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Abstract. Model design is not a linear, one-shot process. It proceeds through refinements and revisions.
To effectively support developers in generating model refinements and revisions, it is desirable to have some
automated-support to verify evolvable models. To address this problem, we recently proposed to adopt
topological proofs, which are slices of the original model that witness property satisfaction. We implemented
TOrPEDO, a framework that provides automated support for using topological proofs during model design. Our
results showed that topological proofs are significantly smaller than the original models, and that, in most of
the cases, they allow the property to be re-verified by relying only on a simple syntactic check. However, our
results also show that the procedure that computes topological proofs, which requires extracting unsatisfiable
cores of LTL formulae, is computationally expensive. For this reason, TOrPEDO currently handles models with
a small dimension.

With the intent of providing practical and efficient support for flexible model design and wider adoption
of our framework, in this paper, we propose an enhanced – re-engineered – version of TOrPEDO. The new
version of TOrPEDO relies on a novel procedure to extract topological proofs, which has so far represented the
bottleneck of TOrPEDO performances. We implemented our procedure within TOrPEDO by considering Partial
Kripke Structures (PKSs) and Linear-time Temporal Logic (LTL): two widely used formalisms to express
models with uncertain parts and their properties. To extract topological proofs, the new version of TOrPEDO
converts the LTL formulae into an SMT instance and reuses an existing SMT solver (e.g., Microsoft Z3)
to compute an unsatisfiable core. Then, the unsatisfiable core returned by the SMT solver is automatically
processed to generate the topological proof.

We evaluated TOrPEDO by assessing (i) how does the size of the proofs generated by TOrPEDO compares
to the size of the models being analyzed; and (ii) how frequently the use of the topological proof returned
by TOrPEDO avoids re-executing the model checker. Our results show that TOrPEDO provides proofs that
are smaller (≈ 60%) than their respective initial models effectively supporting designers in creating model
revisions. In a significant number of cases (≈ 79%), the topological proofs returned by TOrPEDO enable
assessing the property satisfaction without re-running the model checker. We evaluated our new version of
TOrPEDO by assessing (i) how it compares to the previous one; and (ii) how useful it is in supporting the
evaluation of alternative design choices of (small) model instances in applied domains. The results show that
the new version of TOrPEDO is significantly more efficient than the previous one and can compute topological
proofs for models with less than 40 states within two hours. The topological proofs and counterexamples
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provided by TOrPEDO are useful to support the development of alternative design choices of (small) model
instances in applied domains.

Keywords: Topological Proofs, Iterative Design, Model Checking, Theorem Proving, Unsatisfiable Core.

1. Introduction

One of the goals of formal methods is to provide automated verification tools that support designers in
producing models that satisfy a set of properties of interest. Designers benefit from automated support
in two cases: i) when their models do not satisfy the properties of interest, and ii) when they do satisfy
such properties. While model checkers provide support in the first case – by producing counterexamples
that explain why properties are not satisfied – theorem provers sustain the second case—by justifying why
properties are satisfied. Theorem provers usually rely on some form of deductive mechanism that, given a
set of axioms, iteratively applies a set of rules until a theorem is proved (e.g., [PPZ01, PZ01]). The proof
consists of the sequence of deductive rules applied to prove the theorem. Even for simple models, proving
the theorem requires the use of a considerable number of deductive rules, leading to complex proofs. This
makes deductive proofs difficult to understand and hardly relatable to the designer’s modeling choices. In
addition, after the models are changed and model revisions are created, deductive proofs do not provide
effective support for the automated verification of the model revisions.

To tackle this problem, we recently proposed the novel notion of topological proof (TP) [MRB20], which
overcomes the complexity of deductive proofs and is designed to make proofs useful for the iterative verifica-
tion of model revisions. A topological proof is a slice of the original model that witnesses which part of the
model impacts the property satisfaction. Knowing which slice of the model impacts the property satisfaction
can guide designers in refining and revising their models as it helps to select the parts of the model to be
changed (or maintained). Furthermore, a topological proof can reduce the cost of formal verification. Indeed,
in many cases, after a model changes, it is possible to assess the satisfaction of a property by only verifying
whether the new version of the model preserves the topological proof, as opposed to re-executing the model
checking procedure, which – typically – is computationally more expensive.

In our previous work [MRB20], we formally defined topological proofs by considering Partial Kripke
Structures (PKSs) [BG99] and Linear-time Temporal Logic (LTL) to respectively express the model and the
properties of interest. While it is possible to consider other modeling formalisms, we chose Partial Kripke
Structures since (i) they are used in requirement elicitation to reason about system behavior from differ-
ent points of view [EC01, BCE+06], and are a common theoretical reference language used in the formal
method community for the specification of uncertain models (e.g, [GJ03, BG99, GP09, BG00]); (ii) other
modeling formalisms commonly used in software development [FUMK06, Uch09], such as Modal Transition
Systems [LT88] (MTSs), can be converted into Partial Kripke Structures through a simple transforma-
tion [GJ03] making our solution easily applicable to those models; and (iii) Kripke Structures (KSs) are
particular instances of Partial Kripke Structures that represent complete models. As such, our definitions
can also be applied to models that do not contain uncertain parts. We chose Linear-time Temporal Logic
since it is a standard logic used to express properties that should hold on Partial Kripke Structures.

To support the use of topological proof during model design, we proposed TOrPEDO (TOpological Proof
drivEn Development framewOrk) [MRB20], a novel automated verification framework, that: (i) supports
Partial Kripke Structures and Linear-time Temporal Logic; (ii) allows performing analysis and verification in
the context of models in which “incompleteness” represents a conceptual uncertainty; (iii) guides refinements
and revisions through complementary outputs: counterexamples and proofs; and (iv) when the system is
completely specified allows understanding which changes impact or not the satisfaction of certain properties.

There exists two variants of TOrPEDO: TOrPEDO-MUP and TOrPEDO-SMT. TOrPEDO-MUP was developed in
our previous work [MRB20], TOrPEDO-SMT is part of the contribution of this work.

In our previous work, we implemented TOrPEDO using NuSMV [CCG+02], i.e., an efficient and widely known
model checker, and PLTL-MUP [SGT13], i.e., a tool that enables to compute a minimal subset of unsatisfiable
LTL formulae from an unsatisfiable set of LTL formulae. We identify this version of TOrPEDO as TOrPEDO-MUP
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Table 1. Natural language and LTL formulation of the requirements of the vacuum-cleaner robot.
G and W are the “globally” and “weak until” LTL operators.

Textual Requirements LTL formulae

φ1: the robot is drawing dust (suck) only if it has reached the cleaning site. φ1 ≡ G(suck → reached)
φ2: the robot must be turned on before it can move. φ2 ≡ G((¬move)W on)
φ3: if the robot is on and stationary (¬move), it must be drawing dust (suck). φ3 ≡ G(((¬move) ∧ on)→ suck)
φ4: the robot must move before it is allowed to draw dust (suck). φ4 ≡ ((¬suck)W(move ∧ (¬suck)))

in the rest of the work. We evaluated TOrPEDO-MUP by considering a set of examples coming from literature
including both completely specified and partially specified models. We evaluated TOrPEDO-MUP by assessing
how the size of the proofs generated by TOrPEDO compares to the size of the models being analyzed (RQ1)
and how frequently the use of the topological proofs returned by TOrPEDO-MUP avoids re-executing the model
checker (RQ2). Our results show that topological proofs are ≈60% smaller than the original models and
that in ≈79% of the cases topological proofs allow assessing the property satisfaction without re-executing
the model checker. However, our results also show that the procedure that computes topological proofs is
computationally expensive. Specifically, the procedure to extract unsatisfiable cores of LTL formulae, which is
used to compute topological proofs, presents serious drawbacks. For this reason, TOrPEDO-MUP can currently
handle only models of small dimensions.

To provide a more practical and efficient support for flexible model design, in this paper we propose a
new version of TOrPEDO, hereon called TOrPEDO-SMT. TOrPEDO-SMT reduces the computational cost required
to compute topological proofs. It relies on a novel procedure to extract topological proofs. This procedure
converts LTL formulae into a Satisfiability Modulo Theories (SMT) problem instance. We reuse existing
techniques to convert LTL formulae into an SMT problem [SLJ+06]. Specifically, since our goal is to reduce
the computational cost of computing topological proofs, we implemented our translation by relying on a
novel encoding [BKR15, PKRB20] based on Bit-Vectors. According to the authors, such encoding provides
significantly better results when compared to other existing encodings. Then, TOrPEDO-SMT reuses an existing
efficient SMT solver (e.g., Microsoft Z3 [DMB08]) to compute the unsatisfiable core of the SMT instance.
Finally, the unsatisfiable core is automatically analyzed to extract the topological proof, which is returned
to the model designer.

We evaluated TOrPEDO-SMT by assessing how efficient it is in analyzing models and how it compares to
TOrPEDO-MUP (RQ3). TOrPEDO-SMT was able to compute topological proofs for models with less than 40
states within two hours. Furthermore, the results show that TOrPEDO-SMT is significantly more efficient than
TOrPEDO-MUP. Finally, we assessed how useful TOrPEDO-SMT is in supporting the evaluation of alternative
design choices of (small) model instances (RQ4). Our results show that the topological proofs and counterex-
amples provided by TOrPEDO effectively supported the development of a model of a small gene regulatory
network.

Organization. Section 2 discusses the background. Section 3 describes TOrPEDO. Sections 4 and 5 present
the theoretical results and the algorithms that support TOrPEDO. Section 6 evaluates the achieved results.
Section 7 discusses related work. Section 8 presents our conclusions.

2. Running Example and Background Notation

To illustrate TOrPEDO, we use the running example presented in Fig. 1 and Table 1; it contains a simple
model describing the behavior of a vacuum-cleaner robot that has to satisfy the requirements described in
Table 1. Section 2.1 introduces Partial Kripke Structures (PKS) – the modeling formalism considered in this
work – and describes how the model design proceeds through refinements and revisions. Section 2.2 describes
Linear-time Temporal Logic (LTL), the formalism used to express properties of interest, and its three-valued
semantics. Section 2.3 shows how to model-check the satisfaction of LTL properties on PKSs.
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on = ⊥
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reached =?

MOVING

(a) PKS of a vacuum-cleaner robot.
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(b) Refined PKS of a vacuum-cleaner robot.

Fig. 1. Example models of a vacuum-cleaner robot.

2.1. Partial Kripke Structures

The model of the vacuum-cleaner robot is represented using a Partial Kripke Structure (PKS) in Fig. 1a.
PKSs are state machines that can be adopted when the values of given propositions on selected states is
uncertain.

Definition 2.1 ([BG99],[Kri63]). A Partial Kripke Structure (PKS)M is a tuple 〈S,R, S0, AP, L〉, where:
S is a set of states; R ⊆ S × S is a left-total transition relation on S; S0 is a set of initial states; AP is a
set of atomic propositions; L : S ×AP → {>, ?,⊥} is a function that, for each state in S, associates a truth
value to every atomic proposition in AP . A Kripke Structure (KS) M is a PKS 〈S,R, S0, AP, L〉, where
L : S ×AP → {>,⊥}.

A PKS represents a system as a set of states and transitions between these states. The size |M | of a PKS
M = 〈S,R, S0, AP, L〉 is |AP | ∗ |S|+ |R|+ |S0|. We defined the size of the PKS as the sum of (a) the number
of atomic propositions assignments, that is obtained as the product between the cardinalities of the sets
of the atomic propositions and the states of the PKS; (b) the cardinality of the set of the transitions of
the PKS; and (c) the cardinality of the set of the initial states of the PKS. Our definition follows classical
definitions used for KS (e.g., [KG96]) and ensures that the size of the PKS increases with the number of the
states, the atomic propositions, and the transitions of the PKS.

The PKS of the vacuum-cleaner robot presented in Fig. 1a is defined over two atomic propositions
representing actions that a robot can perform: move, i.e., the agent travels to the cleaning site; suck , i.e.,
the agent is drawing the dust, and two atomic propositions representing conditions that can trigger actions:
on, true when the robot is turned on; reached , true when the robot has reached the cleaning site. The state
OFF represents the robot being shut down, IDLE the robot being turned on w.r.t. a cleaning call, MOVING
the robot reaching the cleaning site, and CLEANING the robot performing its duty. Each state is labeled
with the actions move and suck and the conditions on and reached . Let α and s be respectively an atomic
proposition and a state. We use the notation: α = > to indicate that α is true when the robot is in state s;
α = ⊥ to indicate that α is false when the robot is in state s; α =? to indicate that there is uncertainty on
whether α is true or false when the robot is in state s.

Model design proceeds though refinements and revisions. We will describe how model refinements and
revisions are used in incremental model design in Section 3. Refinements assign either a > or a ⊥ value to
an atomic proposition α, in a state s, such that L(s, α) =?.
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Definition 2.2 ([BG00]). Let M = 〈S,R, S0, AP, L〉 be a PKS. A refinement of M is a PKS Mrf =
〈S,R, S0, AP, Lrf 〉 where Lrf is such that

• for all s ∈ S, α ∈ AP if L(s, α) = > → Lrf (s, α) = >;

• for all s ∈ S, α ∈ AP if L(s, α) = ⊥ → Lrf (s, α) = ⊥.

We use the notation M �Mrf to indicate that Mrf is a refinement of M . For example, the PKS in Fig. 1b
is a refinement of the PKS in Fig. 1a, obtained by changing the value of the proposition reached into ⊥ in
state IDLE and the value of the proposition move into > in state CLEANING .

Definition 2.3 ([BG00]). Let M be a PKS and let Mcomp be a KS. Then, Mcomp is a completion [BG00]
of M if and only if Mcomp is a refinement of M .

Intuitively, a completion of a PKS is a refinement of the PKS obtained by replacing all the uncertain values
(?) assigned to the atomic propositions by ⊥ or >.

During a revision, a designer can add and remove states and transitions and/or change the values of the
atomic propositions in the states of the PKS.

Definition 2.4. Let M = 〈S, R, S0, AP, L〉 and Mrv = 〈Srv, Rrv, Srv,0, APrv, Lrv〉 be two PKSs. Then,
Mrv is a revision of M if and only if AP ⊆ APrv.

This definition of revision requires the model Mrv to contain at least the same propositions of M , i.e.,
AP ⊆ APrv. However, the definition does not force any relation between S, R, S0, L and Srv, Rrv, Srv,0,
Lrv, respectively. Therefore, a revision Mrv can be obtained from M by arbitrarily changing its initial states,
states, and transitions. Intuitively, this means that the only constraint the designer has to respect during
a revision is not to remove propositions from the set of atomic propositions. This condition is necessary
to ensure that any property that can be evaluated on M can also be evaluated on Mrv, i.e., every atomic
proposition has a value in each of the states of the PKS. Instead, the deactivation of a proposition can be
simulated by associating its value to ⊥ in all the states of Mrv.

Lemma 2.1. Let M = 〈S, R, S0, AP, L〉 be a PKS and let Mrf = 〈S, R, S0, AP, Lrf 〉 be a refinement of
M . Then, Mrf is a revision of M .

A refinement is a particular type of revision; for example, the PKS in Fig. 1b is an example of a revision
of the PKS in Fig. 1a.

Proof Sketch. Since the PKSs M and Mrf share the atomic proposition set AP , the condition AP ⊆ APrv

of Definition 2.4 is satisfied. �

2.2. Linear-Time Temporal Logic and Three-Valued Semantics

The properties that the model of the vacuum-cleaner robot should satisfy are expressed in Linear-time
Temporal Logic (LTL) in Table 1.

LTL formulae combine atomic propositions with the Boolean connectors “and” (∧) and “not” (¬) and
the temporal modalities “next” (X ) and “until” (U).

Definition 2.5 ([Pnu77]). Given a set AP of atomic propositions (with p ∈ AP ), an LTL formula φ is
formed according to the following grammar:

φ = true | p | φ1 ∧ φ2 | ¬φ | X φ | φ1 U φ2 (1)

where φ1 and φ2 are LTL formulae.

The “or” (∨), “implication” (→) and “equivalence” (↔) Boolean operators are derived using the operators
“and” (∧) and “not” (¬). Furthermore, the temporal operators “eventually” (F), “globally” (G) and “weak
until” (W), are derived using the other temporal operators as usual. For example, φ1W φ2 is defined using
the “until” (U) and the “globally” (G) operators as (φ1 U φ2) ∨ G φ1.

For KSs, we consider the classical LTL semantics [M |= φ] over infinite words, which associates to a
model M and a formula φ a truth value in the set {⊥,>} (see for example [BK08]). For PKS, instead, the
three-valued LTL semantics [BG99] [M |= φ] associates to a model M and a formula φ a truth value in
the set {⊥, ?,>}, being based on the information ordering > > ? > ⊥. The three-valued LTL semantics is
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defined by considering paths on the model M . A path π is an infinite sequence of states s0, s1, . . . such that,
for all i ≥ 0, (si, si+1) ∈ R. We use the notation πi to indicate the infinite sub-sequence of π that starts at
position i, and Path(s) to indicate the set of paths that start in the state s.

Definition 2.6 ([BG99]). Let M = 〈S,R, S0, AP, L〉 be a PKS, π = s0, s1, . . . be a path, and φ be an LTL
formula. Then, the three-valued semantics [(M,π) |= φ] is defined inductively as follows:

[(M,π) |= p] = L(s0, p)

[(M,π) |= ¬φ] = comp([(M,π) |= φ])

[(M,π) |= φ1 ∧φ2] = min([(M,π) |= φ1], [(M,π) |= φ2])

[(M,π) |= X φ] = [(M,π1) |= φ]

[(M,π) |= φ1 U φ2] = max
j≥0

(min({[(M,πi) |= φ1]|i < j} ∪ {[(M,πj) |= φ2]}))

Let M = 〈S,R, S0, AP, L〉 be a PKS, and φ be an LTL formula. Then [M |= φ] = min({[(M,π) |= φ] | π ∈
Path(s) and s ∈ S0}).

The comp operator maps > to ⊥, ⊥ to >, and ? to ?. The minimum and the maximum functions are
defined by considering the order > > ? > ⊥. The minimum and the maximum functions are extended to sets
by considering min(∅)=> and max(∅)=⊥.

For example, consider the path OFF , IDLE ,MOVINGω of the PKS in Fig. 1a, where MOVINGω indicates
that the state MOVING is entered infinitely often. The three-valued semantics associates to the LTL property
φ1 the value ?, since its satisfaction depends on the value assigned to the proposition reached in the states
IDLE and MOVING .

2.3. Model Checking

Checking KSs with respect to LTL properties can be done by using classical model checking procedures. We
assume that the function Check returns a tuple 〈res, c〉, where res is the model checking result in {>,⊥}
and c is the counterexample if res = ⊥, else an empty sequence. Note that the model checking problem of a
property φ on a KS M can be reduced to the satisfiability problem of the LTL formula ΦM ∧¬φ, where ΦM

represents the behaviors of model M . If ΦM ∧¬φ is satisfiable, then [M |= φ] = ⊥, otherwise [M |= φ] = >.
Checking a PKS M with respect to an LTL property φ considering the three-valued semantics is done

by performing twice the classical model checking procedure for KSs [BG00], one considering an optimistic
approximation Mopt and one considering a pessimistic approximation Mpes. These two procedures consider
the LTL formula φneg = F(φ), where F transforms φ with the following steps: (i) negation of φ; (ii) conversion
of ¬φ in negation normal form;1 (iii) replacement of every subformula ¬α, where α is an atomic proposition,
with a new proposition α.

To create the optimistic and pessimistic approximations Mopt and Mpes, the PKS M = 〈S,R, S0, AP, L〉
is first converted into its complement-closed version Mc = 〈S,R, S0, APc, Lc〉 where the set of atomic propo-
sitions APc = AP ∪AP is such that AP = {α | α ∈ AP}. Atomic propositions in AP are called complement-
closed propositions. Function Lc is such that, for all s ∈ S and α ∈ AP , Lc(s, α) = L(s, α) and, for all s ∈ S
and α ∈ AP , Lc(s, α) = comp(L(s, α)). The complement-closed PKS of the vacuum-cleaner agent in Fig. 1a
presents eight propositional assignments in the state IDLE: move = ⊥, move = >, suck = ⊥, suck = >,
on = >, on = ⊥, reached =?, and reached =?.

The two model checking runs for a PKS M = 〈S,R, S0, AP, L〉 are based respectively on an optimistic
(Mopt = 〈S,R, S0, APc, Lopt〉) and a pessimistic (Mpes = 〈S,R, S0, APc, Lpes〉) approximation of M ’s related
complement-closed version Mc = 〈S,R, S0, APc, Lc〉. Function Lpes (resp. Lopt) is such that

• for all s ∈ S, α ∈ APc, and Lc(s, α) ∈ {>,⊥}, it holds that Lpes(s, α) = Lc(s, α) (resp. Lopt(s, α) =
Lc(s, α)),and

• for all s ∈ S, α ∈ APc, and Lc(s, α) =?, it holds that Lpes(s, α) = ⊥ (resp. Lopt(s, α) = >).

1 An LTL formula φ is in negation normal form if negations are applied only to atomic propositions. Conversion of an LTL
formula into its negation normal form can be achieved by pushing negations inward and replacing them with their duals—for
details see [BK08].
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Let A be a KS and φ be an LTL formula, A |=∗ φ is true if A does not contain any path that satisfies
the formula F(φ).

Theorem 2.1. ([BG99]) Let φ be an LTL formula, let M = 〈S,R, S0, AP, L〉 be a PKS, and let Mpes and
Mopt be the pessimistic and optimistic approximations of M ’s relative complement-closed Mc. Then

[M |= φ]
def
=


> if Mpes |=∗ φ
⊥ if Mopt 6|=∗ φ
? otherwise

(2)

We call Check∗ the function that computes the result of the operator |=∗. Three-valued model checking
tools take as input the KS M and the LTL property φ, and return a tuple 〈res, c〉, where res is the model
checking result in {>, ?,⊥}, and c can be:

• an empty sequence (when M satisfies φ),

• a definitive-counterexample (when M violates φ), or

• a possible-counterexample (when M possibly-satisfies φ).

Both counterexamples indicate behaviors that violate the properties of interest: definitive-counterexamples
depend on already performed design choices, possible-counterexamples are based also on uncertain actions
and conditions. Intuitively, in the construction of the optimistic completion Mopt, the algorithm “tries its
best” to build a KS which satisfies φ. If a violating behavior is found in Mopt, then a definitive-counterexample
is returned since the property φ does not hold. The presence of a violating behavior in Mopt can be checked
by verifying whether ΦMopt

∧ φneg is satisfiable, where ΦMopt
represents the behaviors of model Mopt and

φneg = F(φ). If ΦMopt ∧ φneg is satisfiable, then there exists a behavior that satisfies φneg, that is it violates
φ. Therefore, such behavior is a definitive counterexample. Viceversa, in the construction of the pessimistic
completion Mpes, the three-valued model checker “tries its best” to construct a KS that violates φ. If no
violating behavior is found in Mpes, then M |= φ. The presence of a violating behavior in Mpes can be
checked by verifying whether ΦMpes

∧ φneg is satisfiable, where ΦMpes
represents the behaviors of model

Mpes. If ΦMpes
∧ φneg is not satisfiable, then it does not exists any behavior that satisfies φneg, that is φ is

satisfied. Otherwise, it could be the case where there exists some completion in which φ holds and others in
which it does not hold. In this case, the three-valued model checker returns ?.

For example, the PKS represented in Fig. 1a possibly satisfies LTL property φ1. The path OFF , IDLE ,
MOVINGω is a possible-counterexample for this property.

While definitive and possible counterexamples provide information when the property of interest is vi-
olated, or possible violated, they do not provide any information that explains why the model satisfies or
possibly satisfies a property of interest. To tackle this problem, we propose TOrPEDO.

3. The Topological Proof Driven Development Framework

The TOpological Proof drivEn Development framewOrk (TOrPEDO) is a development framework which sup-
ports the use of topological proofs (TPs) during the model design. The TOrPEDO framework is illustrated in
Fig. 2 and carries out verification in four phases: initial design, analysis, revision, and re-check.

Initial design ( 1 ). The model M of the system is expressed using a PKS ( 1 ), which can be generated
from other languages (e.g., MTS), along with the property of interest φ, expressed using LTL ( 2 ).

Running example. The model in Fig. 1a contains an example of PKS with an initial design for the
vacuum-cleaner robot. Table 1 contains the properties of interests for this model.

Analysis ( 2 ). TOrPEDO provides automated analysis support, which includes the following elements:

(i) Information about what is wrong in the current model design. This information includes a definitive-
counterexample ( 3 ⊥-CE), which can be used to produce a revised version Mrv of M that satisfies or
possibly satisfies the property of interest.

(ii) Information about what is correct in the current design. This information includes definitive-topological
proofs ( 4 >-TP) that indicate a portion of the design that ensures satisfaction of the property.

(iii) Information about what could be wrong/correct in the current design, depending on how uncertainty
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Fig. 2. Phases of the TOrPEDO development framework. Continuous arrows represent inputs and outputs to
phases. Numbers are used to reference the image in the text.

Table 2. Results provided by TOrPEDO for properties φ1, φ2, φ3 and φ4. >, ⊥ and ? indicate that the property
is satisfied, violated and possibly satisfied.

φ1 ?

?-CE OFF , IDLE , (MOVING)ω .

?-TP


TPP: 〈CLEANING, reached ,>〉 〈OFF , suck ,⊥〉, 〈IDLE , suck ,⊥〉, 〈MOVING, suck , ? 〉
TPT: 〈OFF , {OFF , IDLE}〉, 〈IDLE , {OFF , IDLE ,MOVING}〉,
〈MOVING, {MOVING,CLEANING}〉, 〈CLEANING, {CLEANING, IDLE}〉
TPI: 〈{OFF}〉

φ2 > >-TP


TPP: 〈MOVING, on,>〉, 〈CLEANING, on,>〉, 〈OFF ,move, ⊥ 〉, 〈IDLE ,move,⊥〉
TPT: 〈OFF , {OFF , IDLE}〉, 〈IDLE , {OFF , IDLE ,MOVING}〉,
〈MOVING, {MOVING,CLEANING}〉, 〈CLEANING, {CLEANING, IDLE}〉
TPI: 〈{OFF}〉

φ3 ⊥ ⊥-CE OFF , IDLEω

φ4 ?

?-CE OFF , (IDLE , MOVING, CLEANING, IDLE , OFF )ω

?-TP


TPP: 〈OFF , suck ,⊥〉, 〈IDLE , suck ,⊥〉, 〈MOVING, suck , ? 〉, 〈MOVING,move,>〉
TPT: 〈OFF , {OFF , IDLE}〉, 〈IDLE , {OFF , IDLE ,MOVING}〉
TPI: 〈{OFF}〉

is removed. This information includes: a possible-counterexample ( 5 ?-CE) and a possible-topological
proof ( 6 ?-TP), indicating a portion of the design that ensures the possible satisfaction of the property
of interest.

The automated analysis support relies on two components: the model checker and the topological proof
extractor. The model checker verifies whether a property is satisfied or violated by the current model and is
implemented by reusing existing algorithms from the literature, such as the one presented in Section 2. The
topological proof extractor computes the topological proof and is discussed in Section 3.1.

In the following we will use the notation x-topological proofs or x-TP to respectively indicate definitive-
topological or possible-topological proofs.

Running example. The results returned by TOrPEDO for the different properties in our motivating example
are presented in Table 2. Property φ2 is satisfied, φ3 is not. In those cases, TOrPEDO returns respectively
a definitive-proof and a definitive-counterexample. Since φ1 and φ4 are possibly satisfied, in both cases a
possible-counterexample and a possible-topological proof are returned. For φ1, the possible-counterexample
shows a run that may violate the property of interest. The possible-topological proof for φ1 in Table 2 shows
that if OFF remains the only initial state (TPI), reached still holds in CLEANING , and suck does not
hold in OFF and IDLE , while unknown in MOVING (TPP), property φ1 remains possibly satisfied. In
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Model
A: KS

Formula
φneg:
LTL

Sys2LTL
TOrPEDO-SMT

TOrPEDO-MUP

GetUC

PLTL-MUP

LTL2PL UCPL PL2LTL

GetTP

Model
M : PKS

TP
S: KS-Slice

ψ: LTL

Clauses

Cuc: LTL
Conflicting
Clauses

P: PL

Clauses

PC: PL
Conflicting

Clauses

Fig. 3. Components of the Topological Proof Extractor of TOrPEDO-MUP and TOrPEDO-SMT.

addition, all transitions must be preserved (TPT).2 Note that the proof highlights portions of the model
that influence the property satisfaction. For example, by inspecting the proof, the designer understands that
she can change the value of the proposition reached in all the states of the PKS, with the exception of the
state CLEANING , without making the property violated.

Revision ( 3 ). Revisions ( 8 — see Definition 2.4) can be obtained by changing some parts of the model:
adding/removing states and transitions or by changing propositions labelling inside states, and are defined
by considering the TP ( 9 ).

Running example. The designer may want to propose a revision that still does not violate properties φ1, φ2,
and φ4. Thus, she changes the values of some atomic propositions: move becomes > in state CLEANING
and reached becomes ⊥ in state IDLE . Fig. 1b contains the revision of the PKS in Fig. 1a obtained by
applying these changes. Since φ1, φ2, and φ4 were previously not violated, TOrPEDO performs the re-check
phase for each property.

Re-check ( 4 ). The automated verification tool provided by TOrPEDO checks whether all the changes in
the current model revision are compliant with the x-TPs ( 10 ), i.e., changes applied to the revised model do
not include parts that had to be preserved according to the x-topological proof. If a property of interest is
(possibly) satisfied in a previous model, and the revision of the model is compliant with the property x-TP,
the designer has the guarantee that the property is (possibly) satisfied in the revision. Thus, she can perform
another model revision round ( 7 ) or approve the current design ( 11 ). Otherwise, TOrPEDO re-executes the
analysis ( 12 ).

Running example. In the vacuum-cleaner case, the revision in Fig. 1b passes the re-check and the
designer proceeds to a new revision phase.

3.1. Topological Proof Extractor

We present two implementations for the topological proof extractor component: our previous implemen-
tation [MRB20], which is based on PLTL-MUP [SGT13], and a novel SMT-based procedure, which is part
of the contribution of this work. The versions of TOrPEDO that use these two topological proof extractor
components are named TOrPEDO-MUP are TOrPEDO-SMT. In the rest of this work, we will use TOrPEDO-MUP
and TOrPEDO-SMT when referring to the specific solver used to extract topological proofs, TOrPEDO when
indicating the general method.

The topological proof extractor employed during the analysis phase takes as input a PKS M , its
optimistic or pessimistic approximation A and an LTL formula φneg = F(φ) (see Section 2.3) and returns a
slice S of the KS. Fig. 3 conceptually describes the components of the topological proof extractor used in
both TOrPEDO-MUP and TOrPEDO-SMT: rectangular boxes with sharp corners represent the inputs and outputs
of the topological proof extractor; rectangular boxes with rounded corners represent software components.
Their background color indicates whether the components are part of TOrPEDO-MUP (i.e., gray), TOrPEDO-SMT
(i.e., red), or both (i.e., white). The labels on the arrows describe the type of inputs and outputs of each
component.

2 The precise formal descriptions of x-topological proofs, TPI, TPT and TPT are presented in Section 4.
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The components implement the steps of Algorithm 1: TOrPEDO employs the Sys2LTL procedure to
convert the KS A and the LTL formula φneg into a set C of LTL clauses (Line 2). The set of LTL clauses C
contains: i) clauses CA encoding the behaviors of the model A and ii) the formula φneg. Since φ is satisfied,
none of the behaviors of the model satisfy φneg; since the behaviors that violate the property cannot occur,
some of the clauses in CA must conflict with φneg. Our GetUC procedure detects such clauses and stores
them within the set of conflicting clauses Cuc (Line 3). Finally, the GetTP component maps the conflicting
clauses within Cuc into the corresponding slice S of the KS A (Line 4).

Algorithm 1 Compute Topological Proofs.

1: function Ctp KS(M , A, φneg)
2: C = Sys2LTL(A, φneg)
3: Cuc = GetUC(C)
4: S = GetTP(M,A, Cuc)
5: return S
6: end function

TOrPEDO-MUP and TOrPEDO-SMT differ in the implementation of the GetUC procedure. TOrPEDO-MUP
implements it by using PLTL-MUP [SGT13], which returns the conflicting clauses (Cuc). TOrPEDO-SMT, instead,
translates the LTL clauses into a set of clauses P in propositional logic (PL), maintaining a map between
each LTL clause and the propositional logic clauses generated from it. Then, it exploits existing SMT-based
solvers to compute the conflicting propositional logic clauses (PC). Finally, it uses the previously built map
to detect the LTL clauses that generated the conflicting propositional logic clauses.

The two procedures are described in detail in Section 5.3 and Section 5.4. We evaluate TOrPEDO-MUP and
TOrPEDO-SMT in Section 6.

4. Topological Proofs: a Formal Definition

In this section, we introduce the notion of topological proof. The pursued proof consists of a set of clauses
that specify certain topological properties of M ; these represent the portion of the model that explains how
it satisfies (or possibly-satisfies) the imposed claim. Different kinds of clauses are defined next.

Definition 4.1. Let M = 〈S, R, S0, AP, L〉 be a PKS. A Topological Proof clause (TP-clause) γ for M is
either:

• a Topological Proof Propositional clause (TPP-clause), i.e., a triad 〈s, α, v〉 where s ∈ S, α ∈ AP , and
v ∈ {>, ?,⊥};

• a Topological Proof Transitions-from-state clause (TPT-clause), i.e., a pair 〈s, T 〉, such that s ∈ S, T ⊆ S;

• a Topological Proof Initial-states clause (TPI-clause), i.e., an element 〈S0〉.
These clauses indicate topological properties of a PKS M . Informally, TPP-clauses constrain how states

are labeled (L), TPT-clauses constrain how states are connected (R), and TPI-clauses constrain the initial
states of the model (S0). For example, let us consider in Table 2 the proof obtained for property φ1:

• 〈CLEANING , reached , >〉 is a TPP-clause that constrains the atomic proposition reached to be labeled
as true (>) in the state CLEANING ;

• 〈OFF , {OFF , IDLE}〉 is a TPT-clause that constrains the transition from OFF to OFF and from OFF
to IDLE to not be removed; and

• 〈{OFF}〉 is a TPI-clause that constrains the state OFF to remain the initial state of the system.

We say that a state si is constrained by a TPP-clause 〈s, α, v〉 if s = si, by a TPT-clause 〈s, T 〉 if s = si
or si ∈ T , and by a TPI-clause 〈S0〉 if si ∈ S0.

We now define the notion of Ω-related PKS that is then used to formally define a topological proof.

Definition 4.2. Let M = 〈S,R, S0, AP, L〉 be a PKS and Ω be a set of TP-clauses for M . Then, a PKS
Ω-related to M is a PKS MΩrel = 〈SΩrel, RΩrel, SΩrel,0, APΩrel, LΩrel〉, such that the following conditions
hold:
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i) AP ⊆ APΩrel;

ii) for every TPP-clause 〈s, α, v〉 ∈ Ω, the condition s ∈ SΩrel and v = LΩrel(s, α) holds;

iii) for every TPT-clause 〈s, T 〉 ∈ Ω, the condition s ∈ SΩrel, T ⊆ SΩrel, and T = {si ∈ SΩrel|(s, si) ∈ RΩrel}
holds;

iv) for every TPI-clause 〈S0〉 ∈ Ω, the condition S0 = SΩrel,0 holds.

Intuitively, a PKS Ω-related to M is a PKS MΩrel that is compliant with the set of TP-clauses Ω for M .
Specifically:

i) the atomic propositions in the set AP of M are also included in the set APΩrel of MΩrel;

ii) the values of the atomic propositions in the TPP-clauses are not changed;

iii) the states of M that are constrained by a TPT-clause are also part of MΩrel. The set of the outgoing
transitions T of a state s of M that are part of a TPT-clause 〈s, T 〉 are also the outgoing transitions of s
in MΩrel. Note that the states of M that are not constrained by a TPT-clause are not necessarily states
of MΩrel; and

iv) the initial states of M that are in a TPI-clause are exactly the initial states of MΩrel.

Based on these observations, a topological proof is then defined as follows.

Definition 4.3. Let M = 〈S,R, S0, AP, L〉 be a PKS, let φ be an LTL property, let Ω be a set of TP-clauses
for M , and let x be a truth value in {>, ?}. A set of TP-clauses Ω is an x-topological proof (or x-TP) for φ
in M if: (i) [M |= φ] = x; and (ii) every PKS MΩrel Ω-related to M is such that [MΩrel |= φ] ≥ x.

The operator ≥ assumes that values >, ?,⊥ are ordered considering the classical information ordering
> > ? > ⊥ among the truth values [BG99]. Intuitively, an x-topological proof for M ensures that every
Ω-related PKS MΩrel to M satisfies the property φ “at least as much as M does”. We call >-TP a definitive-
topological proof and ?-TP a possible-topological proof. Intuitively, a definitive-topological proof for M ensures
that every Ω-related PKS MΩrel to M satisfies the property φ. A possible-topological proof for M ensures
that every Ω-related PKS MΩrel to M satisfies or possibly satisfies the property φ.

The size of an x-topological proof Ω is defined as |Ω| =
∑
c∈Ω

|c| where:

• |c| = 1 if c = 〈s, α, v〉;
• |c| = |T | if c = 〈s, T 〉; and

• |c| = |S0| if c = 〈S0〉.

Note that, for the PKS in Fig. 1a, Table 2 shows two ?-TPs for properties φ1 and φ4 (respectively of size 14
and 10), and one >-TP for property φ2 (of size 14).

To introduce the core property of topological proofs, we first present the notion of Ωx-revision, a revision
of the model that follows the constraints imposed by the topological proof. Note that, differently from the
notion of Ω-relation, which is defined by considering an arbitrary set of TP-clauses, the notion of Ωx-revision
is defined by considering the topological proof, which is a set of TP-clauses that follows the conditions
specified in Definition 4.3.

Definition 4.4. Let M and MΩrv be two PKSs, let φ be an LTL property, and let Ω be an x-TP for φ in
M . Then, MΩrv is an Ωx-revision of M if MΩrv is Ω-related to M .

The Ωx-revision MΩrv of M is such that MΩrv is Ω-related to M ; this means that it is obtained by
changing the model M while preserving the statements that are specified in the x-TP for φ. A revision MΩrv

of M is compliant with the x-TP for a property φ in M if it is an Ωx-revision of M . Intuitively, a Ωx-revision
of M is a PKS MΩrv obtained from M by changing any topological aspect that does not impact on the set
of TP-clauses Ω. Specifically, models can be changed as follows:

1. any transition whose source state is not the source state of a transition included in the TPT-clauses can
be added or removed from the PKS;

2. any value of a proposition that is not constrained by a TPP-clause can be changed;

3. states can be added and removed if they are not constrained by any TPT-, TPP-, or TPI-clause;

4. initial states cannot be changed if Ω contains a TPI-clause.
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For example, consider the topological proof for the property φ1 presented in Table 2. The PKS in Fig. 1a is
an Ω?-revision of the PKS in Fig. 1b since the values of the atomic propositions reached in IDLE and move
in CLEANING are not constrained by any TPP-clause.

In the following, we claim and prove that, if M is a PKS that satisfies the property φ, then any Ω>-
revision of M also satisfies φ. In other words, if the model satisfies φ and it is revised in accordance with its
topological proof, then Ω>-revisions of the model are generated and the revised model also satisfies φ. If M is
a PKS that possibly satisfies the property φ, then any Ω?-revision possibly satisfies or satisfies φ. This means
that, if the model possibly satisfies φ and is revised considering its topological proof, then Ω?-revisions of
the model are generated and these also satisfy/possibly-satisfy φ. Consequently, when the model is revised
according to its topological proof, there is no need to run the model checker to verify that φ is not satisfied
on the revised model.

Theorem 4.1. Let M be a PKS, let φ be an LTL property such that [M |= φ] = >, and let Ω be a >-TP
for φ in M . Then every Ω>-revision MΩrv is such that [MΩrv |= φ] = >.
Let M be a PKS, let φ be an LTL property such that [M |= φ] =?, and let Ω be an ?-TP for φ in M . Then
every Ω?-revision MΩrv is such that [MΩrv |= φ] ∈ {>, ?}.

Proof Sketch. We prove the first statement of the Theorem; the proof of the second statement is obtained
by following the same steps.

The theorem assumes that MΩrv is an Ω>-revision of M . If Ω is a >-TP for φ in M , then MΩrv is
Ω-related to M (by Definition 4.4). Since Ω is a >-TP for φ in MΩrv and MΩrv is Ω-related to M , then
[MΩrv |= φ] ≥ > (by Definition 4.3). �

5. Automated Support

This section describes the algorithms that support TOrPEDO. Section 5.1 describes how the model checker
and the topological proof extractor are integrated into the analysis phase ( 2 ) of TOrPEDO. Section 5.2
describes in detail the steps of TOrPEDO used to compute topological proofs (Algorithm 1). Section 5.3
describes the implementation used by TOrPEDO-MUP for computing topological proofs. Section 5.4 describes
the implementation of the SMT-based algorithm used by TOrPEDO-SMT for computing topological proofs.
Section 5.5 presents the implementation of the re-check ( 4 ) phase of TOrPEDO.

5.1. Analysis

To analyze a PKS M = 〈S,R, S0, AP, L〉 ( 1 ), TOrPEDO uses the three-valued model checking framework
based on Theorem 2.1. The model checking result is provided as output by the analysis phase of TOrPEDO,
whose behavior is described in Algorithm 2.

The algorithm returns a tuple 〈x, y〉, where x is the verification result and y is a set containing the
counterexample, the topological proof or both of them. The algorithm first checks whether the optimistic
approximation Mopt of the PKS M satisfies property φ ( 2 , Line 2). For computing Mopt our implementation
follows the steps described in Section 2.3: it first computes the complement-closed PKS by computing the
set of complement-closed atomic propositions and the function Lc, and then, it computes the optimistic
approximation, by calculating the functions Lopt. We used the NuSMV model checker for implementing the
Check∗ procedure. If the optimistic approximation Mopt of the PKS M violates the property φ, the property
is violated by the PKS and the definitive-counterexample cd ( 3 , ⊥-CE) is returned (Line 3). Otherwise, the
algorithm checks whether the pessimistic approximation Mpes of the PKS M satisfies property φ (Line 5). As
for the case of Mopt, for computing Mpes our implementation follows the steps described in Section 2.3. If the
PKS M satisfies property φ, the property is satisfied and the value > is returned along with the definitive-
topological proof ( 4 , >-TP) computed by the Ctp KS procedure applied on the pessimistic approximation
Mpes and the property φneg (Line 7). Otherwise, the property is possibly satisfied and the value ? is returned
along with the possible-counterexample cp ( 5 , ?-CE) and the possible-topological proof ( 6 , ?-TP) computed
by the Ctp KS procedure applied to Mopt and φneg (Line 10).
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Algorithm 2 The analysis algorithm.

1: function Analyze(M , φ)
2: 〈resopt, cd〉 = Check∗(Mopt, φ)
3: if res == ⊥ then return 〈⊥, {cd}〉
4: else
5: 〈respes, cp〉 = Check∗(Mpes, φ)
6: if respes == > then return
7: 〈>, {Ctp KS(M,Mpes, φneg)}〉
8: else
9: return

10: 〈?, {cp,Ctp KS(M,Mopt, φneg)}〉
11: end if
12: end if
13: end function

5.2. Extracting the Topological Proofs

The procedure Ctp KS (Compute Topological Proofs) to compute x-TPs detailed in Algorithm 1 takes as
input a PKS M , its optimistic/pessimistic approximation, i.e., here denoted generically as the KS A, and
an LTL formula φneg = F(φ)—satisfied in A (see Section 2). The three steps of the algorithm are described
in the following.

5.2.1. Sys2LTL: Translating the KS and the Property into an LTL Formula

The KS A = 〈S,R, S0, APc, LA〉 and the LTL formula φneg are used to generate a set of clauses C =
CA ∪ {φneg}. The clauses in CA encode the KS. Specifically, CA = CKS ∪CREG , where CKS = {ci} ∪CN ∪
CL> ∪ CL⊥. The sets of clauses ci, CN , CL> and CL⊥, CREG are defined as specified in Table 3. The
initial clause ci specifies that the KS is initially in one of its initial states. The next state clauses in CN

specify that if in the current instant the KS is in state s, in the next instant it is in one of the successors
states si of s. The labeling clauses in CL> specify that if the KS is in state s such that LA(s, α) = >,
the atomic proposition α is true. The labeling clauses in CL⊥ specify that if the KS is in state s such that
LA(s, α) = ⊥, the atomic proposition α is false. Finally, the regularity clauses in CREG specify that the KS
is in at most one state at any time. Note that the clauses in CA are defined on the set of atomic propositions
APS = APc∪{p(s)|s ∈ S}, i.e., APS includes an additional atomic proposition p(s) for each state s, which is
true when the KS is in state s. The LTL formula ψ to be analyzed to check for conflicting clauses is defined
as follows.

ψ =
∧
c∈C

c

The problem of model checking the KS A and the LTL formula φneg is solved by checking the satisfiability
of ψ (see Section 2). The number of clauses of ψ is the number of clauses in CA, which is, in the worst case,
1 + |S|+ |S| × |APc|+ |S| × |S|, plus one, that is the clause generated from the formula φneg.

5.2.2. GetTP: Extracting the Topological Clauses

As detailed in Section 3, the GetTP component takes the subset Cuc of the conflicting clauses as input.
As we will discuss in Sections 5.3 and 5.4, Cuc = {Cuc,A ∪ {φneg}), where Cuc,A = Cuc,KS ∪ Cuc,REG such
that Cuc,KS ⊆ CKS and Cuc,REG ⊆ CREG . Specifically, the set Cuc,A contains the clauses regarding the
KS (Cuc,KS and Cuc,REG) that made the formula ψ unsatisfiable. Since we are interested in clauses related
to the KS that caused unsatisfiability, we extract the topological proof Ω, whose topological proof clauses
are obtained from the clauses in Cuc,KS as specified in Table 4. Since the set of atomic propositions of A
is APc = AP ∪ AP , in the table we use α for propositions in AP and α for propositions in AP . The table
contains for each LTL clause its corresponding topological proof clause.

The elements in Cuc,REG are not considered in the TP computation as, given an LTL clause G(¬p(s) ∨
¬p(si)), either state s or si is constrained by other TP-clauses that will be preserved in the model revisions.
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Table 3. Rules to transform the KS in LTL formulae.

ci =
∨

s∈S0

p(s)

The KS is initially in one of its initial states.

CN = {G(¬p(s) ∨ X (
∨

(s,si)∈R
p(si))) | s ∈ S}

If the KS is in state s in the current instant, in the next instant it is in one of the successors si of s.

CL> = {G(¬p(s) ∨ α) | s ∈ S, α ∈ APc, LA(s, α) = >}
If the KS is in state s such that LA(s, α) = >, the atomic proposition α is true.

CL⊥ = {G(¬p(s) ∨ ¬α) | s ∈ S, α ∈ APc, LA(s, α) = ⊥}.
If the KS is in state s such that LA(s, α) = ⊥, the atomic proposition α is false.

CREG = {G(¬p(s) ∨ ¬p(si)) | s, si ∈ S and s 6= si}
The KS is in at most one state at any time.

Table 4. Rules to extract the TP-clauses from the conflicting LTL clauses.

LTL clause TP clause Type

ci =
∨

s∈S0

p(s) 〈S0〉 TPI

G(¬p(s)∨ X (
∨

(s,si)∈R
p(si))) 〈s, T 〉 and T = {si|(s, si) ∈ R} TPT

G(¬p(s) ∨ α) 〈s, α, L(s, α)〉 TPP

LTL clause TP clause Type

G(¬p(s) ∨ ¬α) 〈s, α, comp(L(s, α))〉 TPP

G(¬p(s) ∨ α) 〈s, α, comp(L(s, α))〉 TPP

G(¬p(s) ∨ ¬α) 〈s, α, L(s, α)〉 TPP

Lemma 5.1. Let A be a KS and let φneg be an LTL property. Let also ψ be the LTL formula computed
in the step Sys2LTL of the algorithm, where C = CA ∪ {φneg} and CA = CREG ∪ CKS , and let ψuc be an
unsatisfiable core, where Cuc = Cuc,A ∪ {φneg} and Cuc,A = Cuc,REG ∪Cuc,KS . Then, if G(¬p(s)∨¬p(si)) ∈
Cuc,REG , either:

(i) there exists an LTL clause in Cuc,KS that constrains state s (or state si); or

(ii) ψ′uc, such that C ′uc = C ′uc,A ∪ {φneg} and C ′uc,A = Cuc,A \ {G(¬p(s) ∨ ¬p(si))}, is an UC of ψuc.

Proof Sketch. We indicate G(¬p(s) ∨ ¬p(si)) as τ(s, si). Assume per absurdum that conditions (i) and
(ii) are violated, i.e., no LTL clause in Cuc,KS constrains state s or si (for condition (i)), and ψ′uc is not
an unsatisfiable core of ψuc (for condition (ii)). Since ψ′uc is not an unsatisfiable core of ψuc, the LTL
formula ψ′uc where C ′uc = C ′uc,A ∪ {φneg} is satisfiable. Since C ′uc is satisfiable, Cuc must also be satisfiable

since Cuc,A = C ′uc,A ∪ {τ(s, si)}. Indeed, since condition (i) is violated, it does not exist any LTL clause

that constrains state s (or state si) and, in order to generate a contradiction, the added LTL clause must
generate it using the LTL clauses obtained from the LTL property φneg. This is a contradiction and proves
our lemma. �

The Analyze procedure in Algorithm 2 obtains a TP ( 4 , 6 ) for a PKS by first computing the related
optimistic or pessimistic approximation (i.e., a KS) and then exploiting the computation of the TP for such
KS. In the following we prove that our procedure is correct, i.e., given a PKS M and a property φ such that
[M |= φ] = x it returns an x-topological proof for φ in M , that is every Ω-related PKS MΩrel is such that
[MΩrel |= φ] ≥ x.

Theorem 5.1. Let M be a PKS, let φ be an LTL property, and let x ∈ {>, ?} be an element such that
[M |= φ] = x. If the procedure Analyze, applied to the PKS M and the LTL property φ, returns a TP Ω
for φ, this is an x-TP for φ in M .

Proof Sketch. Assume that the Analyze procedure returns the value > and a >-TP for φ and the PKS
M = 〈S,R, S0, AP, L〉. We show that every Ω-related PKS MΩrel is such that [MΩrel |= φ] ≥ x (Defini-
tion 4.3). If Analyze returns the value >, it must be that Mpes |=∗ φ by Lines 5 and 7 of Algorithm 2.
Furthermore, by Line 7, φneg = F(φ) and A = Mpes .

Let CA = CA ∪ {φneg} be the clauses of the LTL formula associated with A and φneg. Let us consider
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the clauses CAuc = Cuc,A ∪ {φneg} of an an UC CA, where Cuc,A = Cuc,KS ∪ Cuc,REG , Cuc,KS ⊆ CKS and
Cuc,REG ⊆ CREG .

Let N = 〈SN , RN , S0,N , APN , LN 〉 be a PKS Ω-related to M . Let CB = CB ∪ {φneg} be the clauses of
the LTL formula associated with B = Npes and φneg.

We show that Cuc,A ⊆ CB, i.e., the UC is also an UC for the LTL formula associated with the approxi-
mation B of the PKS N .

As Cuc,A = Cuc,KS ∪ Cuc,REG this is equivalent to check (Cuc,KS ∪ Cuc,REG) ⊆ CB. By Lemma 5.2 we
can avoid considering Cuc,REG . By construction (see Line 2 of Algorithm 1) any clause c ∈ Cuc,KS belongs
to one rule among CN , CLpes,>, CLpes,⊥ or c = ci:

• if c = ci then, by the rules in Table 4, there is a TPI-clause {S0} ∈ Ω. By Definition 4.2, S0 = S0,N .
Thus, ci ∈ CB since N is Ω-related to M .

• if c ∈ CN then, by the rules in Table 4, there is a TPT-clause 〈s, T 〉 ∈ Ω where s ∈ S and T ⊆ R. By
Definition 4.2, T = {si ∈ SN |(s, si) ∈ RN}. Thus, c ∈ CB since N is Ω-related to M .

• if c ∈ CLA,> or c ∈ CLA,⊥, by rules in Table 4, there is a TPP-clause 〈s, α, L(s, α)〉 ∈ Ω where s ∈ S
and α ∈ AP . By Definition 4.2, LN (s, α) = L(s, α). Thus, c ∈ CB since N is Ω-related to M .

Since N is Ω-related to M , it has preserved the elements of Ω. Thus CA is also an UC of CB. It follows that
[N |= φ] = >.

The proof from the case in which Analyze procedure returns the value ? and a ?-TP can be derived
from the first case. �

5.3. Computing the Conflicting Clauses in ψ with PLTL-MUP

We now describe the procedure used by TOrPEDO-MUP to extract the conflicting clauses of ψ. Recall that the
set of clauses of the LTL formula ψ encodes the KS A and the property φneg. As mentioned in Section 3.1,
none of the behaviors of A satisfies the property φneg since φneg encodes the behaviors that violate φ which
is satisfied by A. Therefore, ψ is unsatisfiable. The unsatisfiable core (UC) contains the set of conflicting
clauses that lead to the contradiction. TOrPEDO-MUP uses PLTL-MUP [SGT13] to extract the unsatisfiable core
of ψ. PLTL-MUP exploits Binary Decision Diagrams (BDDs) and a BDD-based theorem prover for LTL to
compute the UC.

The function ψuc = GetUC(ψ) returns an unsatisfiable core ψuc =
∧

c∈Cuc

c of ψ. Specifically, it returns

a subset of clauses Cuc = Cuc,A ∪ {ψ}, where Cuc,A = Cuc,KS ∪ Cuc,REG such that Cuc,KS ⊆ CKS and
Cuc,REG ⊆ CREG .

Lemma 5.2. Let A be a KS and let φneg be an LTL property. Let C = {CA ∪ {φneg}) be the set of
clauses generated from the KS A and the LTL formula φneg, and ψ be the LTL formula computed in
the step Sys2LTL of the algorithm. Then, any unsatisfiable core ψuc of ψ is made by a subset of clauses
Cuc = {Cuc,A ∪ {φneg}) such that Cuc,A ⊆ CA.

Proof Sketch. As the property φneg is satisfied by M , the LTL formula ψ is unsatisfiable (see Section 2).
Since CA encodes a KS,

∧
c∈CA

c is satisfiable. If φneg is satisfiable (i.e., it is not vacuously true or false), then

the unsatisfiability is caused by the contradiction of some of the clauses in CA and the property φneg, and
as a consequence φneg must be a part of the UC, Cuc,A is not empty, and Cuc,A ⊆ CA. �

After detecting the set Cuc of conflicting LTL clauses, the procedure described in Section 5.2.2 is used
to generate the TP.

5.4. SMT-Based Extraction of Topological Proofs

This section describes the procedure to translate LTL clauses into propositional logic (PL) clauses (Sec-
tion 5.4.1). Then, it presents the procedure used to detect conflicts among the propositional logic clauses
(Section 5.4.2), and describes how the conflicting LTL clauses are extracted from the conflicting PL logic
clauses (Section 5.4.3). Finally, it discusses the correctness of our procedure (Section 5.4.4).
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5.4.1. LTL2PL: From Linear Time Temporal Logic to Propositional Logic

Recall that the LTL formula ψ – to be analyzed to check for conflicting clauses in C – is defined as follows.

ψ =
∧
c∈C

c

For translating the LTL formula ψ into PL we use the technique proposed by Schuppan et al. [SLJ+06], also
used in more recent works (e.g., [BKR15]). The technique is based on two observations:

1. an LTL formula ψ is satisfiable if there exists an infinite path that satisfies ψ; and

2. the infinite paths that satisfy LTL formulae can be represented as π = s0, s1, . . . , sr−1, (sr, sr+1, . . . , sk)ω,
where (sr, sr+1, . . . , sk)ω indicates that, after state sk is left, the path restarts from sr. The infinite path
is made by two parts: the prefix, i.e., s0, s1, . . . , sr−1, and the ultimately periodic part sr, sr+1, . . . , sk.

Building on these two observations, the idea is to check the satisfiability of ψ by: i) generating a propositional
formula ϕ encoding all the possible ultimately periodic paths (up to length k) that satisfy ψ and ii) checking
for the satisfiability of ϕ. If ϕ is satisfiable, there exists an ultimately periodic path that satisfies ψ. Therefore,
the LTL formula ψ is satisfiable. If ϕ is unsatisfiable and k is “big enough”, then ψ is unsatisfiable. In
Section 5.4.4 we will discuss the implications of the k selection on the correctness of our procedure.

The propositional formula ϕ is made by two parts, one encoding the infinite (ultimately periodic) paths,
and one encoding the semantics of the formula ψ. These two parts are described in the following.

Encoding the Infinite (ultimately periodic) Paths. The encoding introduces the following variables and
PL formulae, in which the symbols Ξi, with i ∈ 0, 1, . . . are used to identify each PL formula.

• A set of loop selector variables (l0, l1,. . . ,lk). These are new fresh Boolean variables such that li is true
if the ultimately periodic part starts at position i. To enforce the fact that the ultimately periodic part
starts from one state, only one of the loop selector variables must be true. This is enforced by the following
formula:

Ξ0 ≡
∧

i∈{0,...,k}

li ⇔ ∧
j 6=i,j∈{0,...,k}

¬lj

 (3)

For each index i, the formula specifies that if li is true, all the other loop selector variables are false.
Furthermore, we force one of the loop selector variables to be true by adding the following formula:

Ξ1 ≡ l0 ∨ l1 ∨ . . . lk (4)

• A set of in loop variables (InLoop0, InLoop1,. . . ,InLoopk). These are new fresh Boolean variables such
that InLoopi is true if the state si is in the ultimately periodic part. To enforce the correspondence
between the loop selector variables and the in loop variables, we add the following propositional formula.

Ξ2 ≡
∧

i∈{0,...,k}

(InLoopi ⇔ (InLoopi−1 ∨ li)) (5)

This formula imposes that InLoopi is in the loop only if the ultimately periodic part starts at position i
or it starts in a previous position, i.e., InLoopi−1 is true.

• The variable LoopExists. It is true if and only if a loop has been found. To force this relation we add
the following formula.

Ξ3 ≡ LoopExists⇔ (l0 ∨ l1 ∨ . . . lk) (6)

Encoding the Semantics of the Formula ψ. To force the ultimately periodic path to satisfy the LTL
formula, we need to encode how the formula is satisfied on the different states of the path. This should be
specified according to the semantics of the LTL formula. In the following, we describe how each LTL clause
c ∈ C is translated into a PL formula ϕc. Let ψ0, ψ1, . . . , ψh be the subformulae of a clause c of the LTL
formula ψ. To represent the LTL clause c in PL, we introduce a Boolean variable dψjei for each index i
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Table 5. Propositional formulae added to the encoding to capture the LTL semantics.

ψj PL

p
∧
i∈{0,...,k}dpei

¬ψ
∧
i∈{0,...,k}d¬ψei ⇔ ¬dψei

X ψ
∧
i∈{0,...,k}dX ψei ⇔ dψei+1

ψ1 ∧ ψ2
∧
i∈{0,...,k}dψ1 ∧ ψ2ei ⇔ dψ1ei ∧ dψ2ei

ψ1 U ψ2
∧
i∈{0,...,k}dψ1 U ψ2ei ⇔ (dψ2ei ∨ (dψ1ei ∧ dψ1 U ψ2ei)) ∧

∧
i∈{0,...,k} (LoopExists⇒ (dψ1 U ψ2ei ⇒ dF ψ2ei))∧∧

i∈{0,...,k} (dF ψ2ei ⇔ (dF ψ2ei−1 ∨ (InLoopi ∧ Fdψ2ei)) ∧ dF ψ2e0 = ⊥

in 0, . . . , k + 1 and subformula ψj of c. Each variable dψjei represents the value of a subformula ψj in the
position i of the path. We consider indexes from 0, . . . , k+ 1 since, to represent the ultimately periodic part
of the path, we need to enforce that LTL subformulae satisfied by the state sk+1 correspond to the LTL
subformulae satisfied by the state sr, i.e., in the first state of the ultimately periodic part of the path. We
use the symbols ξi, with i ∈ 0, 1, . . . to identify each one of the PL formulae. To enforce that the subformulae
that hold in sk+1 are the same that hold in state sr, we add the following formula:

ξ0 ≡
∧

i∈{0,...,k}

 ∧
j∈{0,...,h}

(li ⇒ (dψjei ⇔ dψjek+1))

 (7)

Then, we enforce the LTL semantics by using the standard fix-point encoding specified in Table 5. For
every subformula ψ0, ψ1, . . . , ψh of c, a PL formula (i.e., ξ1, ξ2, . . . , ξh+1) is created depending on the type
of the constructs used in the subformula (see the PL labelled column of Table 5). The encoding of p,
¬ψ , X ψ, and ψ1 ∧ ψ2 directly follows from the LTL semantics. For ψ1 U ψ2, the encoding specifies that
dψ1 U ψ2ei ⇔ (dψ2ei ∨ (dψ1ei ∧ dψ1 U ψ2ei)) is true for every index i according to the semantics of the U
temporal operator. However, this formula is vacously satisfied when dψ1ei∧dψ1 U ψ2ei is true for every index
i that belongs to the ultimately periodic part, but ψ2 is never satisfied. To avoid this case, we need to ensure
that ψ2 eventually occurs. This is achieved by

1. the formula LoopExists⇒ (dψ1 U ψ2ek ⇒ dF ψ2ek), specifying that whenever an ultimately periodic path
is present (LoopExists is true), if ψ1 U ψ2 is satisfied in position k, F ψ2 is also satisfied in position k;

2. the formula
∧

i∈{0,...,k} (dF ψ2ei ⇔ (dF ψ2ei−1 ∨ (InLoopi ∧ dψ2ei)), specifying that F ψ2 holds in a po-

sition i of the loop (and therefore in position k) if ψ2 holds in a previous position of the loop; and

3. the formula dF ψ2e0 = ⊥ forces F ψ2 to be initially false.

The final PL formula ϕc – that represents the LTL clause c – is obtained by combining the formula with
the conjunction Boolean operator, i.e., ϕc is defined as follows:

ϕc ≡ ξ0 ∧ ξ1 ∧ . . . ∧ ξh+1 (8)

Then, the satisfiability of ψ can be verified by checking the satisfiability of:

ϕ = Ξ0 ∧ Ξ1 ∧ Ξ2 ∧ Ξ3 ∧
∧
c∈C

ϕc

Note that, since our goal is to reduce the computational cost required to compute topological proofs, we
implemented the LTL2PL translation by relying on an encoding based on Bit-Vectors [BKR15]. According
to some recent result, this encoding provides significant benefits with respect to existing tools [BKR15,
PKRB20].

5.4.2. GetUC: Computing the Unsatisfiable Core of a PL Formula

To check whether the formula ϕ is satisfiable and to extract its unsatisfiable core, we employ the Z3 Theorem
Prover [DMB08]; we selected this solver as it extracts unsatisfiable cores and it is an industry-strength
tool, also awarded by ETAPS (Test of Time Award) [sig20] and ACM SIGPLAN (Programming Languages
Software Award) [eta20].
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Given a formula and a set of clauses, a.k.a. assumptions, Z3 checks whether the formula is satisfiable
and identifies the clauses that are in contradiction. Specifically, given the PL formula ϕ and the set of PL
clauses ϕ1, ϕ2, . . . , ϕn, each one generated from an LTL clause ci ∈ C, Z3.unsat core checks whether ϕ is
satisfiable, and – in case it is not – it returns a subset Π of the set of the PL clauses {ϕ1, ϕ2, . . . , ϕn} that
lead to the contradiction.

Π = Z3.unsat core(ϕ,ϕ1, ϕ2, . . . , ϕn) (9)

For example, if ϕ is unsatisfiable, Π might contain the PL clauses ϕ2 and ϕ3 generated from the LTL clauses
c2 and c3 that are leading to the contradiction, i.e., Π = {ϕ2, ϕ3}.

5.4.3. GetTP: Mapping the Conflicting Propositional Clauses to LTL

The function GetTP aims at identifying – from the set of the conflicting PL clauses Π – the corre-
sponding LTL clauses. Recall that, as discussed in Section 5.4.1, each clause within the set of PL clauses
{ϕ1, ϕ2, . . . , ϕn} processed by Z3 is obtained from an LTL clause c ∈ C. Therefore, given the set of the
conflicting PL clauses Π, our algorithm computes the set Cuc of conflicting LTL clauses by adding to Cuc –
for each PL formulae ϕc in Π – the LTL clause c from which it was generated.

After detecting the set Cuc of conflicting LTL clauses, the procedure described in Section 5.2.2 is used
to generate the TP.

5.4.4. Correctness

The unsatisfiable core Π contains the set of PL clauses of {ϕ1, ϕ2, . . . , ϕn} that lead to a contradiction. As
specified in Section 5.4.1, each PL clause in {ϕ1, ϕ2, . . . , ϕn} corresponds to an LTL clause {c1, c2, . . . , cn} in
C. The algorithm extracts from Π the subset Cuc of C containing the LTL clauses of C corresponding to the
PL clauses leading to the contradiction. The algorithm is correct if the LTL clauses in Cuc are contradicting.

The bounded encoding presented in Section 5.4.1 finds ultimately periodic paths (up to length k, a.k.a.
bound) that satisfy the formula ψ, but cannot prove their absence. To prove that such paths do not exist, it
must be shown that a path that satisfies the LTL formula ψ cannot be longer than a certain bound, a.k.a.
completeness threshold. Recall that, as for classical bounded model checking (BMC), the LTL formula ψ
encodes the KS A and the LTL formula φneg to be checked. Therefore, the completeness threshold can be
identified by reusing existing approaches from the literature (see for example [SLJ+06, CKOS04, KOS+11]).
Therefore, if the value of k is higher than the completeness threshold, there is formal guarantee that the
LTL clauses in Cuc are contradicting. Vice versa, if k is lower than the completeness threshold, the clauses
in Cuc may not be contradicting.

In practice, designers can initially choose a value for k that is reasonably large for the considered PKS and
property. Then, they can increase or decrease the value of k depending on (a) the efficiency of the analysis
component, and (b) how relevant is the soundness of the computed topological proofs for their application
domain.

5.5. Re-check

Let M = 〈S,R, S0, AP, L〉 be a PKS. The re-check algorithm verifies whether a rvision MΩrv of M is
an Ω-revision. Let Ω be an x-TP ( 10 ) for φ in M , and let MΩrv = 〈SΩrv, RΩrv, SΩrv,0, APΩrv, LΩrv〉 be a
revision of M ( 8 ). The re-check algorithm returns true if and only if the following holds:

• AP ⊆ APΩrv;

• for every TPP-clause 〈s, α, v〉 ∈ Ω, s ∈ SΩrv, v = LΩrv(s, α);

• for every TPT-clause 〈s, T 〉 ∈ Ω, s ∈ SΩrv, T ⊆ SΩrv, T = {si ∈ SΩrv|(s, si) ∈ RΩrv};
• for every TPI-clause 〈S0〉 ∈ Ω, S0 = SΩrv,0.

These conditions can be verified by a simple syntactic check on the PKS. For example, considering the x-TP
for the property φ2 presented in Table 2 of our vacuum-cleaner example, the re-check algorithm returns a
true value for the revision MΩrv in Fig 1b of the model M in Fig 1a.
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Lemma 5.3. Let M = 〈S,R, S0, AP, L〉 and M ′ = 〈S′, R′, S′0, AP ′, L′〉 be two PKSs and let Ω be an x-TP.
The re-check algorithm returns true if and only if M ′ is Ω-related to M .

Proof Sketch. For M ′ to be Ω-related to M , the conditions of Definition 4.2 should hold. Each one of these
conditions is a condition of the re-check algorithm. Thus, if M ′ is Ω-related to M , the re-check returns
true. Conversely, if re-check returns true, each condition of the algorithm is satisfied and, since each of
these conditions corresponds to a condition of Definition 4.2, M ′ is Ω-related to M . �

The reported Lemma allows us to prove the following Theorem.

Theorem 5.2. Let M be a PKS, let φ be a property, let Ω be an x-TP for φ in M where x ∈ {>, ?}, and
let Mrv be a revision of M . The re-check algorithm returns true if and only if Mrv is an Ωx-revision of
M .

Proof Sketch. By applying Lemma 5.3, the re-check algorithm returns true if and only if Mrv is Ω-
related to M . By Definition 4.4, since Ω is an x-TP, the re-check algorithm returns true if and only if
Mrv is an Ωx-revision of M . �

The analysis and re-check algorithms assume that the three-valued LTL semantics is considered. An
alternative semantics, called thorough LTL semantics [BG00], has been introduced to provide an evaluation
of formulae that better reflects the natural intuition. It has been demonstrated that the two semantics
coincide in the case of self-minimizing LTL formulae [GH05]. In this case, our results are correct also w.r.t.
the thorough semantics. Note that, as shown in [GH05], most practically useful LTL formulae are self-
minimizing.

6. Evaluation

We implemented TOrPEDO as a Scala stand alone application and made it available online [Tor20]. We
implemented TOrPEDO-MUP and TOrPEDO-SMT by using NuSMV (v2.6.0) and Z3 (v4.4 build 2 rev 1). We
evaluated how the analysis helps in creating models revisions, how frequently running the re-check
algorithm allows the user to avoid the re-execution of the analysis algorithm from scratch. We also evaluated
the efficiency of TOrPEDO and how it supports the development of (small) models. Specifically, we considered
the following research questions:

RQ1: How does the size of the proofs generated by the analysis algorithm of TOrPEDO-MUP compares
to the size of the models being analyzed? (Section 6.1)

RQ2: How frequently running the re-check algorithm of TOrPEDO-MUP allows to avoid the re-execution
of the analysis algorithm from scratch? (Section 6.2)

RQ3: How efficient is TOrPEDO in analyzing models and how does TOrPEDO-SMT compare to TOrPEDO-MUP?
(Section 6.3)

RQ4: How useful is TOrPEDO-SMT in supporting the designers in the model design on an example in the
genomic domain? (Section 6.4)

We used TOrPEDO-MUP for RQ1 and RQ2 since the analysis of the models considered for answering these
questions did not require the most efficient version of our tool. We used TOrPEDO-SMT for RQ3 and RQ4.
We run our experiments on a machine with processor Intel Core i5 3.2GHz and 32GB of memory.

6.1. Analysis Support — RQ1

To answer RQ1, we checked how the size of the proofs generated by the analysis algorithm compares to the
size of the models being analyzed. The topological proofs represent constraints that, if satisfied, ensure that
the property is not violated (or possibly violated). As discussed in Section 4, to ensure that the property is
not violated, the designers should not modify the parts of the model constrained by the proofs while creating
model revisions. Therefore, the smaller the topological proofs are, the more useful they are, since more
elements can be changed during the model revisions. In addition, smaller proofs allow for easier inspection,
and this makes it easier to create revisions. The goal of this research question is to assess how useful the
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Table 6. Properties considered in the evaluation

φ1: G(¬OFFHOOK ) ∨ (¬OFFHOOK U CONNECTED)
φ2: ¬OFFHOOK W (¬OFFHOOK ∧ CONNECTED)
φ3: G(CONNECTED → ACTIVE)
φ4: G(OFFHOOK ∧ACTIVE ∧ ¬CONNECTED → X (ACTIVE))
φ5 G(CONNECTED → X (ACTIVE))

ψ1: G(CONNECTED → ACTIVE)
ψ2: G(CONNECTED → X (ACTIVE))
ψ3: G(CONNECTED) ∨ (CONNECTED U ¬OFFHOOK )
ψ4: ¬CONNECTED W (¬CONNECTED ∧OFFHOOK )
ψ5: G(CALLEE SEL→ OFFHOOK )

η1: G((OFFHOOK ∧ CONNECTED)→ X (OFFHOOK ∨ ¬CONNECTED))
η2: G(CONNECTED) ∨ (CONNECTED W ¬OFFHOOK )
η3: ¬CONNECTED W (¬CONNECTED ∧OFFHOOK )
η4: G(CALLEE FREE ∨ LINE SEL)
η5: G(X (OFFHOOK ) ∧ ¬CONNECTED)

computed topological proofs are. The usefulness is evaluated by comparing the size of the topological proofs
to the size of the models being analyzed.

Dataset. We considered a set of 3 examples (callee, caller and caller-callee) proposed in the literature
and used to evaluate χChek [ECD+03]. For each of these examples, we consider the PKS representing the
initial model, indicated using the name of the model followed by the index 1, and three model revisions, each
indicated using the name of the model following an incremental index. For example, callee-1 indicates the
initial PKS model for the callee example, while callee-2, callee-3, and callee-4 are three consecutive revisions
of callee-1. Therefore, in our evaluation, we considered 12 PKS in total. Table 7 reports the cardinalities |S|,
|R| and |AP | of the sets of states, transitions, and atomic propositions of each considered PKS. The column
with label |?| contains the number of combinations made by a state s and an atomic propositions α such
that L(s, α) =?. The number of states, transitions, atomic propositions, and combinations of a state s and
an atomic proposition α such that L(s, α) =? is different across the different examples. This shows that our
examples are sufficiently diverse to enable us assessing how the size of the proofs generated by the analysis
algorithm of TOrPEDO-MUP compares to the size of the models.

We considered five properties for each example (see Table 6). These properties were inspired by the
original properties and based on the LTL property patterns [DAC99].3 These properties are sufficiently
diverse to support our experiments, since they use all the LTL operators.4 Therefore, they enable us to
assess the topological proofs computed starting from different LTL operators.

Methodology. We run the analysis component of TOrPEDO. We considered each of the 60 model-property
combinations of our dataset. For each model-property combination, we executed the analysis component of
TOrPEDO and we recorded its output (see Figure 2). For the cases in which TOrPEDO produced a topological
proof, we also computed the size of the proof, as defined in Section 4. We compared the size of the PKS
model and the size of the proofs returned by TOrPEDO.

Results. Table 7 summarizes the obtained results. We show the total size |M | of the model, and the
size |Ωp| of the proofs. The column |Ωp|x also reports within rounded brackets the percentage of the ratio
between the size of the proof and the size of the model. Cells labeled with the symbol × indicate that a
property was not satisfied in that model and thus a proof was not produced by the analysis algorithm. The
numbers indicating the size of the proofs are tagged with a subscript that indicates whether the property is
satisfied (x = >) or possibly satisfied (x =?). Proofs are ≈ 60% smaller than their respective initial models.
Thus, we conclude that the proofs are significantly more concise than the original model, thus, enabling a
flexible design.

The answer to RQ1 is that, on the considered models, TOrPEDO provides proofs that are ≈ 60% smaller
than their respective initial models.

3 The original properties used in the examples were specified in Computation Tree Logic (CTL), which is currently not supported
by TOrPEDO.
4 The weak until operator (W) is rewritten using the until operator (U) following the standard LTL rewriting rules.
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Table 7. Cardinalities |S|, |R|, |AP |, |?|, and |M | are those of the evaluated model M . |Ωp|x is the size of
proof Ωp for a property p; x indicates if Ωp is a >-TP or a ?-TP. The column |Ωp|x also reports percentage
of the ratio between the size of the proof and the size of the model.

Model |S| |R| |AP | |?| |M | |Ωφ1
| |Ωφ2

| |Ωφ3
| |Ωφ4

| |Ωφ5
|

callee-1 5 15 3 7 31 7? (22%) 9? (29%) 21? (68%) 23? (74%) 23? (74%)
callee-2 5 15 3 4 31 7? (22%) 9? (29%) 21? (68%) 22> (71%) ×
callee-3 5 15 3 2 31 7? (22%) 9? (29%) 21? (68%) 23> (74%) ×
callee-4 5 15 3 0 31 × × 23> (74%) 21> (68%) ×

Model |S| |R| |AP | |?| |M | |Ωψ1
| |Ωψ2

| |Ωψ3
| |Ωψ4

| |Ωψ5
|

caller -1 6 21 5 4 52 28? (54%) × 2> (4%) 9? (17%) 28? (54%)
caller -2 7 22 5 4 58 30? (52%) × 2> (4%) 9? (16%) 30? (52%)
caller -3 6 19 5 1 50 26> (52%) 28> (56%) 2> (4%) 11> (22%) 26> (52%)
caller -4 6 21 5 0 52 28> (54%) × 2> (4%) 9> (17%) 28> (54%)

Model |S| |R| |AP | |?| |M | |Ωη1 | |Ωη2 | |Ωη3 | |Ωη4 | |Ωη5 |

caller-callee-1 6 30 6 30 61 37? (61%) 2> (3%) 15? (25%) 37? (61%) ×
caller-callee-2 7 35 6 36 78 43? (55%) 2> (3%) 18? (23%) 43? (55%) ×
caller-callee-3 7 45 6 38 88 53? (60%) 2> (3%) 53? (60%) 53? (60%) 53? (60%)
caller-callee-4 6 12 4 0 42 × × × 19> (45%) ×

6.2. Re-check Support — RQ2

To answer RQ2, we checked how the results output by the re-check algorithm were useful in producing
PKSs revisions.

Dataset. We considered the same dataset used for RQ1. We assumed that, for each example, the designer
produced revisions following the order specified in Table 8 (column Model), that is consecutive revisions are
identified using consecutive indexes labeling the name of the same example. For example, the model callee-3
is a revision of the model callee-2 which, in turn, is a revision of the model callee-1. Since the design of
callee-2 precedes the design of callee-3, we say that callee-2 is the previous model of callee-3. The other
columns contain the different properties that have been analyzed for each category.

Methodology. We run the re-check component of TOrPEDO on the models and the properties of our
dataset. We recorded the output of the re-check component. We assessed in how many cases the re-
check component allowed designers to avoid re-runnning the analysis.

Results. Table 8 reports our results. A cell contains 3 if the re-check was passed by the considered
revised model, i.e., a true value was returned by the re-check algorithm, 7 otherwise. For example, the
3 symbol associated by the model callee-2 and the property φ1 indicates that the re-check component
confirmed that the revision callee-2 of callee-1 is an Ω-revision of callee-1 by considering the topological proof
Ω for φ1 in callee-1. The dash symbol - is used when the model of the corresponding line is not a revision (i.e.,
the first model of each category) or when the observed property was false in the previous model, i.e., an x-TP
for the property was not produced. For example, the model caller-1 is not a revision, since it is the first model
proposed for the caller example. Differently, the model caller-2 and the property ψ2 are associated with the
symbol - since, as specified in Table 7, the analysis component did not produce any topological proof of
the property ψ2 in the model caller-1. Therefore, the re-check could not be executed. We inspected the
results produced by the re-check algorithm to evaluate their benefit in verifying if revisions were violating
the proofs. Table 8 shows that, in ≈ 31% (number of cells labeled with the 7 as a percentage of the number
of cells labeled with symbols 7 or 3) of the cases, the TOrPEDO re-check notified the designer that the
proposed revision violated some of the clauses contained in the Ω-proof, while in ≈ 79% (number of cells
labeled with the 3 as a percentage of the number of cells labeled with symbols 7 or 3) the re-check allowed
designers to avoid re-runnning the analysis (and thus the model checker).

The answer to RQ2 is that, on the considered models, in ≈ 79% the re-check component allowed
designers to avoid re-runnning the analysis (and thus the model checker).
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Table 8. Results returned by the re-check component for the models and the properties of our benchmark.

Model φ1 φ2 φ3 φ4 φ5

callee-1 - - - - -
callee-2 3 3 3 3 7
callee-3 3 3 3 3 -
callee-4 7 7 3 3 -

Model ψ1 ψ2 ψ3 ψ4 ψ5

caller -1 - - - - -
caller -2 3 - 3 3 3
caller -3 3 - 3 3 3
caller -4 3 7 3 3 3

Model η1 η2 η3 η4 η5

caller-callee-1 - - - - -
caller-callee-2 3 3 3 3 -
caller-callee-3 3 3 3 3 -
caller-callee-4 7 7 7 3 7

Fig. 4. Comparison of the efficiency of TOrPEDO-MUP and TOrPEDO-SMT. For the property φ2, TOrPEDO-MUP
provided a result only for the model with 10 states in 2.1m.

6.3. Efficiency — RQ3

To evaluate the efficiency of TOrPEDO we could not use the models of RQ1 and RQ2. Indeed, executing the
analysis and re-check phases of TOrPEDO requires less than a minute for each property of each model.
Therefore, analyzing the performances on these models does not provide significant practical results. For this
reason, to evaluate the efficiency of TOrPEDO we analyzed a set of randomly generated models with increasing
size. The analysis phase of TOrPEDO combines three-valued model checking and UCs computation. Three-
valued model checking is as expensive as classical model checking [BG99], i.e., it is linear in the size of the
model and exponential in the size of the property. UCs computation is FPSPACE complete [SHH12]. The
re-check phase performs a simple syntactic check; the complexity of the re-check algorithm is linear in
the size of the model. Therefore, we only analyze the efficiency of the analysis phase of TOrPEDO since the
re-check requires negligible time compared to the analysis.

Dataset. We generated a set of random models with an increasing number of states (i.e., 10, 20, 30,
and 40). The random models are generated from the grade crossing semaphore (GC) example ([BMS+17])
starting from the GC model, and by iteratively duplicating the GC model and connecting the duplicated
model with the initial model with randomly generated transitions. We considered two properties φ1 and φ2

that are respectively satisfied and possibly satisfied on the GC model and on the randomly generated models.
Property φ1 specifies that red lights up infinitely often ( red). Property φ2 states that green lights up
infinitely often ( green).

Methodology. We run the analysis component of TOrPEDO-MUP and TOrPEDO-SMT tool by considering all
the eight combinations made by a randomly generated model and a property. Note that, in our experiments we
considered an extended version of PLTL-MUP, namely Hybrid, that improves the PLTL-MUP performances
by combining it with TRP++UC [SGT13]. We set two hours as timeout for each run. For TOrPEDO-SMT, for
each model and property, we set 86 as a value for the completeness bound k. We selected this value since it
ensures the correctness of the result, i.e., we set its value by considering to the size of the recurrence diameter
(the longest initialised loop-free path in the state graph) and the size of the Büchi automaton representing
the negation of the property [CKOS05]. We recorded the output of the analysis component and the time
required to produce the output result. Note that we did not report the time required by the model checker
and the proof extraction separately since the cost of executing the model checker is negligible compared to
the cost of computing the topological proof.

Results. Our results are reported in Figure 4. The x-axis reports the number of states of each random
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model. The y-axis reports the time required by TOrPEDO-MUP and TOrPEDO-SMT for each run that finished
within the timeout. TOrPEDO-MUP was not able to finish within the timeout for models above 20 states. For
property φ1, TOrPEDO-MUP was able to process models with 10 and 20 states. For these models, the differences
between the time required by TOrPEDO-MUP and the time required by TOrPEDO-SMT are approximately 3min
and 36min, respectively. For property φ2, TOrPEDO-MUP was able to process only models with 10 states. For
this model, the difference between the time required by TOrPEDO-MUP and the time required by TOrPEDO-SMT
is approximately 2min. TOrPEDO-SMT was able to finish within the timeout for any model containing up to
40 states. The propositional logic formulae generated by TOrPEDO-SMT had approximately 1000 propositional
logic operators. For the cases in which both TOrPEDO-MUP and TOrPEDO-SMT finished within the timeout,
they required on average 15m and 1.4m, respectively.

The answer to RQ3 is that, on the considered models, TOrPEDO-SMT can verify within the timeout models
which are double in size w.r.t. those which could be verified by TOrPEDO-MUP within the timeout. For the
cases in which both the versions of our tool finished within the timeout, TOrPEDO-MUP and TOrPEDO-SMT re-
quired on average 15m and 1.4m, Therefore, TOrPEDO-SMT is significantly more efficient than TOrPEDO-MUP.

6.4. Usefulness — RQ4

To assess how useful TOrPEDO is in supporting the evaluation of design choices, we considered a (small)
model example from the genomic domain, related to Gene Regulatory Networks (GRNs). GRNs are col-
lections of molecular regulators, interacting with each other and governing the gene expression levels of
mRNA and proteins. Typically, GRNs are represented using nodes (genes) connected by edges (inhibi-
tion/activation actions); edges may be weighted or unweighted using some coefficient (e.g., inferred using
the Banjo method [YSW+04]). GRNs are deduced from gene expression [Alu05] or ChIP-seq experiments
data [SPM19] and are used to understand fundamental biological processes in the cell, as well as the pathogen-
esis of some diseases [ESDHK14, LXZW12], using genomic data integrated from several sources [BCMC21].

Verifying whether GRNs meet certain properties is a widely recognized problem [JCL+09]. The cor-
rectness of the inferred networks may be performed manually (by comparison with public database,
e.g., KEGG [KG00] and GO [ABB+00]) or automatically (e.g., by using symbolic model checking tech-
niques [GKD+15, MDKG15]). We evaluated how TOrPEDO supports designers in establishing appropriate
models of GRNs.

The MAPK Example. We considered a small network of the MAPK pathway5, inspired by [GKD+15] and
translated it into a PKS. Each of the six encompassed genes is represented by one proposition (i.e., Msg5 ,
Fus3 , Ste7 , Far1 , Ste11 , and Dig1/2 ). The proposition is true if the gene is activated, false otherwise. Each
configuration of the network describes the status of all the genes (activated/deactivated) and is represented
as a state in the PKS. In total, we have 64 (26) states that represent all possible statuses of the genes.
Transitions among PKS states encode how the status of the genes can change according to the behavior
specified by the regulatory network. As initially the network can be in any configuration, all states of the
PKS are initial states.

We considered two LTL properties that MAPK pathway should satisfy (i.e., φ1 and φ2) and one (φ3)
that it should not satisfy. These properties are inspired by the CTL specifications provided in [GKD+15] and
abstracted from KEGG’s pathways characteristics [KG00], and then discussed with domain experts. Property
φ1 = Fus3 → X (¬Dig1/2 ) is expressing that if Fus3 is activated, Dig1/2 will be inhibited immediately
in the next step (i.e., Fus3 is a direct inhibitor of Dig1/2 ). Property φ2 = G(Msg5 ∨ Fus3 ) → F(¬Ste11 )
means that if globally either Msg5 or Fus3 is activated, finally Ste11 will be inhibited. Finally, property
φ3 = G(Ste7 → F(Fus3 )) is checking whether or not Ste7 ’s activation will finally inhibit or promote the
transcription of Fus3 cell cycle regulatory gene.

Methodology. As the initial model, we considered a version of the PKS having multiple uncertainty points,
specifically: on Dig1/2 in two different states, on Ste11 in one state, and on Msg5 in another state. For the
three observed properties, we simulated an incremental model design by running TOrPEDO on the initial model
and we assess how useful are the artifacts produced by TOrPEDO to guide the model design. We articulate
the timeline of experiments in Table 9.

5 The MAPK pathway is a set of chained proteins communicating a signal from a receptor on the cell surface to the DNA
stored in the cell nucleus.
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Table 9. LTL formulas checked on the 64 states (P)KS representing a sub-network of MAPK pathway.

Property Initial Model Revision 1 Revision 2 Revision 3 Revision 4

φ1 analysis = > re-check = > re-check = > analysis = > analysis = >

φ2 analysis = ? re-check = ? re-check = ? analysis = > analysis = >

φ3 analysis = ⊥ re-check = ⊥ re-check = ⊥ analysis = ⊥ analysis = >

• Step 1, First, we run the analysis phase on the model against all three requirements, obtaining results
> for φ1, ? for φ2 and ⊥ for φ3.

• Step 2. We then inspected the topological proofs generated for φ1 and φ2 and, after consulting with
domain experts, we proposed a first revision of the model that did not conflict with the listed clauses:
namely, we assigned Msg5 = ⊥ in states not shown in the proof. After this revision, it was sufficient to
run the re-check procedure, to confirm the previous verification results.

• Step 3. Similarly, by inspecting again the topological proofs, we proposed a second change in the model,
producing a second revision that included new transitions among given states. In particular, adding
new transitions allows us to envision a wider set of changes of configurations between the states of the
GRN. In other words, we allowed additional gene activations and inhibitions with respect to the initially
considered set. As this change does not involve any part of the model that is mentioned in the topological
proof, we could again confirm the previous results with a simple syntactic re-check of TOrPEDO.

• Step 4, With the purpose of satisfying property φ2, we produced a Revision 3 which included refinements
of the Ste11 proposition to the value ⊥. Such change impacted clauses specified in the topological proof.
As such, we had to re-execute the analysis phase and obtained, in conclusion, that also property φ2 was
satisfied by the third revised instance of the model.

• Step 5. Finally, we also inspected the counterexample obtained by running TOrPEDO on the third revised
model against φ3 and, by changing the truth value of a number of propositions in the model we produced
a Revision 4. We run the analysis phase and obtained a > result also for the last property.

Results. This exemplifying iterative design process demonstrated that we were able to evaluate three
properties on five different models (an initial one, plus four different revisions). We evaluated each of these
properties by only running the analysis three times, while using a simple syntactic check twice. The topo-
logical proofs provide useful information to identify the parts of the models to be changed. They effectively
enabled us to identify the portions of the model that influenced the satisfaction of the properties of interest.
This information was useful for designing the model revisions. For example, in Step 2 we changed the value
of a proposition. Since this proposition was not involved in any of the clauses of the topological proof, we
could safely change its value. The re-check component was only executed for confirmation. Similarly, in
Step 3 we applied another change to the model, this time by adding new transitions among given states. As
for the previous step, our change did not involve any part of the model that was mentioned in the topological
proof. Again, we verified our change by running the re-check component. In these two cases, the re-check
phase confirmed that the revisions were compliant with the topological proofs and avoided re-executing the
model checker.

Our experiment showed that the information contained in the topological proof was useful in our model
design as it effectively guided us during the creation of the model revisions of a (small) model example from
the genomic domain, related to Gene Regulatory Networks (GRNs).

The answer to RQ4 is that the topological proofs and counterexamples provided by TOrPEDO effectively
supported the development of a (P)KS representing a gene regulatory network.

7. Related work

Partial knowledge has been considered in requirement analysis and elicitation [MSG17, LKMU08, CSV+19],
in novel robotic planners [MGPT18], software models [UBC09, UABD+13, FSC12, AGC12, MSCG18,
MSCG19], and testing [DHKN14, Tre99, vdBRT04, CBGS18, CGS20]. Several researchers analyzed the
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model checking problem for partially specified systems [MSG16, CDEG04], considering both three-
valued [LT88, GHJ01, BG99, BG00, GP11] and multi-valued [GC03a, BG04] semantics. Other works apply
model checking to incremental program development [HJMS03, BHJM07, JHC19]. However, all these model
checking approaches do not provide an explanation on why a property is satisfied, by means of a certificate
or proof. Although several works have tackled this problem [BMS+17, TC02, PZ01, PPZ01, GRT18, DN17],
differently from this work, they mostly aim to automate proof reproducibility.

Tao and Li [TL17] propose a theoretical solution to model repair: the problem of finding the minimum set
of states in a KS which makes a formula satisfiable. However, the problem is different from the one addressed
in this paper. Furthermore, the framework is only theoretical and based on complete systems.

Approaches were proposed in the literature to provide explanations by using different artifacts. For
example, other works commonly use a different notion of witnesses: a path of the model that satisfies (or
possibly satisfies) a property of interest [TG19, BCC+99, HLSU02, Nam01, TGNB20]. In our work, we
proposed topological proofs, a new type of witnesses that is significantly different from the one presented
in the literature. Other works (e.g., [GC03b, SG03]) studied how to enrich counterexamples with additional
information in a way that allows better understanding the property violation. Work has also been done
to generate abstractions of the counterexamples that are easier to understand (e.g., [EMA10]). Alur et
al. [AMT13] analyzed the problem of synthesizing a controller that satisfies a given specification. When the
specification is not realizable, a counter-strategy is returned as a witness. Pencolé et al. [PSMTM17] analyzed
model consistency, i.e., the problem of checking whether the system run-time behaviour is consistent with
a formal specification. Bernasconi et al. [BMS+17] proposed an approach that combines model checking
and deductive proofs in a multi-valued context. The notion of topological proof proposed in this work is
substantially different from the notion of deductive proof.

The works on vacuity checking (e.g., [FKSFV08, MS20, SDGC10]) are also related to our work. Specif-
ically, a property φ is vacuously satisfied on a model M if it has a subformula φ′ that does not affect the
satisfaction of φ in M . Other works (e.g., [PQ13, RLF+13, SDGC10]) studied how to understand why a
property is unsatisfiable. These problems are different from the one considered in this paper, where the goal
is to provide a slice of the original model that preserves the (possible) satisfaction of the property.

8. Conclusions

We have proposed TOrPEDO, an integrated framework that supports the iterative creation of model revisions.
The framework provides a guide for the designer who wishes to preserve slices of her model that contribute
to satisfying fundamental requirements while other parts of the model are modified. For these purposes, the
notion of topological proof has been formally and algorithmically described. This corresponds to a set of
constraints that, if kept when changing the proposed model, ensure that the behavior of the model w.r.t.
the property of interest is preserved. Our Lemmas and Theorems prove the soundness of our framework,
i.e., how it preserves correctness in the case of PKS and LTL. The proposed framework can be used as a
baseline for other FM frameworks, and can be extended by considering other modeling formalisms that can
be mapped onto PKSs.

We presented two implementations of TOrPEDO, namely TOrPEDO-MUP and TOrPEDO-SMT. TOrPEDO-MUP
is our initial implementation [MRB20] of TOrPEDO that uses PLTL-MUP to extract topological proofs. With
the intent of providing practical and efficient support for flexible model design and wider adoption of our
framework, in this work, we proposed TOrPEDO-SMT. TOrPEDO-SMT uses SMT techniques to extract topological
proofs.

TOrPEDO was evaluated by showing the effectiveness of the analysis and re-check algorithms included
in the framework. Results showed that proofs are smaller than the original models, and can be verified in
most of the cases using a simple syntactic check. Additionally, we analyzed the efficiency of TOrPEDO and
compared TOrPEDO-MUP with TOrPEDO-SMT. Our results show that TOrPEDO produces a topological proof
within two hours for models with less than 40 states. Furthermore, our results show that TOrPEDO-SMT is
more efficient than TOrPEDO-MUP. Note that, the analysis phase of TOrPEDO combines three-valued model
checking and existing tools for the UCs computation. Therefore, its scalability improves as the performance
of these frameworks enhances. Finally, we assessed how useful is TOrPEDO in supporting the evaluation of
alternative design choices of (small) model instances in applied domains. Our results show that the topological
proofs and counterexamples provided by TOrPEDO effectively supported the development of a model of a gene
regulatory network.
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