND certain products represented

by ITEM nodes; the BUY relationship indicates that given

persons buy given products using an electronic mar-

ketplace, whereas the OF relationship indicates a non-

exclusive CATEGORY which is assigned to each item by

vendors on the basis of the expected context of use of

that item.

We also provide a super-small instance of the graph,

shown in Fig. 3, in order to progressively introduce ex-

amples of MINE GRAPH RULE applications. Every node

is uniquely identified by its Name and carries specific

properties: persons have Age and City, items have

Color and Price.

2 If a node does not have an identifier, it will appear in as-
sociation rules as many times as it is extracted by the relevant
pattern, without being able to give an identity to each node
occurrence; but this could be considered as a poor combined
design of the scheme and operator.

Fig. 2 Schema of the running example

4.2 Simple Association Rules

As a starting point, we show the most common appli-

cation of association rules, i.e., pairs of different items

usually bought together by the same person. These as-

sociation rules are expressed by the natural language

sentence: “People who buy X, also buy Y”, where X and

Y are different items. The MINE GRAPH RULE operator

extracting these rules is simply:

MINE GRAPH RULE SimpleAssociationRules

GROUPING ON (p:Person)

DEFINING BODY AS (p)-[:BUY]->(X:Item)

HEAD AS (p)-[:BUY]->(Y:Item)

EXTRACTING RULES WITH SUPPORT > 0.1

AND CONFIDENCE > 0.1

The operator looks for all nodes labeled as

(:Person). Both body and head expressions extract a

single (:Item), connected by using the [:BUY] relation-

ship; hence the association rule combines the different

items that are bought by the same person. Once applied

to the graph database instance of Fig. 3, the operator

produces the result shown in Table 1. The table’s header

has a hierarchical structure; the top of the hierarchy has

four fixed attributes, respectively named Body, Head,

Support, and Confidence. Below the Body and Head,

the header includes terms describing the role of each

extracted instance forming an association rule (in this

case, BuyX and BuyY). The table’s content includes one

row for each association rule; Body and Head include

the Names (i.e., the identifying property of nodes) de-

scribing the extracted Items.

Body Head
Support Confidence

BuyX BuyY

Dress Jeans 0.25 0.5
Dress Shoes 0.5 1
Jeans Dress 0.25 0.5
Jeans Shoes 0.25 0.5
Shoes Dress 0.5 1
Shoes Jeans 0.25 0.5
Shorts T-shirt 0.25 1
T-shirt Shorts 0.25 1

Table 1 Output of SimpleAssociationRules

Let us consider the first row of the table, corre-

sponding to the rule: “People who buy Dress, also buy

Jeans”. For this row, C(A) = 4, C(B1) = 2, C(R1) = 1.

The first counter reports the total number of people

MINE GRAPH RULE: A New GQL Operator for Mining Association Rules in Property Graph Databases 7

Fig. 3 Instance of the running example

(anchor node), the second the number of people who

buy Dress (hence, Sofia and Chiara), and the third

the total number of people who buy both Dress and

Jeans (hence, just Sofia). Given these counters, the rule

support is C(R1)/C(A) = 0.25, the rule confidence is

C(R1)/C(B1) = 0.5.

4.3 Association Rules with Many Items in the Body or

Head

Next, we show association rules with many items in the

body or head. Consider the following MINE GRAPH RULE

operator:

MINE GRAPH RULE SimpleAssociationRulesWithManyItems

GROUPING ON (p:Person)

DEFINING BODY AS 1..2 (p)-[:BUY]->(X:Item)

HEAD AS (p)-[:BUY]->(Y:Item)

EXTRACTING RULES WITH SUPPORT > 0.1

AND CONFIDENCE > 0.1

The operator extracts the association rules whose

body consists of up to two items, i.e., taking the form:

“People who buy X1 or X1 and X2, also buy Y”; the

body items are connected to the same anchor node

person along the [:BUY] relationship. The extracted

association rules are reported in Table 2; note that

the header now includes two columns for the body,

respectively denoted as BuyX1 and BuyX2. The rows

of the table also include the rules extracted by the

SimpleAssociationRules operator (with a missing en-

try for the BuyX2 column). Three additional rows in-

clude two items in the body; among them, the rule of

the first row indicates that “People who buy Dress and

Jeans, also buy Shoes”. Note that, for the first row,

C(A) = 4, C(B1) = 1, C(R1) = 1, hence the rule has

support 0.25 and confidence 1.

Body Head
Support Confidence

ItemSetB1 ItemSetB2 ItemSetH1

BuyX1 BuyX2 BuyY

Dress Jeans Shoes 0.25 1
Dress Shoes Jeans 0.25 0.5
Jeans Shoes Dress 0.25 1
Dress - Jeans 0.25 0.5
Dress - Shoes 0.25 1
Jeans - Dress 0.25 0.5
Jeans - Shoes 0.25 0.5
Shoes - Dress 0.5 1
Shoes - Jeans 0.25 0.5
Shorts - T-shirt 0.25 1
T-shirt - Shorts 0.25 1

Table 2 Output of SimpleAssociationRulesWithManyItems

4.4 Association Rules with Where Conditions

The evaluation of association rules can be restricted by

adding simple predicates over the properties of vari-

ables defined in the MINE GRAPH RULE operator. For

instance, it is possible to select the Person nodes by

setting their City to be “Rome”. Adding a condition

does not change the structure of the association rules,

8 Francesco Cambria et al.

which are expressed as “People (living in Rome) who

buy X, also buy Y”.

MINE GRAPH RULE ConditionedAssociationRules1

GROUPING ON (p:Person) WHERE p.city = "Rome"

DEFINING BODY AS (p)-[:BUY]->(X:Item)

HEAD AS (p)-[:BUY]->(Y:Item)

EXTRACTING RULES WITH SUPPORT > 0.1

AND CONFIDENCE > 0.1

Clearly, the restriction may reduce the cardinality of

the anchor nodes, and thus produce different support

and confidence for the extracted association rules. In

our simple instance, the predicate is satisfied by Sofia,

Chiara, and Fabio, hence C(A) = 3. Table 3 reports the

corresponding output.

Body Head
Support Confidence

BuyX BuyY

Dress Jeans 0.33 0.5
Dress Shoes 0.67 1
Jeans Dress 0.33 1
Shoes Dress 0.67 1
Jeans Shoes 0.33 1
Shoes Jeans 0.33 0.5
Shorts T-shirt 0.33 1
T-shirt Shorts 0.33 1

Table 3 Output of ConditionedAssociationRules1

Similarly, it is possible to define simple predicates

on the properties of other variables of the body and

head, for example by adding a restriction on the items’

prices. The next example extracts the association rules:

“People who buy X (with a price higher than 50), also

buy Y (with a price lower than 50)”:

MINE GRAPH RULE ConditionedAssociationRules2

GROUPING ON (p:Person)

DEFINING BODY AS (p)-[:BUY]->(X:Item)

AS HighPriceItem

HEAD AS (p)-[:BUY]->(Y:Item)

AS LowPriceItem

WHERE X.Price > 50 and Y.Price < 50

EXTRACTING RULES WITH SUPPORT > 0.1

AND CONFIDENCE > 0.1

The resulting output is shown in Table 4. Note that,

for better clarity, we renamed the output columns of the

body and head.

Body Head
Support Confidence

HighPriceItem LowPriceItem

Dress Shoes 0.5 1
Jeans Shoes 0.25 0.5

Table 4 Output of ConditionedAssociationRules2

4.5 Association Rules with CountRel

Next, we describe the use of the counting relations

pattern, which is introduced by the <countRel> non-

terminal symbol in the grammar (Fig. 1). The pattern

allows setting a threshold on the number of times a

type of relationship should be present between any two

nodes, in order to be selected in the body or head of

an association rule. The simplest example of applica-

tion is to impose, in the body of the rule, that a given

item is purchased several times. The operator should be

used with a positive mincount number to denote the

threshold (<relType> >= <mincount>). An example

application of the counting pattern is shown below:

MINE GRAPH RULE CountItemsAssociationRules

GROUPING ON (p:Person)

DEFINING BODY AS (p)-[:BUY>=2]->(X:Item)

HEAD AS (p)-[:BUY]->(Y:Item)

EXTRACTING RULES WITH SUPPORT > 0.1

AND CONFIDENCE > 0.1

The association rules are expressed in the sentence:

“People who buy X at least 2 times, also buy Y”. The

corresponding output is shown in Table 5.

Body Head
Support Confidence

BuyAtLeast2X BuyY

Dress Jeans 0.25 1
Dress Shoes 0.25 1
Shorts T-shirt 0.25 1

Table 5 Output of CountItemsAssociationRules

Considering the association rule in the third row:

“People who buy Shorts at least 2 times, also buy T-

shirt”, which associates people who buy the product

Shorts two or more times with those who also buy T-

shirt; Luca is the only person satisfying both condi-

tions. The relevant counters for this rule are: C(A) = 4,

C(B3) = 1, C(R3) = 1, hence the rule has support 0.25

and confidence 1.

4.6 Association Rules with AnyRel

Next, we describe the use of the AnyRel pattern, which

is introduced by the <anyRel> non-terminal symbol in

the grammar (Fig. 1). The pattern allows us to connect

a given node to any node reachable through any path

(i.e., an arbitrary sequence of relationships) within a

maximum length. The simplest example of application

is to impose, in the body of the rule, that a given item is

reached through at most one link (more complex exam-

ples are shown later). The operator should be used with

MINE GRAPH RULE: A New GQL Operator for Mining Association Rules in Property Graph Databases 9

a positive length number to denote the path length. An

example of the application is shown below:

MINE GRAPH RULE AnyPathAssociationRules

GROUPING ON (p:Person)

DEFINING BODY AS (p)-[]->{1,1}(X:Item)
HEAD AS (p)-[:BUY]->(Y:Item)

EXTRACTING RULES WITH SUPPORT > 0.1

AND CONFIDENCE > 0.1

Note that (:Item) nodes are reached from the

(:Person) anchor nodes using either the [:BUY] or the

[:RECOMMEND] relationships; thus, in our scenario, the

sentence “People with any link to X, also buy Y” can

also be phrased as “People who buy or recommend X,

also buy Y”. The corresponding output is shown in Ta-

ble 6.

Body Head
Support Confidence

AnyLinkToX BuyY

Dress Jeans 0.25 0.5
Dress Shoes 0.5 1
Jeans Dress 0.5 0.67
Jeans Shoes 0.5 0.67
Shoes Dress 0.5 0.67
Shoes Jeans 0.5 0.67
Shorts Jeans 0.25 0.5
Shorts T-shirt 0.25 0.5
T-shit Shorts 0.25 1

Table 6 Output of AnyPathAssociationRules

In order to better understand it, consider the fourth

association rule of the table, i.e., “People who buy or

recommend Jeans, also buy Shoes”. As usual, C(A) = 4.

Sofia, Chiara, and Fabio buy or recommend Jeans, thus

C(B4) = 3; out of them, just Sofia and Chiara buy

Shoes, thus C(R4) = 2. Given these counters, the rule

support is C(R4)/C(A) = 0.5, the rule confidence is

C(R4)/C(B4) = 0.67.

By increasing the length parameter, the operator

evaluates longer patterns, introducing more alterna-

tives. For instance, consider the following operator:

MINE GRAPH RULE

AnyLongerPathAssociationRules

GROUPING ON (p:Person)

DEFINING BODY AS (p)-[]->{1,2}(X:Item)
HEAD AS (p)-[:BUY]->(Y:Item)

EXTRACTING RULES WITH SUPPORT > 0.1

AND CONFIDENCE > 0.1

The operator extracts the association rules tak-

ing form: “People with any link (of length up to 2)

to X, also buy Y”. In this scenario, nodes (:Person)

can reach nodes (:Item) either directly, by buying

or recommending them (as the previous example), or

also with two-hops paths, by using the relationship

[:FOLLOW] connecting a node (:Person) to another

node (:Person), then connected to the item with a

[:BUY] or [:RECOMMEND] relationship. In Table 7, the

resulting association rules are reported.

Body Head
Support Confidence

AnyLinkOfLengthUpTo2ToX BuyY

Dress Jeans 0.5 0.5
Dress Shoes 0.5 0.5
Dress Shorts 0.25 0.25
Dress T-shirt 0.25 0.25
Jeans Dress 0.5 0.5
Jeans Shoes 0.25 0.25
Jeans Shorts 0.25 0.25
Jeans T-shirt 0.25 0.25
Shoes Dress 0.5 0.5
Shoes Jeans 0.5 0.5
Shoes Shorts 0.25 0.25
Shoes T-shirt 0.25 0.25
Shorts Jeans 0.25 0.25
Shorts T-shirt 0.25 0.5
T-shit Shorts 0.25 1

Table 7 Output of AnyLongerPathAssociationRules

Consider the seventh association rule “People with

any link (of length up to 2) to Jeans also buy Shorts”,

which is not included among the extracted rules in the

previous example. We still have C(A) = 4, but while

Sofia, Chiara, and Fabio directly buy or recommend

Jeans, Luca follows Sofia, who in turns buys Jeans;

therefore, C(B7) = 4 instead of 3. Among them, only

Luca buys Shorts, so C(R7) = 1. The resulting support

of the rule is C(R7)/C(A) = 0.25, and the confidence

of the rule is C(R7)/C(B7) = 0.25.

4.7 Association Rules with Relationships’ Chains

Next, we consider that <relPattern>s can be chained,

in the body, in the head, or in both of them; as the

grammar has a recursive production (<patternTail>),

the length of the chain is not bound.

We consider a path in the body of the MINE GRAPH

RULE operator, linking purchased items to their cate-

gories, so as to include also categories in resulting as-

sociation rules. Consider the following operator:

MINE GRAPH RULE PathAssociationRules1

GROUPING ON (p:Person)

DEFINING BODY AS (p)-[:BUY]->(X:Item)

-[:OF]->(C:Category)

HEAD AS (p)-[:BUY]->(Y:Item)

EXTRACTING RULES WITH SUPPORT > 0.1

AND CONFIDENCE > 0.1

Note that the (:Category) nodes are reached from

the (:Person) anchor nodes along a chain of relation-

ships, which uses the [:BUY] and [:OF] relationships;

the interpretation of the generated association rules is

“People who buy X of category C, also buy Y”. The

corresponding output is shown in Table 8.

10 Francesco Cambria et al.

Body Head
Support Confidence

ItemSetB1 ItemSetH1

BuyX OfC BuyY

Dress Casual Jeans 0.25 0.5
Dress Casual Shoes 0.5 1
Jeans Casual Dress 0.25 0.5
Shoes Casual Dress 0.5 1
Shoes Sportswear Dress 0.5 1
Shoes Casual Jeans 0.25 0.5
Shoes Sportswear Jeans 0.25 0.5
Shorts Sportswear T-shirt 0.25 1
T-shirt Sportswear Shorts 0.25 1

Table 8 Output of PathAssociationRules1

If we consider the first association rule, “People who

buy Dress of category Casual also buy Jeans”, we note

that Sofia and Chiara buy Dress of category Casual but

just Sofia buys Jeans; hence, with C(A) = 4, we have

C(B1) = 2 and C(R1) = 1. Given these the counters,

the rule support is C(R1)/C(A) = 0.25, the rule confi-

dence is C(R1)/C(B1) = 0.5.

4.8 Association Rules with Ignore

The IGNORE construct designates a list of variables -i.e.,

nodes of the pattern- that shall not be included in the

body or head of the rule. We denote as visible variables

those appearing in the operator but not in the ignore

clause; only visible variables will appear in the body

and head of association rules.

For example, consider the following MINE GRAPH

RULE operator:

MINE GRAPH RULE IgnoreAssociationRules

GROUPING ON (p:Person)

DEFINING BODY AS (p)-[:BUY]->(X:Item)

-[:OF]->(CX:Category)

HEAD AS (p)-[:BUY]->(Y:Item)

-[:OF]->(CY:Category)

IGNORE X,Y

EXTRACTING RULES WITH SUPPORT > 0.1

AND CONFIDENCE > 0.1

Extracted rules take the form “People who buy items

of category CX, also buy items of category CY”. The

corresponding output is shown in Table 9.

Body Head
Support Confidence

ItemSetB1 ItemSetH1

BuyItemsOfCategoryCX BuyItemsOfCategoryCY

Casual Sportswear 0.5 0.67
Sportswear Casual 0.5 0.67

Table 9 Output of IgnoreAssociationRules

Using IGNORE adds a second aggregation level to

the normal procedure: in particular, after having ex-

tracted the anchor nodes for body and head, they are

further grouped only with respect to the visible vari-

ables, thus hiding the information of the ignored vari-

ables. Consider rule 1, “People who buy items of cat-

egory Casual, also buy items of category Sportswear”.

Sofia, Chiara, and Fabio buy at least one item in the

category Casual, resulting in C(B1) = 3, but Sofia

and Chiara also buy items in the category Sportwear,

whereas Fabio does not buy any item in that category.

As Fabio is not paired to both the body and the head,

Fabio is not a valid anchor for the association rule,

and C(R1) = 2. As usual, with C(A) = 4 the rule

support is C(R1)/C(A) = 0.5, the rule confidence is

C(R1)/C(B1) = 0.67.

4.9 Association Rules with Conjunctions

Next, we consider that both the body and the head can

have conjunctive expressions, with an arbitrary num-

ber of conjuncts. We consider the body of the MINE

GRAPH RULE operator as a conjunction of two different

<pattern>s. Consider the following operator:

MINE GRAPH RULE ComplexBodyAssociationRules

GROUPING ON (p:Person)

DEFINING BODY AS (p)-[:FOLLOW]->(X:Person),

(p)-[:BUY]->(Y:Item)

HEAD AS (p)-[:BUY]->(Z:Item)

EXTRACTING RULES WITH SUPPORT > 0.1

AND CONFIDENCE > 0.1

The association rules are interpreted in this way:

“People who follow X and buy Y, also buy Z”. The cor-

responding output is shown in Table 10. Considering

the first association rule, “People who follow Sofia and
buy Dress, also buy Shoes”, we note that Chiara is the

only one who both follows Sofia and buys Dress, and

she also buys Shoes; hence, with C(A) = 4, we have

C(B1) = 1 and C(R1) = 1 and with these counters,

the rule support is C(R1)/C(A) = 0.25 and the rule

confidence is C(R1)/C(B1) = 1.

4.10 Other Complex Association Rules

4.10.1 First Example.

We consider a body <pattern>, with two conjuncts

both consisting of chains of relationships. The following

operator extracts rules whose interpretation is “Peo-

ple who follow more than two people who recommend

products of category CX and buy products of category

CY, also buy Z”. The corresponding output is shown in

Table 11. Considering the first association rule, “Peo-

ple who follow more than two persons who recommend

MINE GRAPH RULE: A New GQL Operator for Mining Association Rules in Property Graph Databases 11

Body Head
Support Confidence

ItemSetB1 ItemSetB2 ItemSetH1

FollowX BuyY BuyZ

Sofia Dress Shoes 0.25 1
Sofia Shoes Dress 0.25 1
Sofia Shorts T-shirt 0.25 1
Sofia T-shirt Shorts 0.25 1
Chiara Dress Jeans 0.25 1
Chiara Dress Shoes 0.25 1
Chiara Jeans Dress 0.25 1
Chiara Jeans Shoes 0.25 1
Chiara Shoes Dress 0.25 1
Chiara Shoes Jeans 0.25 1
Chiara Shorts T-shirt 0.25 1
Chiara T-shirt Shorts 0.25 1
Fabio Shorts T-shirt 0.25 1
Fabio T-shirt Shorts 0.25 1

Table 10 Output of ComplexBodyAssociationRules

an item of category Sportswear and also buy items of

category Sportswear, also buy T-shirt”; we note that

Luca is the only one who both follows more than two

persons -Chiara and Fabio- recommending Shoes and

Shorts of category Sportswear, and also buys items of

category Sportswear; therefore, with C(A) = 4, we have

C(B1) = 1 and C(R1) = 1 and, with these counters, the

rule support is C(R1)/C(A) = 0.25 and the rule confi-

dence is C(R1)/C(B1) = 1.

MINE GRAPH RULE MoreComplexBodyAssociationRules

GROUPING ON (p:Person)

DEFINING BODY AS (p)-[:FOLLOW>=3]->(PX:Person)

-[:RECOMMEND]->(X:Item)

-[:OF]->(CX:Category),

(p)-[:BUY]->(Y:Item)

-[:OF]->(CY:Category)

HEAD AS (p)-[:BUY]->(Z:Item)

IGNORE PX, X, Y

EXTRACTING RULES WITH SUPPORT > 0.1

AND CONFIDENCE > 0.1

Body Head
Support Confidence

ItemSetB1 ItemsSetB2 ItemSetH1

FollowPersonRecommendItemOfCX BuyItemOfCY BuyZ

Sportswear Sportswear T-shirt 0.25 1
Sportswear Sportswear Shorts 0.25 1

Casual Sportswear T-shirt 0.25 1
Casual Sportswear Shorts 0.25 1

Table 11 Output of MoreComplexBodyAssociationRules

4.10.2 Second Example.

Lastly, we consider a complex structure of the body

<pattern> with WHERE conditions on both anchors and

nodes. The following operator extracts rules whose in-

terpretation is “People from Rome who follow Chiara,

who recommends items of category CX, also buy items

of the same category”. The corresponding output is

shown in Table 12. Considering the first association

rule, “People from Rome who follow Chiara who rec-

ommends items of category Casual, also buy Jeans,

which are of the same category Casual”, we note that

there is only one person, Sofia, who satisfies all these

constraints, but also Luca follows Chiara recommend-

ing Casual items; hence, with C(A) = 3, we have

C(B1) = 2 and C(R1) = 1 and, with these counters,

the rule support is C(R1)/C(A) = 0.33 and the rule

confidence is C(R1)/C(B1) = 0.5.

MINE GRAPH RULE VerifyInfluencerEffectivenessInRome

GROUPING ON (p:Person) WHERE p.city = "Rome"

DEFINING BODY AS (p)-[:FOLLOW]->(PX:Person)

-[:RECOMMEND]->(X:Item)

-[:OF]->(CX:Category)

HEAD AS (p)-[:BUY]->(Y:Item)

-[:OF]->(CY:Category)

WHERE PX.name = "Chiara" AND CX.name = CY.name

IGNORE PX, X

EXTRACTING RULES WITH SUPPORT > 0.1

AND CONFIDENCE > 0.1

Body Head
Support Confidence

ItemSetB1 ItemSetH1

FollowChiaraRecommendCX BuyItem OfCY

Casual Jeans Casual 0.33 0.5
Casual Dress Casual 0.33 0.5
Casual Shoes Casual 0.33 0.5

Sportswear Shoes Sportswear 0.33 0.5
Sportswear T-shirt Sportswear 0.33 0.5
Sportswear Shorts Sportswear 0.33 0.5

Table 12 Output of VerifyInfluencerEffectivenessInRome

5 Implementation

Since the GQL standard was released only in April

2024, mature products that fully adopt the standard

are in progress. We chose to base our implementation

on Cypher [28], the query language of Neo4j, due to

its close affinity to GQL. We selected the Neo4j Graph

database as a development platform since it provides

an easily expandable architecture. Still, our proposed

implementation does not strictly depend on any spe-

cific Neo4j component or Cypher construct. Implemen-

tations for other graph databases and frameworks, like

Memgraph, JanusGraph, or Apache TinkerPop, can be

developed with no particular efforts.

Our implementation of the MINE GRAPH RULE oper-

ator has been developed in Java as a user-defined proce-

dure; it is available as a Neo4j plugin like other add-ons

of the Awesome Procedures on Cypher (APOC) [8] li-

brary. Libraries providing the data structures exploited

in the current implementation are also available for

most of the other main graph database systems.

12 Francesco Cambria et al.

Fig. 4 Phases of the MINE GRAPH RULE algorithm applied to a simple user-defined operator. Phase(1) counts the anchor nodes
with the label ‘Person’ C(A). In Phase(2), a query generating head and body for the operator is issued, and the query results,
which satisfy the minimum support threshold (expressed using absolute counts), are entered into a table whose entries include
the HEAD, the BODY, and the rule cardinality C(Ri) In Phase(3), a query generating just the body for the operator is issued
and the query results are entered into a table whose entries include the BODY and the BODY cardinality C(Bi). In the final
Phase(4) the output table is produced along a progression of five steps: first, the two tables produced by phases 3 and 4 are
joined on the BODY columns; then, support and confidence for each record of the resulting table are computed; then, rows
that create tautologies or do not satisfy the minimum confidence threshold are removed; then, the result is projected upon the
chosen schema; finally, resulting rows are streamed in output.

Once the plugin is installed, the procedure can be

invoked by its name “mineGraphRule” in the Neo4j

Cypher shell; it supports nine mandatory parameters

that map one-to-one to the variable elements of the op-

erator contained in the tuple (a,A,Wa, H,B,W, I, s, c):

the anchor’s variable a, the anchor’s label A, the con-

ditions Wa on the anchor, the map structure H for

the HEAD itemSet, the map structure B for the BODY

itemSet, the list of predicates W for the WHERE clause,

the list of IGNOREd variables I, the minimum support

threshold s, and the minimum confidence threshold c.

A detailed specification of the parameters’ format can

be found in the project’s repository [33]. Collectively,

these nine parameters provide a semi-structured version

of the MINE GRAPH RULE operator. In our implementa-

tion, we associated each node with a system-generated

identifier, to ensure the uniqueness of each node.

Once executed, the procedure outputs a stream of

records (each representing one association rule) with a

fixed format, consisting of four fields:

– body: a map of key-value pairs for the BODY columns.

The keys are the column names , whereas the val-

ues are the identifiers (i.e., properties) of the nodes

matched by the specified patterns;

– head: a map of key-value pairs for the HEAD columns,

with the same format of the BODY;

– support: the support value in double floating-point

precision;

– confidence: the confidence value in double floating-

point precision.

By default, the APOC procedure uses each internal

node identifier to match the nodes and generate the out-

put table for both the BODY and HEAD columns. How-

ever, with an optional input parameter, the user can

provide a list of identifying attributes as key-value pairs

(<NodeLabel>: <IdentifyingPropertyList>) specify-

ing, for each or some node label, which property should

be used instead of the internal node identifier.

The result can be transformed with the Cypher

YIELD sub-clause [43], which can select any column of

the output record and apply any supported Cypher or

APOC operation on them, such as reordering, regroup-

ing, or string concatenation.

We next describe our algorithm by first consider-

ing a base case, not including conjunctions or multiple

items in the BODY and in the HEAD. Then, we con-

sider the general case.

5.1 Algorithm for Simple Cases

In the translation, we use a syntax-directed approach

in which, for every production of the grammar, we

generate an appropriate Cypher expression. Therefore,

chains are directly translated as Cypher MATCH blocks

targeting alternatively: a simple relationship, a relation-

ship filtered based on the number of edges, or a bounded

path with free-type relationships. In this way, our MINE

GRAPH RULE language, which includes a rich collection

of orthogonal features, can be expressed in a compact

Cypher query, whose execution takes advantage of the

optimization capabilities of graph database engines. In

this simple case, we only need the following queries:

– a query for retrieving the anchors’ cardinality C(A)

(see Section 3);

– a query for retrieving HEAD, BODY, and rule’s car-

dinality C(Ri). Since this is the most selective query,

MINE GRAPH RULE: A New GQL Operator for Mining Association Rules in Property Graph Databases 13

we obtain the rules’ confidence at an early stage, so

that an optimized execution can discard all rules

below the confidence threshold;

– for the remaining rules, a query for retrieving BODY

and body’s cardinality C(Bi). At this point, the

rules’ support can be computed and the optimized

query execution can discard all rules below the sup-

port threshold.

The first query follows a simple structure and produces

a variable counting the number of anchors. The other

two queries have a similar structure, which is described

as follows:

1. MATCH subquery for anchors’ selection based on la-

bels and on predicates that are specific to anchors’

properties;

2. MATCH on all BODY (and possibly HEAD) patterns

in conjunction;

3. optional WHERE predicates, when operators include

conditions on the variables;

4. WITH clause to group by anchors and visible vari-

ables, to compute the rule cardinality;

5. WHERE predicate to guarantee minimum support;

6. RETURN clause with the final names returned to the

user at the end of the procedure.

Cypher queries produced for bodies only include

BODY’s patterns, whereas queries produced for rules

also include elements from heads.

The actual association rules, with their support and

confidence, are produced after a final assembly of the

results of the three described Cypher queries. Fig. 4

shows the complete flow of execution of the graph asso-

ciation rule mining algorithm when applied to a simple

operator.

5.2 Algorithm for General Cases

General cases include conjunctions and multiple pat-

terns in the BODY and/or in the HEAD. Our algo-

rithm is inspired by the fast Apriori algorithm imple-

mentation [10], where the mining starts by exploring

the smaller (i.e., most common) sets of frequent items

and combines them into bigger sets, until the minimum

support threshold is met. We start by considering the

operators with one pattern in the BODY and one in the

HEAD and then consider operators with more patterns,

thus, performing a body-head pair expansion. At each

step, exactly one pattern is added either to the BODY

or to the HEAD, up to the maximum number of pat-

terns specified in the input operator. The body-head

pairs are organized in a directed acyclic graph (DAG)

from the simplest to the most complete one, as exem-

plified in Fig. 5, Phase (2), for a particular example

where the BODY presents two patterns in conjunction,

the first ranging from 1 to 3 and the second ranging

from 1 to 2.

Continuing our analogy with the Apriori algorithm,

the objective of organizing the evaluation with a DAG

of pairs is to enable the early exclusion of pairs when

their support and confidence does not meet the min-

imum conditions set by the users. As usual, our anti-

monotonicity property only refers to support. (see Sec-

tion 5.3 for the related theorem and demonstration).

Thus, pairs are considered in an order created by a

breadth-first traversal of the DAG and, as soon as one

pair does not meet the support threshold, that pair,

together with all its descendants, is removed from the

DAG. The generation of queries corresponding to each

given pair is performed with the mechanism defined for

simple input operators, as illustrated in Fig. 4, Phases

(3) and (4).

Note that tables HEAD+BODY and BODY accu-

mulate the instances for all the pairs. As discussed in

Section 5.1, a final assembling step produces all the as-

sociation rules with their HEAD, BODY, support, and

confidence.

5.3 Demonstration of the Antimonotonicity Property

of the DAG

To demonstrate the antimonotonicity property of the

BODY-HEAD pairs of the DAG (used in the algorithm de-

scribed in Section 5.2), we first introduce the DAG of

BODY-HEAD pairs, where N is the set of its nodes and

A is the set of its arcs, then we define and prove our

notion of antimonotonicity.

Definition 1 Each node n ∈ N represents a fixed

BODY-HEAD pair of MINE GRAPH RULE applied to an in-

stance G of a property graph database. Each pair in-

cludes a finite set of joint patterns PH of the HEAD

and a finite set of joint patterns PB of the BODY. For

each pattern pXi ∈ PH ∪PB , its arity (i.e., the number

of items in each conjunct) is described by the function

k(n, pXi) : (N,PB ∪ PH) → N+.

Definition 2 Each arc a ∈ A : u
a→ v between nodes

u and v denotes that the function k(v, ∗) has the same

output values of k(u, ∗) for any pattern pXi, except for

one specific pattern, denoted as p̃Xi, for which we im-

pose k(v, p̃Xi) = k(u, p̃Xi) + 1 during the construction

of the DAG.

Theorem 1 For any node u in the DAG and all its

BODY-HEAD pair descendants v, the support count S(v)

is at most equal to the support count S(u): S(v) ≤ S(u).

14 Francesco Cambria et al.

Fig. 5 Phases of the MINE GRAPH RULE algorithm applied to an operator with two patterns in conjunction in the body, each
with many items, ranging respectively from 1 to 3 and 1 to 2. This specific operator has been chosen to explain how queries are
expanded, queued, and possibly removed from the queue. Phase(1) counts the anchor nodes with the label ‘Person’. Phase(2)
generates various nonredundant body-head pairs, named P1..P6, arranged in a directed acyclic graph (DAG), each with a
fixed number of items in the body’s conjuncts; for each pair, the number of items of the body’s conjuncts are highlighted
(in red in the figure) - while descending along the DAG levels, item numbers increase by 1, along the progression: [P1:(1,1)];
[P2:(2,1),P3:(1,2)]; [P4:(3,1),P5:(2,2)]; [P6(3,2)]. In Phase(3), the pairs generated at Phase (2) are queued, by performing a
breadth-first traversal of the DAG; thus, the queue PQ: P1..P6 is generated. For each pair, a query producing head and body
is issued, and the query results are entered into a table whose entries include the HEAD, the BODY, and the rule cardinality.
As explained in Fig. 4, Phase (2), only the rules that satisfy the minimum support threshold are selected. At this stage, it is
possible to remove some pairs from the queue; if we assume that no rule extracted for pair P5 satisfies the constraint on the
minimum support, then P5 can be removed from the queue together with all the successors in the DAG (in this case, P6). In
Phase(4), for each remaining pair P1..P4, a query producing just the body for that pair is generated, and the query results
are entered into a table whose entries include the BODY and the BODY cardinality. The final Phase(5) occurs in the same
way as described in Fig. 4, Phase (4).

Proof We prove the theorem by contradiction. Suppose

that for any pair u such that u → v, it holds that S(v) >

S(u). Then, the BODY-HEAD pair of v is less selective

than the pair in u, which is excluded by Definition 2,

imposing by construction an increased arity. We recall

from the GQL semantics that any additional path – as

an added item in the result – increases the selectivity

of the MATCH expression. Thus, the initial assumption

S(v) > S(u) is false. □

6 Evaluation

We assessed the performance of the MINE GRAPH RULE

operator by conducting a series of experiments over a

combination of synthetic datasets and query complexi-

ties of the operator. Furthermore, to validate the results

obtained from the operator, we also tested it on real-

world datasets.

Configuration We ran the experiments on our

dedicated server machine with a 56-core In-

tel E5-2660 v4 CPU and 384 GB of RAM. We

deployed a Neo4j database instance from its

5.15.0-community-bullseye Docker image. To

avoid memory bottlenecks, we configured the database

with the following settings:

server.memory.heap.initial_size=230G

server.memory.heap.max_size=230G

dbms.memory.pagecache.size=200G

6.1 Synthetic Databases Generation

We generated three types of synthetic datasets, all ad-

hering to the schema of the running example:

– The first one has a Uniform distribution of all the

edges among random nodes of the graph, ensuring

that relationships are evenly spread.

– The second one, named Coarse Scale-free, uses the

power-law distribution for the BUY relationship, rep-

resents the real-case scenario of an online shop; all

the other relationships are generated with a uniform

distribution among all nodes.

MINE GRAPH RULE: A New GQL Operator for Mining Association Rules in Property Graph Databases 15

Fig. 6 Performance analysis for synthetic datasets. Each graph reports the execution time required for executing four operators
with ingresing complexity on the used patterns (respectively named Simple, AnyRel, Ignore and Many Items) over graphs with
different syntethic edge generations (uniform, coarse scale-free, dense scale free); in the graph generation, we vary the total
dimension of the graph (up to 100K nodes) and use five different ratios (ranging from 0.5 to 0.9) of the number of anchor
nodes over the total nodes.

– The third one, named Dense scale-free, also uses

a power-law distribution for the BUY relationship,

bwith a higher density of relationships.

For each type of synthetic dataset, we generated

multiple versions by varying the total number of nodes

of the graph to test how the performance scales with

respect to the dimensions of the graph. In addition,

for each graph instance, we varied the ratio of an-

chor nodes (in our example, nodes with label Person),

which directly impacts the absolute count of BUY rela-

tionships within a graph. In Uniform graphs, the total

count of BUY is proportional to the product of the num-

ber of Person nodes and the number of Item nodes,

which is maximum when the graph is evenly split be-

tween Persons and Items. Therefore, increasing the ra-

tio over 0.5 would produce less BUY relationships. For

the Scale-free distribution, which mimics the distribu-

tion of items’ purchases in real life [38,26], graphs have

a fixed smaller portion of Items that are way more likely

to be bought, and increasing the percentage of Persons

results in a higher number of BUY relationships; there-

fore, here the ratio of anchor nodes has a nonlinear

relationship with the total count of BUY edges.

6.2 Experimental Results

We evaluated the scalability of our operator in multiple

settings.

General Scalability To assess the general scalability

of the operator, we evaluated the execution time of

four different expressions: Simple, AnyRel, Ignore, and

Conjunctions referencing the examples respectively re-

ported in Sections 4.2, 4.6, 4.8 and 4.9. In Fig. 6, we

compared their performance with fixed values of sup-

port and confidence (set to 0.0001) on different syn-

thetic graphs, varying not only the distribution of rela-

tionship BUY, but also the graph dimension (from 10K

nodes to 100K nodes) and the ratios between anchor

and total number nodes (from 0.5 to 0.9). In general, as

the complexity of the operators grow, we obtain higher

16 Francesco Cambria et al.

Fig. 7 Impact of support in the various configurations. Each
graph reports the execution time required by Simple and
Many Items operators over graphs generated with increas-
ing numbers of nodes, by fixing the anchor nodes over the
total nodes ratio (equal to 0.8). Each column corresponds
to increasing values of support (respectively 0.01, 0.001, and
0.0001); confidence is set at 0.0001.

Fig. 8 High Volume Scalability. For the Simple operator, we
consider a high the number of nodes (up to 500K) and diferent
ratios (0.8 vs 0.9) of item nodes over anchor nodes.

execution times while moving from Colimn 1 to Col-

umn4, as expected.

With Uniform graphs, very few assovciation ruiles

are extracted, as the topology does not encourage

anomalous associations. In Scale-free graphs, having

some Items with higher probability to be bought re-

sults in extracting many association rules, thus acti-

vating the branch of the algorithm that would perform

additional queries for conjuctive branches, ultimately

making the Conjunction query slower (see Section 5.2).

For instance, in B3 at 50K nodes, Simple extracts 2,630

rules while Conjuctions extracts 10,697 rules. Thus,

execution times of ”Conjunctions” (cases B4/C4) are

much higher tham execution times of ”Simple” (cases

B1/C1); performance does not seem to be too affected

by the difference between dense and coarse scale-free

relationship generation.

Impact of Support Selection To evaluate the effect of

the support on the performance of the operator, in

Fig. 7 we focused on two expressions of the operator,

Simple and Many Items (respectively reported in Sec-

tions 4.2 and 4.3), testing them with fixed values of

confidence (0.0001) on synthetic graphs with different

distributions and increasingly large number of nodes

(from 10K to 100K). In the uniform case, as no associ-

ation rules are produced, performances of Simple and

Many Items are identical; instead, they differ in the

scale-free case, with worse performance in the Many

Items case for higher density and for reduced support

costraints (as more association rules are produced in

output).

High Volume Scalability Lastly, focusing on the opera-

tor Simple (see Section 4.2), we evaluated the high vol-

ume scalability with a fixed value for support and con-

fidence (both at 0.0001) and an increasing number of

nodes (up to 500K). In Fig. 8, we compared two differ-

ent values of ratios of anchor nodes over item nodes (0.8

in blue and 0.9 in green), showing that performances

worsen when anchor nodes increase over item nodes.

6.3 Real-World Datasets

We evaluated the results of our operator from two real-

world datasets.

Spotify Dataset [53] This dataset comprises informa-

tion from over 6,000 Spotify playlists, including details

such as the music genre of each playlist, the user who

created it, the list of songs, the artists of the songs,

and their respective genres. The resulting graph con-

tains over 380,000 nodes and over 923,000 relationships.

Consider the following MINE GRAPH RULE operator:

MINE GRAPH RULE ArtistPlaylist

GROUPING ON (p:Playlist)

DEFINING BODY AS (p)-[:With]->(s1:Song)

-[:SungBy]->(X:Artist)

HEAD AS (p)-[:With]->(s2:Song)

-[:SungBy]->(Y:Artist)

WHERE X.popularity > 70 and Y.popularity > 70

IGNORE s1, s2

EXTRACTING RULES WITH SUPPORT > 0.001

AND CONFIDENCE > 0.001

The interpretation of the generated association rules is

“Playlists with songs sung by X (with over 70 popu-

larity), have also songs sung by Y (with over 70 pop-

ularity)” and with these thresholds values for support

and confidence the operator extracts more than 60,000

MINE GRAPH RULE: A New GQL Operator for Mining Association Rules in Property Graph Databases 17

rules. Table 13 reports the rules with the 10 highest

support values. The top positions are mainly occupied

by paired rules (i.e., where the artists are swapped be-

tween the head and body). Based on the mathemati-

cal definition of support, these paired rules must have

the same support value. However, their confidence val-

ues can vary significantly, which suggests interesting

implications. For instance, “Playlists with songs sung

by Harry Styles, have also songs sung by Taylor Swift”

has support of 0.0181 and confidence of 0.491, while

“Playlists with songs sung by Taylor Swift, have also

songs sung by Harry Styles” has the same support of

0.0181 but confidence of 0.348, suggesting that Harry

Styles fans enjoy Taylor Swift songs more than her fans

enjoy his songs. This can be interpreted as a greater

attention to Taylor’s Swift’s personal history, which is

typically in the text of her songs.

Body Head
Support Confidence

PlaylistWithSongSungByX PlaylistWithSongSungByY

Kanye West Drake 0.0216 0.475
Drake Kanye West 0.0216 0.446

Kendrick Lamar Drake 0.0204 0.582
Drake Kendrick Lamar 0.0204 0.422

21 Savage Drake 0.0183 0.816
Drake 21 Savage 0.0183 0.377

Harry Styles Taylor Swift 0.0181 0.491
Taylor Swift Harry Styles 0.0181 0.348

Kendrick Lamar Kanye West 0.0176 0.502
Drake Future 0.0176 0.364

Table 13 Output of ArtistPlaylist rules with highest 10 val-
ues of support

ArXiv Dataset [9] This dataset comprises information

from scientific papers, including details on both their

authors and their categories/macro-categories. The re-

sulting graph contains over 5 million nodes and over
15 million relationships. Consider the following MINE

GRAPH RULE operator:

MINE GRAPH RULE AuthorCategory

GROUPING ON (a:Author)

DEFINING BODY AS (a)-[:Publish]->(ar1:Article)

-[:Labelled]->(CX:Category)

-[:Of]->(m1:Macrocategory)

AS "ComputerScience"

HEAD AS (a)-[:Publish]->(ar2:Article)

-[:Labelled]->(CY:Category)

-[:Of]->(m2:Macrocategory)

AS "Physics"

WHERE m1.name = "Computer Science"

and m2.name = "Physics"

IGNORE ar1, ar2, m1, m2

EXTRACTING RULES WITH SUPPORT > 0.001

AND CONFIDENCE > 0.001

The generated association rules can be interpreted as

“Authors who publish articles labelled CX of Computer

Science, also publish articles labelled CY of Physics”.

In this case, we opted for simpler column names (using

the aliases), and named columns just ComputerScience

and Physics). The operator extracted over 1,000 rules

using these threshold values for support and confi-

dence, demonstrating its capability to handle millions

of nodes, and the rules with the highest 10 values of sup-

port are listed in Table 14. For instance, the pair Ma-

chine Learning, Quantum Physics has support of 0.0042

and confidence of 0.039.

7 Brief Comparison with Path Association

Rules Mining (PARM)

Among the graph pattern mining algorithms in the

existing literature, PARM, by Sasaki and Karras [49]

(Nov. 2024) exploits some of the characteristics of prop-

erty graphs to extract association rules. This section

provides a deep analysis of the similarities and differ-

ences between PARM and our approach, highlighting

their respective strengths.

PARM explores association rule mining by leverag-

ing paths within the graph; path patterns are classi-

fied either as simple paths, i.e. paths of a given length

consisting of alternating node labels (attributes) and

edge types, or reachability path patterns, where only

the labels of the first and last nodes are specified, and

these nodes are connected by a path of edges of the

same type, constrained to a maximum length. PARM

defines a path as matching a path pattern when it is

composed exactly of the alternating sequence of nodes

and edges specified in the pattern; it also states that

a node matches a path pattern if it originates a path

that matches to the same pattern. PARM also includes

the dominance between pairs of path patterns, stat-

ing that one pattern dominates another if it is longer

and matches the other pattern along its entire length.

These premises allow the definition of Path Association

Rules (PAR) as pairs of path patterns, as well as var-

ious notions of support and confidence. In particular,

the authors focus on association rules between paths

with support above a given threshold, shorter than a

maximum length, and such that neither of them dom-

inates the other. Rule extraction is performed by the

PIONEER algorithm, which takes advantage of anti-

monotonicity to prune infrequent patterns and of aux-

iliary data structures to store intermediate results; sev-

eral extensions of the base version of the method are

discussed, for approximation and parallelization.

In comparison, while MINE GRAPH RULE provides

syntax and semantics for declaratively describing asso-

ciation rules, PARM extracts association rules from the

graph in a bottom-up manner. A few aspects are simi-

lar, e.g., the use of path expressions; MINE GRAPH RULE

does not support reachability paths but it supports

18 Francesco Cambria et al.

Body Head
Support Confidence

ComputerScience Physics

Machine Learning Material Science 0.0042 0.040
Machine Learning Quantum Physics 0.0042 0.039
Machine Learning Computational Physics 0.0032 0.030

Computer Vision and Pattern Recognition Materials Science 0.0031 0.040
Artificial Intelligence Materials Science 0.0029 0.040
Machine Learning Optics 0.0029 0.027
Machine Learning Mesoscale and Nanoscale Physics 0.0029 0.027

Artificial Intelligence Quantum Physics 0.0028 0.038
Social and Information Networks Physics and Society 0.0027 0.196

Machine Learning Physics and Society 0.0027 0.025

Table 14 Output of AuthorCategory rules with highest 10 values of support

the orthogonal and recursive construction of patterns

with much higher expressive power, as these include ag-

gregation, alternative paths, arbitrary composition of

itemSets, conjunctive expressions of paths, and arbi-

trary predicates over any semantic feature supported

by property graphs (e.g., arbitrary labels and proper-

ties of nodes and edges) – thanks to the richness of

GQL. Algorithms are not comparable, as PIONEER is

implemented in C++ over structures optimized for the

purpose.

8 Discussion and Conclusion

After our progressive illustration of the expressive

power of the operator in Section 4, we summarize here

the benefits of our approach in terms of readability.

– Our language uses clauses mimicking GQL expres-

sions, employing standard GQL variables and pred-

icates over properties and labels of entities and re-

lationships; as such, it exploits the richness of the

property graph data model.

– Resulting association rules are extracted as rows of

(structured) tables, associating the Body and Head

itemSets to their support and confidence. These can

be inspected by any non-technical user in the form

of a CSV file, e.g., by using spreadsheets.

– We also developed a recursive mechanism, driven

by a grammar, to generate semantically rich column

names, e.g., for Body: FollowPersonRecommen-

dItemOfCX and for Head BuyItemOfCY (see

Table 11); when names are considered as too com-

plex, they can be renamed using alias clauses (see

Table 14).

Some recent papers have attempted to translate com-

plex formal expressions into readable examples, such as

two users are likely colleagues if they follow the same

organization and have over k friends in common (see

Example 1 in [23]) or if a television station v is part

of a company employing a CEO, then it is also part of

a company employing a professor (see Example ‘Nell’

in [49]). However, these rules are not equipped with

their support and confidence, and no indication is given

about how to extract these specific rules from the large

collection of extracted rules.

Our approach exploits the use of a GQL engine;

in particular, the fragment of GQL that we use is

also compatible with Cypher [28], a widely used graph

database language. Therefore, in our implementation,

we map MINE GRAPH RULE patterns to Cypher and ex-

ecute them on a Neo4j engine; we use the Apriori ap-

proach at a set-oriented level, and exploit the query

optimizer of the graph database engine, without resort-

ing to schema-specific tunings or heuristics. Although

our prototype implementation is specific to Neo4j, the

syntax and semantics of the operator are general, and

the principles followed in the implementation can be

applied to any graph database.

In this work, our focus has been on defining the

syntax and semantics of the MINE GRAPH RULE oper-

ator; we deliberately left out the optimization of the

execution over a data mining engine. Clearly, the a pri-

ori knowledge of the queries makes them amenable to

efficient optimizations. For what concerns query expan-

sion, we could design a special index that expands one

group if and only if it has enough support, mimick-

ing with a physical structure an optimized breadth-first

DAG traversal. We intend to dedicate follow-up work

to deepening query optimization for property graph

databases, using suitable physical database ingredients,

and performance-oriented benchmarks.

In the current design, MINE GRAPH RULE is a declar-

ative, top-down operator; another interesting direction

for future work is to embed the operator into higher-

level abstractions, so as to give more space to bottom-

up identification of most frequent patterns.

In conclusion, MINE GRAPH RULE is a significant step

forward along the directions discussed in [11], to which

we recently contributed in [32,19,18].

MINE GRAPH RULE: A New GQL Operator for Mining Association Rules in Property Graph Databases 19

Resources

The source code of the implementation of the mine-

GraphRule plugin for Neo4j, examples of usage, and the

scripts to generate the evaluation datasets are available

on GitHub [33].

Acknowledgements This paper is supported by the FAIR
(Future Artificial Intelligence Research) project, funded by
the NextGenerationEU program within the PNRR-PE-AI
scheme (M4C2, Investment 1.3, Line on Artificial Intelli-
gence).

References

1. Apyori. https://github.com/ymoch/apyori, 2019.
2. Db-engines ranking of graph dbms. https://

db-engines.com/en/ranking/graph+dbms, 2024. Last ac-
cessed online: January 22nd, 2025.

3. 39075, I. Information technology - database languages -
gql - fist edition 2024-04, 2024.

4. Abiteboul, S., and Bidoit, N. Non first normal
form relations to represent hierarchically organized
data. Proceedings of the 3rd ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems (1984),
191–200.

5. Aggarwal, C. C. An introduction to social network data
analytics. Springer, 2011.

6. Agrawal, R., Imieliński, T., and Swami, A. Mining
association rules between sets of items in large databases.
In Proceedings of the 1993 ACM SIGMOD international
conference on Management of data (1993), pp. 207–216.

7. Agrawal, R., Srikant, R., et al. Fast algorithms
for mining association rules. In Proc. 20th int. conf.
very large data bases, VLDB (1994), vol. 1215, Santiago,
pp. 487–499.

8. APOC Library. Awesome Procedures for Neo4j 5.18.x.
https://github.com/neo4j/apoc, 2024. Last accessed
online: January 22nd, 2025.

9. arXiv.org submitters. arxiv dataset, 2024.
10. Bodon, F. A fast APRIORI implementation. In FIMI

(2003), vol. 3, Citeseer, p. 63.
11. Bonifati, A., Ozsu, M. T., Tian, Y., Voigt, H., Yu,

W., and Zhang, e. A roadmap to graph analytics. ACM
SIGMOD Record 53, 4 (2025), 43–51.

12. Boulicaut, J.-F., Klemettinen, M., and Mannila,
H. Querying inductive databases: A case study
on the mine rule operator. In Principles of Data
Mining and Knowledge Discovery: Second European
Symposium, PKDD’98 Nantes, France, September 23–26,
1998 Proceedings 2 (1998), Springer, pp. 194–202.

13. Braga, D., Campi, A., Klemettinen, M., and Lanzi,
P. Mining association rules from xml data. In
Data Warehousing and Knowledge Discovery: 4th
International Conference, DaWaK 2002 Aix-en-Provence,
France, September 4–6, 2002 Proceedings 4 (2002),
Springer, pp. 21–30.

14. Bringmann, B., and Nijssen, S. What is frequent in
a single graph? In Advances in Knowledge Discovery
and Data Mining: 12th Pacific-Asia Conference, PAKDD
2008 Osaka, Japan, May 20-23, 2008 Proceedings 12
(2008), Springer, pp. 858–863.

15. Campi, A., and Palese, C. Twitter association rule min-
ing using clustering and graph databases. In 2021 the
5th International Conference on Information System and
Data Mining (2021), pp. 90–95.

16. Changchien, S. W., and Lu, T.-C. Mining association
rules procedure to support on-line recommendation by
customers and products fragmentation. Expert systems
with applications 20, 4 (2001), 325–335.

17. Ciftçi, O., Tenekeci, S., et al. Artist recommen-
dation based on association rule mining and commu-
nity detection. In Proceedings of the 13th International
Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management-KDIR (2021),
SCITEPRESS.

18. Colombo, A., Bernasconi, A., and Ceri, S. An llm-
assisted etl pipeline to build a high-quality knowledge
graph of the italian legislation. Information Processing
& Management 62, 4 (2025), 104082.

19. Colombo, A., Cambria, F., and Invernici, F. Legisla-
tive knowledge management with property graphs. In
Proceedings of the Workshops of the EDBT/ICDT 2025
Joint Conference (2025).

20. Deutsch, A., Francis, N., Green, A., Hare, K., Li, B.,
Libkin, L., Lindaaker, T., Marsault, V., Martens,
W., Michels, J., et al. Graph pattern matching in gql
and sql/pgq. In Proceedings of the 2022 International
Conference on Management of Data (2022), pp. 2246–
2258.

21. Dhiman, A., and Jain, S. Optimizing frequent subgraph
mining for single large graph. Procedia Computer Science
89 (2016), 378–385.

22. Fan, W., Fu, W., Jin, R., Lu, P., and Tian, C. Dis-
covering association rules from big graphs. Proc. VLDB
Endow. 15, 7 (mar 2022), 1479–1492.

23. Fan, W., Han, Z., Wang, Y., and Xie, M. Par-
allel rule discovery from large datasets by sampling.
In Proceedings of the 2022 international conference on
management of data (2022), pp. 384–398.

24. Fan, W., Wang, X., Wu, Y., and Xu, J. Association
rules with graph patterns. Proceedings of the VLDB
Endowment 8, 12 (2015), 1502–1513.

25. Fan, W., Wu, Y., and Xu, J. Functional dependen-
cies for graphs. In Proceedings of the 2016 international
conference on management of data (2016), pp. 1843–
1857.

26. Fenner, T., Levene, M., and Loizou, G. Predict-
ing the long tail of book sales: Unearthing the power-
law exponent. Physica A: Statistical Mechanics and Its
Applications 389, 12 (2010), 2416–2421.

27. Fernandes, D., Bernardino, J., et al. Graph
databases comparison: Allegrograph, arangodb, in-
finitegraph, neo4j, and orientdb. Data 10 (2018),
0006910203730380.

28. Francis, N., Green, A., Guagliardo, P., Libkin, L.,
Lindaaker, T., Marsault, V., Plantikow, S., Ry-
dberg, M., Selmer, P., and Taylor, A. Cypher:
An evolving query language for property graphs. In
Proceedings of the 2018 International Conference on
Management of Data (New York, NY, USA, 2018), As-
sociation for Computing Machinery, pp. 1433–1445.

29. Gudes, E., Shrimony, E., and Vanetik, N. Discover-
ing frequent graph patterns using disjoint paths. IEEE
Transactions on Knowledge and Data Engineering 18, 11
(2006), 1441–1456.

30. Hegland, M. The Apriori algorithm - A tutorial.
pp. 209–262.

https://github.com/ymoch/apyori
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://github.com/neo4j/apoc

20 Francesco Cambria et al.

31. Huynh, B., Nguyen, L., Duc, N., Nguyen, N.,
Nguyen, H.-S., Pham, T., Pham, T., Nguyen, L., and
Vo, B. Mining association rules from a single large graph.
Cybernetics and Systems 55, 3 (2023), 693–707.

32. Invernici, F., Bernasconi, A., and Ceri, S. Searching
covid-19 clinical research using graph queries: Algorithm
development and validation. Journal of Medical Internet
Research 26 (2024), e52655.

33. Invernici, F., Cambria, F., Bernasconi, A., and Ceri,
S. GitHub repository of mineGraphRule. https://

github.com/FrInve/mine_graph_rule, 2025. Last ac-
cessed online: January 22nd, 2025.

34. Jouili, S., and Vansteenberghe, V. An empirical
comparison of graph databases. In 2013 International
Conference on Social Computing (2013), IEEE, pp. 708–
715.

35. Kaur, M., Garg, U., and Kaur, S. Advanced eclat
algorithm for frequent itemsets generation. International
Journal of Applied Engineering Research 10, 9 (2015),
23263–23279.

36. Lin, W., Alvarez, S. A., and Ruiz, C. Efficient
adaptive-support association rule mining for recom-
mender systems. Data mining and knowledge discovery
6 (2002), 83–105.

37. Liu, X., Dong, B., Fu, W., Wu, N., Wang, X., and
Wang, W. Extending graph rules with oracles. Proc.
VLDB Endow. 17, 7 (may 2024), 1775–1787.

38. Mahanti, A., Carlsson, N., Mahanti, A., Arlitt, M.,
and Williamson, C. A tale of the tails: Power-laws in
internet measurements. IEEE Network 27, 1 (2013), 59–
64.

39. Meo, R., Psaila, G., and Ceri, S. An extension to sql
for mining association rules. Data mining and knowledge
discovery 2 (1998), 195–224.

40. Meo, R., Psaila, G., Ceri, S., et al. A new SQL-like
operator for mining association rules. In VLDB (1996),
vol. 96, Citeseer, pp. 122–133.

41. Moniruzzaman, A., and Hossain, S. A. Nosql
database: New era of databases for big data analytics-
classification, characteristics and comparison. arXiv
preprint arXiv:1307.0191 (2013).

42. Nahar, J., Imam, T., Tickle, K. S., and Chen, Y.-
P. P. Association rule mining to detect factors which
contribute to heart disease in males and females. Expert
systems with applications 40, 4 (2013), 1086–1093.

43. Neo4j Cypher Manual. CALL Procedure.
https://neo4j.com/docs/cypher-manual/current/

clauses/call, 2024. Last accessed online: January 22nd,
2025.

44. Osadchiy, T., Poliakov, I., Olivier, P., Rowland,
M., and Foster, E. Recommender system based on pair-
wise association rules. Expert Systems with Applications
115 (2019), 535–542.

45. Parviainen, P., Tihinen, M., Kääriäinen, J., and Tep-
pola, S. Tackling the digitalization challenge: how to
benefit from digitalization in practice. International
journal of information systems and project management
5, 1 (2017), 63–77.

46. Raschka, S. Mlxtend: Providing machine learning and
data science utilities and extensions to python’s scientific
computing stack. The Journal of Open Source Software
3, 24 (Apr. 2018).

47. Robinson, I., Webber, J., and Eifrem, E. Graph
databases: new opportunities for connected data.
”O’Reilly Media, Inc.”, 2015.

48. Santoso, M. H. Application of Association Rule Method
Using Apriori Algorithm to Find Sales Patterns Case

Study of Indomaret Tanjung Anom. Brilliance: Research
of Artificial Intelligence 1, 2 (2021), 54–66.

49. Sasaki, Y., and Karras, P. Mining path association
rules in large property graphs. In Proceedings of the
33rd ACM International Conference on Information and
Knowledge Management (2024), pp. 1994–2003.

50. Secretary, I. C. Information Technology - Database
Languages - GQL. Standard ISO/IEC WD 39075. https:
//www.iso.org/standard/76120.html, 2024.

51. Sen, S., Mehta, A., Ganguli, R., and Sen, S. Recom-
mendation of influenced products using association rule
mining: Neo4j as a case study. SN Computer Science 2
(2021), 1–17.

52. Shanmugasundaram, J., Tufte, K., Zhang, C., He,
G., DeWitt, D. J., and Naughton, J. F. Relational
databases for querying xml documents: Limitations and
opportunities. 302–314.

53. Shkurenko, V. GitHub repository of mine-
GraphRule. https://www.kaggle.com/datasets/

viktoriiashkurenko/278k-spotify-songs/data?

select=music_genres.txt, 2023.
54. Si, H., Zhou, J., Chen, Z., Wan, J., Xiong, N. N.,

Zhang, W., and Vasilakos, A. V. Association rules
mining among interests and applications for users on so-
cial networks. IEEE Access 7 (2019), 116014–116026.

55. Srikant, R., and Agrawal, R. Mining generalized as-
sociation rules. Future generation computer systems 13,
2-3 (1997), 161–180.

56. Standl, B., and Schlomske-Bodenstein, N. A pattern
mining method for teaching practices. Future Internet
13, 5 (2021), 106.

57. Stilou, S., Bamidis, P. D., Maglaveras, N., and Pap-
pas, C. Mining association rules from clinical databases:
an intelligent diagnostic process in healthcare. Studies in
health technology and informatics, 2 (2001), 1399–1403.

58. Tandan, M., Acharya, Y., Pokharel, S., and Tim-
ilsina, M. Discovering symptom patterns of covid-19
patients using association rule mining. Computers in
biology and medicine 131 (2021), 104249.

59. Vanetik, N., Shimony, S. E., and Gudes, E. Support
measures for graph data. Data Mining and Knowledge
Discovery 13, 2 (2006), 243–260.

60. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen,
Y., and Wilkins, D. A comparison of a graph database
and a relational database: a data provenance perspec-
tive. In Proceedings of the 48th annual Southeast regional
conference (2010), pp. 1–6.

61. Wang, X., and Xu, Y. Mining graph pattern associa-
tion rules. In International Conference on Database and
Expert Systems Applications (2018), Springer, pp. 223–
235.

62. Zaki, M. J. Scalable algorithms for association mining.
IEEE transactions on knowledge and data engineering
12, 3 (2000), 372–390.

https://github.com/FrInve/mine_graph_rule
https://github.com/FrInve/mine_graph_rule
https://neo4j.com/docs/cypher-manual/current/clauses/call
https://neo4j.com/docs/cypher-manual/current/clauses/call
https://www.iso.org/standard/76120.html
https://www.iso.org/standard/76120.html
https://www.kaggle.com/datasets/viktoriiashkurenko/278k-spotify-songs/data?select=music_genres.txt
https://www.kaggle.com/datasets/viktoriiashkurenko/278k-spotify-songs/data?select=music_genres.txt
https://www.kaggle.com/datasets/viktoriiashkurenko/278k-spotify-songs/data?select=music_genres.txt

	Introduction
	Related Work
	Operator Syntax and Semantics
	Progressive Illustration of the Expressive Power of MINE GRAPH RULE
	Implementation
	Evaluation
	Brief Comparison with Path Association Rules Mining (PARM)
	Discussion and Conclusion

