
1

META-BASE: a Novel Architecture
for Large-Scale Genomic Metadata Integration

Anna Bernasconi, Arif Canakoglu, Marco Masseroli and Stefano Ceri

Abstract—The integration of genomic metadata is, at the same time, an important, difficult, and well-recognized challenge. It is
important because a wealth of public data repositories is available to drive biological and clinical research; combining information from
various heterogeneous and widely dispersed sources is paramount to a number of biological discoveries. It is difficult because the
domain is complex and there is no agreement among the various metadata definitions, which refer to different vocabularies and
ontologies. It is well-recognized in the bioinformatics community because, in the common practice, repositories are accessed
one-by-one, learning their specific metadata definitions as result of long and tedious efforts, and such practice is error-prone.
In this paper, we describe META-BASE, an architecture for integrating metadata extracted from a variety of genomic data sources,
based upon a structured transformation process. We present a variety of innovative techniques for data extraction, cleaning,
normalization and enrichment. We propose a general, open and extensible pipeline that can easily incorporate any number of new data
sources, and propose the resulting repository – already integrating several important sources – which is exposed by means of practical
user interfaces to respond biological researchers’ needs.

Index Terms—Data Integration, Genomic Datasets, Metadata Management, Open Data, Rule-Based Languages, Bioinformatics.

F

1 INTRODUCTION

G ENOMIC research is showing a variety of initiatives
for the production of high-value biological and clin-

ical datasets, stored in open repositories and available to
the research community for secondary research use. Some
examples include the Encyclopedia of DNA Elements (EN-
CODE [1]), The Cancer Genome Atlas (TCGA [2]) and its
successor Genomic Data Commons (GDC [3]), Roadmap
Epigenomics Project [4], 1000 Genomes [5], and many oth-
ers. Metadata, generally defined as “data about data”, in
genomics repositories collectively refers to the descriptions
of experimental and annotation datasets; it specifies the
experimental conditions, the cell lines or tissues, the donors
with their demography, phenotypes, and treatments, and
the process of extraction of stored genomic signals with
the used technological devices. By inspecting metadata, it is
possible to locate the datasets that better fit for formulating
queries over the genome; these in turn can answer impor-
tant questions in modern biology and precision medicine.

Unfortunately, while we observe a good convergence in
the definition of data formats and protocols for genomic
information (e.g., BED, MAF, VCF, GTF), no agreement for
a common metadata format has been reached so far: meta-
data of distinct repositories often disagree on their entities,
attributes and values, and have no associated conceptual
representations [6], [7]. In earlier work, we developed a
conceptual approach to metadata integration and presented
the Genomic Conceptual Model (GCM), which mediates
over the most important and complex data sources [8]. This
paper is focused on the process required to generate the
GCM content and on the resulting repository. First, we de-
scribe META-BASE, a novel architecture for the integration

• The authors are with Dipartimento di Elettronica, Informazione e Bioin-
gegneria, Politecnico di Milano, Via Ponzio 34/5, 20133, Italy. E-mail:
first.last@polimi.it

of genomic datasets; it is deployed as a generic pipeline
of six progressive steps for data integration, applicable to
arbitrary genomic data sources providing semi-structured
metadata descriptions. Four steps are driven by source-
specific modules, the others are source-independent. Two
steps are assisted by tools that help the designer in the pro-
gressive creation and adaptation of data management rules,
with the general objective of minimizing the cognitive effort
required from integration designers. Then, we describe the
pipeline that generates the META-BASE repository, a very
large integrated repository of tertiary genomic datasets.
In this paper, we focus on the integration of three data
sources featuring complex metadata: ENCODE, GDC, and
Roadmap Epigenomics. In addition, META-BASE integrates
other sources, whose conceptual complexity is much sim-
pler: genomic annotation data from GENCODE [9] and Ref-
Seq [10]; variation data from 1000 Genomes; topologically
associating domains (TADs) [11] from GEO repository [12];
epigenomic experiments metadata from Cistrome [13]. The
META-BASE repository will continue to grow in the next
years, responding to biological and clinical needs.

Every step of the META-BASE pipeline produces a data
ingestion program that can be applied to data sources after
an initial design; these programs need to be adapted only in
case of structural changes of the data sources. The process
is extensible, as the designer who wants to add a new
source has just to add new definitions and rules to the data
integration framework.

Within the data enrichment step of the META-BASE
pipeline, we also use selected ontological sources for im-
proving value matching, which is extended from exact
match to semantic match inclusive of the use of synonyms,
hyponyms and hyperonyms; they enable simple value con-
version strategies, which capture some value mismatches
that may occur in different repositories.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCBB.2020.2998954

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

Queries upon the META-BASE repository are sup-
ported by GenoSurf [14], a user-friendly, attribute-based
and keyword-based search interface; the metadata attributes
supported by GenoSurf are organized using the GCM lay-
out [15]. Queries upon the META-BASE repository can
be used for producing as a result the Uniform Resource
Identifiers (URIs) of the relevant data in the source repos-
itories; scientists can build over them an arbitrary genomic
computation, using any bioinformatics system and resource.
In this way, the META-BASE repository provides a concep-
tual entry point to the supported genomic data sources. In
addition, the META-BASE pipeline and repository feed an
architecture for genomic data processing, defined in [16],
providing portable and scalable genomic data management
on powerful servers and clusters1; in such distinct environ-
ment, metadata can be queried together with their respec-
tive datasets using GenoMetric Query Language (GMQL), a
high-level domain-specific query language [17].

The most innovative aspects of our work are: from a
computer science perspective, the design and engineering
of an end-to-end pipeline whose steps make novel use of
rewrite rules for data cleaning, mapping, normalization,
enrichment and integrity verification; from a biological per-
spective, the partitioning schemes for each data source and
the selection of the ontologies providing enrichment for
specific GCM attributes; from an application perspective,
the provisioning to the broad community of computational
biology and bioinformatics of new interfaces and systems
fed by a solid data architecture.

Paper organization. Section 2 overviews the GCM, which
is at the base of this work, and provides a motivating
example. Section 3 describes our generalized approach to
metadata management and integration. Section 4 describes
the pipeline to extract metadata from original sources and
to prepare it for integration. Section 5 shows the integration
process towards the final META-BASE repository, which
includes ontological enrichment. Section 6 discusses the
effectiveness of our approach. Section 7 describes the ar-
chitecture of the system. Section 8 overviews related work,
and Section 9 mentions future developments and concludes.

2 BACKGROUND

In [8] we originally presented the Genomic Conceptual
Model (GCM), an Entity-Relationship model used to de-
scribe metadata of genomic data sources; its current version2

is shown in Fig. 1. The main objective of GCM is to recognize
the common organization for a limited set of concepts that
are supported by most genomic data sources, although with
very different names and formats. GCM is organized as
a star-schema [18] – typically used in the design of data
warehouses [19], consisting of a fact table referencing any
number of dimension tables – centered on the ITEM entity
(i.e., the fact, in the data warehouses’ jargon), representing
an elementary experimental file of genomic regions and
their attributes. Files are typically used by biologists for
data extraction, analysis and visualization operations. Four

1. Based on Apache Spark http://spark.apache.org/
2. Several adaptations of the model w.r.t. what was presented in [8]

have been performed afterwards.

Tech
nolo

gy
 vi

ew

(1,1)

(1,1)

(0,N)

(0,N)

Technique

Platform

ProgramName

ProjectId

ExpTypeId

ProjectName

Target
Antibody

Feature

Project

Experiment
Type

Biological view
Ethnicity

Species

Cell

(1,N)

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

Age

Tissue

BioReplicateNum
TechReplicateNum

SourceId

Gender

DonorId

SourceId

BioSampleId

ReplicateId

IsHealthy

Type

Disease

BioSample

Replicate

Donor

SourceId

M
an

ag
em

en
t v

iew (1,N)
(0,N)

SourceSite

CaseId

SourceId
Case

ItemId
SourceId
Size

Pipeline
SourceURI

ExternalRef

DataType
Format
Name

Assembly
IsAnn

ContentType

(1,1)

(0,N)

Extraction view
DatasetId

Dataset

Item

LastUpdate
Checksum

LocalURI

Fig. 1. Genomic Conceptual Model (GCM).

hierarchical dimensions describe: 1) the biological elements in-
volved in the experiment: the sequenced sample, its prepa-
ration, its donor; 2) the technology used in the experiment,
including the specific technique; 3) the management aspects
of the experiment: the projects/organizations behind its
preparation and production; 4) the extraction parameters
used for internal selection and organization of items.

The Central Entity ITEM features the SourceId attribute,
which identifies it uniquely on the source system, along
with its Size, LastUpdate, and Checksum. Platform and Pipeline
are respectively used to provide references to the methods
and parameters used for production and processing of
sequenced raw data and its processed data. ContentType
accepts values such as “peaks”/“hotspots”/“exon quan-
tifications” when the contained regions are experimental,
or “gene”/“transcript”/“promoter” when they are annota-
tions. The ITEM is physically available for download at the
LocalURI and, in its original form, at the SourceURI.

The Biological View consists of the chain of entities
ITEM-REPLICATE-BIOSAMPLE-DONOR, representing the bi-
ological elements that contribute to the ITEM production.
An ITEM is associated with one or more REPLICATEs, each
originated by a BIOSAMPLE, each derived from a DONOR.
DONOR is identified by a SourceId. It represents an individ-
ual (characterized by Age, Gender and Ethnicity) or strain
of a specific organism (Species) from which the biologi-
cal material was derived or the cell line was established.
BIOSAMPLE is identified within possibly multiple original
sources by SourceId. Its characterizing Type expresses values
such as “cell line”/“tissue”/“primary cell”, depending on
the kind of material sample used for the experiment. Cell
includes information of (single) cells in their natural state,
immortalized cell lines, or cells differentiated from specific
cell types. Tissue regards a multicellular component in its
natural state, or the provenance tissue of the Cell(s) of
a biosample. IsHealthy denotes a healthy (normal/control)
or non-healthy (e.g., tumoral) sample, and Disease stores
information about the disease investigated with the sample.
REPLICATE is useful to model cases where an assay is
performed multiple times on similar biological material.
If repeated on separate biological samples, the generated
items are biological replica of a same experiment; if repeated

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCBB.2020.2998954

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://spark.apache.org/

3

Genomic	Data	Commons

ENCODE

Assay: ChIP-seq
Target: MYC
Biosample: Homo	sapiens	MCF-10A
Biosample	Type:		cell	line
Description: Mammary	gland,	non-tumorigenic	cell	line
Health	status: Fibrocystic	disease

Assay: ChIP-seq
Target: MYC
Biosample: Homo	sapiens	MCF-7
Biosample	Type:	cell	line
Description: Mammary	gland,	adenocarcinoma
Health	status: Breast	cancer	(adenocarcinoma)

a2027c6e-05e0-4415-9c64-2dcaaf213593-cns

Genomic Data	Commons

Fig. 2. Example of Web interfaces of data sources: GDC and ENCODE.

on two portions from the same biological sample (treated
for example with same growth, excision, and knockdown),
the items are technical replicates. This occurs only in some
epigenomic data sources (such as ENCODE and Roadmap
Epigenomics) that perform assay replication.

The Technology View describes the technology used to
produce the data ITEM. An ITEM is associated by means of a
one-to-many relationship with a given EXPERIMENTTYPE,
which includes the Technique (e.g., “ChIP-seq”, “DNase-
seq”, “RRBS”) and the Feature, which denotes the specific
genomic aspect described by the experiment (e.g., “Copy
Number Variation”, “Histone Modification”, “Transcription
Factor”). When the Technique is “ChIP-seq”, Target and Anti-
body are needed to further characterize the experiment.

The Management View consists of the chain of entities
ITEM-CASE-PROJECT describing the organizational process
for the production of items. CASE represents a set of items
that have been collected within the same research study.
SourceId and ExternalRef contain identifiers respectively
taken from the main original source and alternative sources.
SourceSite represents the physical site where the material
is analyzed. PROJECT represents a project, a program, or a
single initiative responsible for the production of the ITEM.
It provides a single point of reference to find diverse data
types generated in a same research context.

The Extraction View includes the entity DATASET, used
to describe common properties of homogeneous items. Its
attributes include a Name, useful to locate and organize data,
the DataType, describing the specific kind of genomic data
contained in the items of such dataset (e.g., “peaks”, “copy
number segments”, “gene expression quantification”), the
Format, which denotes the ITEM data file format (e.g., “bed”,
or more specific ones such as “narrowPeak” and “broad-
Peak”), and the reference genome alignment (Assembly).
IsAnn distinguishes between experimental items (describ-
ing arbitrary genomic regions) and annotations (describing
known genomic regions).

2.1 Motivating Example

To motivate our effort, we introduce an example that sim-
ulates the research of data suitable for a genomics project
on two different sources. We focus on a simple situation,
which can be appreciated even by a reader with limited bio-
logical background. Consider a comparison study between
a human non-healthy breast tissue, affected by carcinoma,
and a healthy sample coming from the same tissue type. A
researcher in the field locates two portals having interest-

ing data for this analysis. The results obtained after some
browsing are reported in Fig. 2.

For the healthy data, the chosen source is GDC Data
Portal, an important repository of human cancer genomic
data. As it can be seen on the top of Fig. 2, typically more
data files can be retrieved by composing a query that allows
locating variation data on “Breast Invasive Carcinoma” from
“Breast” tissue. By browsing several metadata information
sections (sometimes hard to identify), the researcher can find
files corresponding to “normal” (i.e., non-tumoral) tissue.

To compare such data with others from a diseased ref-
erence, the researcher considers additional datasets coming
from cell lines, i.e., cell cultures that have been permanently
established and made immortal. Cell lines are frequently
used in place of primary cells to study biological processes,
as the scientific community tends to accept the derived
findings more readily. On ENCODE, the researcher chooses
both a tumor cell line (bottom left of Fig. 2) and a normal cell
line (bottom right of Fig. 2), to make a control comparison.
“MCF-7” is a cell line from a diseased tissue affected by
“Breast cancer (adenocarcinoma)”, while “MCF-10A” is its
widely considered non-tumorigenic counterpart.

Note that some external knowledge is necessary in order
to find these connections, which cannot be obtained on the
mentioned portals. Regarding the disease, note that “Breast
Invasive Carcinoma” and “breast cancer (adenocarcinoma)”
are related sub-types of “breast carcinoma” (as observed
in the EFO and DOID ontologies [20]); this allows us to
compare GDC data with the dataset from ENCODE. For
what concerns the cell line, researchers typically query spe-
cific databases (such as the COSMIC Cell Lines Browser3) or
dedicated forums to discover tumor/normal matched cell
line pairs. This information is not encoded in a unique way
over data sources and is often missing.

3 APPROACH

The six phases of the META-BASE approach can be seen
in Fig. 3. Through downloading, metadata is imported at
the repository site. During transformation, they are trans-
lated into raw attribute-value pairs, which are then cleaned,
thereby producing a collection of clean metadata pairs for
each source. The mapper extracts information from these
pairs and adds it to GCM; the values are then normalized
(resorting to generic term IDs that may take specific sets
of values) and enriched (by means of external ontologies).
Finally, the consistency of the database content is checked
with respect to integrity constraints.

For exemplifying the META-BASE framework, we con-
sider three important and complex data sources:

• ENCODE contains datasets related to the functional DNA
sequences, intervening at the protein/RNA levels, and to
the regulatory elements that control gene expression.

• GDC contains datasets from TCGA program, related to
many aspects of cancer genomics.

• Roadmap Epigenomics (indicated as ‘REP ’ in the follow-
ing) contains datasets related to epigenomic features in
human normal tissues often involved in human diseases.

3. https://cancer.sanger.ac.uk/cell_lines/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCBB.2020.2998954

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://cancer.sanger.ac.uk/cell_lines/

4

GDC

ENCODE

Roadmap
Epigenomics

K V

K V

K V

…

Downloader+Transformer

K V

K V

K V

Cleaner

… …

Mapper Normalizer/Enricher Checker

Relationships

Donor BioSample Item

Source-specific Source-specific
Tool-supported

Source-specific Source-independent
Tool-supported

Source-independent

Synonyms
References

Vocabulary

Data	Preparation Data	Integration

Fig. 3. The overall data preparation and integration process.

The above repositories are subject to rapid changes, as each
source is a continuously evolving system. Luckily, most
changes are additive and use already existing metadata in
their descriptions. For this reason, we approach each source
with an initial activity for the production of a source-specific
set of metadata transformation rules, followed by periodic
data integration sessions, where new items are discovered
and their metadata are modeled.

At the same time, rules capture only a portion of the data
integration semantics, as we allow for exceptions. Attributes
that are not in common to most sources, while specific for
few experiment types, are modeled as attribute-value pairs;
related data is directly referenced from the ITEM entity.

4 DATA PREPARATION

The META-BASE data preparation pipeline allows us to
extract metadata from a set of selected data sources and
arrange it for integration. Metadata is first downloaded in
their original formats (Section 4.1); then, it is transformed
into a 〈key, value〉 equivalent form (Section 4.2); finally, since
it is still raw metadata, it is exposed to a cleaning process that
aims to improve raw attribute names and to filter irrelevant
metadata (Section 4.3) before data integration.

4.1 Data Download
The Downloader module produces files both for the genomic
data and its metadata, in original source-specific format,
at the processing site hosting our repository; it must be
programmed or adapted for each source. In most target
sources, several protocols or APIs are made available for
data downloading, but they do not share any standard for
the metadata description or format (e.g., XML, JSON, tab-
delimited). Some sources provide a metadata file for each
experiment. In other cases, a single metadata file describes
a collection of experiments; also in such a case, we produce
multiple metadata files, one for each experimental data file.

Fig. 4. Selection of portions from ENCODE. In the upper area we specify
parameters names, in the two small bottom slices we specify example
values, defining a partition of the source.

The main difficulty is to identify a specific data parti-
tioning scheme at each source; in this way, each partition
can be repeatedly accessed and source files that are added
to or modified within the partition can be selectively rec-
ognized, avoiding the download for those source files that
are unchanged. Table 1 illustrates three endpoints for data
download used for the considered sources, specifying their
protocol, request format, and example parameters for invo-
cation. A partitioning scheme for the ENCODE data source
is illustrated in Fig. 4, with a specific set of parameters used
during download, corresponding to a partition.
Formalization. For a given source i, a Downloader is a
method Di for importing genomic data and metadata from
a specific partition Pi of i. At each invocation of the
method, a new set Di of files (one for each data ITEM) is
retrieved at the repository site, and associated with a sig-
nature 〈dataset_name, source, endpoint, parameters〉; pa-
rameters include the timestamp th of the download oper-

5

TABLE 1
Endpoints for data download from sources and example invocations.

ENCODE List of file_id Protocol HTTP GET: https://www.encodeproject.org/metadata/?type=Experiment&〈params〉/metadata.tsv
Example params assembly=hg19 & file.status=released & project=ENCODE & . . . & files.file_type=bed+narrowPeak
Download file https://www.encodeproject.org/files/〈file_id〉/@@download/〈file_id〉.bed.gz

GDC List of file_id Protocol HTTP POST: https://api.gdc.cancer.gov/files with 〈params〉 in Payload
Example params field:cases.project.project_id-value:["TCGA-ACC"], field:files.data_type-value:["Copy Number Segment"], . . .
Download file https://gdc-api.nci.nih.gov/data/〈file_id〉

REP dir paths Protocol FTP: http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/dir
Example dir broadPeak
Download file http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/〈dir〉/〈file_name〉.〈dir〉.gz

ation. In this way, future invocations of Di at time tk > th
will be used to download information from Pi and then
start a data integration session by tracking the changes that
occurred to Pi at the data source between time th and tk.
Method. Each download module first connects to the data
source servers to retrieve the list of the identifiers of files that
belong to the partition to download (corresponding to the
GCM ITEMs). Many sources provide (semi)programmatic
methods to translate a query composed on their portal
visual interface into an API request or a downloadable list
of files corresponding to the search; otherwise, this step has
to be programmed.

For each ITEM, a downloader typically retrieves the Size,
LastUpdate and Checksum, denoting properties of the data
file; these are provided by most sources.4 We match these
values with data that is stored in GCM, using the SourceId
unique identifier. The matching allows us to pinpoint:
• New items: they are stored as genomic data files and

their metadata are processed by invoking the pipeline
discussed in this section.

• Matching items, having same Size, LastUpdate and
Checksum values as their local values stored in the concep-
tual model: we reprocess just the metadata by invoking
the pipeline discussed in this section, but we avoid the
download of region data, which is typically much bigger
in size. If any of the metadata values is different, we then
download also the genomic data files.

• Missing items, i.e., items whose identifier was present
at the previous invocation but it is no longer present:
they are deprecated, the genomic data and metadata is
copied to an archive that can only be inspected by archive
lookups (but no longer retrieved by standard queries).

A downloader task splits originally downloaded metadata
into files that correspond each to a single experimental
region data file (e.g., ITEM). Eventually, we collect into the
set of files Di all the metadata relative to new or changed
items; these downloaded files are then used in the next steps
of the pipeline. In parallel, the corresponding genomic data
files are stored in the GMQL data repository (see Section 7).
Example. The ENCODE Web portal, described in [21],
supports a faceted searching system that can be used to
evaluate alternative options for metadata retrieval. Each
search option produces different JSON objects. After careful
analysis, we selected the option of retrieving the JSON file
associated with an experimental study in “embedded” mode,
as it includes compact information about all data files,
replicates, and biosamples involved in it. Therefore, this was

4. If some of them are unavailable, we either compute them at the
source or accept a less precise matching by using fewer parameters.

selected as the ENCODE metadata reference endpoint (see
Table 1): when a downloader is invoked, it retrieves the data
and metadata files partitioned by experiment.

As it can be observed in Listing 1, the information
associated with the specific experiment with accession
ENCSR635OSG is a hierarchically structured JSON file,
including several embedded elements: information about
the whole experimental study, arrays of “files” elements
(a list of items included in the experimental study) and of
“replicates” elements, along with other information.

After retrieval, the identifiers of the items belonging to
the considered partition are recorded together with their
size, last update date and checksum. Then, a downloader
task separates the information retrieved for an experiment
into several metadata files, each containing the information
about a specific item of the experimental study. From the
excerpt of Listing 1, two JSON files are created for items
ENCFF134AVY and ENCFF429VMY, where the former
one has one replica while the latter one has two. In this
way, all following data preparation steps apply to metadata
files that are in one-to-one correspondence with data ITEMs.
{"accession": "ENCSR635OSG",
"assembly": ["hg19"],
"award": {

"pi": {
"lab": {"name": "michael-snyder",...},

...},
...},
"dbxrefs": [],
"files": [

{"accession": "ENCFF134AVY",
"biological_replicates": [1],...},
{"accession": "ENCFF429VMY",
"biological_replicates": [1,2],
"file_type": "bed narrowPeak",...},
...

],
"replicates": [

{
"@id": "/replicates/4874c170-7124-4822-a058-4bb/",
"biological_replicate_number": 1,
"library": {

"biosample": {
"donor": {"age": "6",...},
"health_status": "healthy",

...},
...},
"antibody": {"lot_id": "940739",...},
...

},
{

"@id": "/replicates/d42ff80d-67fd-45ee-9159-25a/",
"biological_replicate_number": 2,
"library": {

"biosample": {
"donor": {"age": "32",...},
"health_status": "healthy with non-

obstructive coronary artery disease",
...},

...},
"antibody": {"lot_id": "940739",...},
...

}
],
...}

Listing 1. Excerpt from example JSON file retrieved for ENCODE
experiment ENCSR635OSG.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCBB.2020.2998954

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

4.2 Data Transformation

The Transformer module takes as input the metadata files
output by the previous phase, transforming them into free
arbitrary semi-structured key-value pairs, compatible with
the Genomic Data Model [22].
Formalization. A Transformer is a source-specific method Ti.
When applied to each file in Di downloaded from a given
source i, it produces a file in Ti of 〈key, value〉 pairs.
Method. The Transformer process, exemplified in in Algo-
rithm 1, downloads files with an adaptation strategy that
depends on their format: (i) hierarchical formats (JSON,
XML, or equally expressive) require applying a flattening
procedure that creates for each value a pair formed by
a key (composed as the concatenation of all JSON/XML
elements from the root to the element corresponding to the
selected value) and the value itself; (ii) tab-delimited formats
(CSV or Excel/Google Sheet) require pivoting tab-delimited
columns into rows (which corresponds to creating key-value
pairs); (iii) completely unstructured metadata formats, col-
lected from Web pages or other documentation provided
by sources, need case-specific formatting. The output of a
transformer is a lists of key-value pairs, added to the set Ti.
We wrote transformers for the most used formats for origin
metadata. Additional ones can be easily added.

Algorithm 1 Transformer Procedure
function TRANSFORMATION(Di, Ti)

for each d ∈ Di do
switch d do

case d is hierarchical
t← flattenPaths(d)

case d is tab-delimited
t← pivot(d)

case d is unstructured
t← manualFormatting(d)

Ti ← Ti + newTransFile(t)
end for
return Ti

end function

Example. The output of data transformation for EN-
CODE is shown in Listing 2; it is obtained by consid-
ering as input the portion of the JSON file from List-
ing 1, which describes the information extracted for a
specific item with accession ENCFF429VMY (with two
replicates) of experiment ENCSR635OSG. First-level ele-
ments are translated directly into 〈key, value〉 pairs (e.g.,
〈accession,ENCSR635OSG〉); nested elements are flattened
(e.g., "name" inside "lab", inside "pi", inside "award" becomes
award__pi__lab__name, where double underscore __ is used
to separate levels of nesting); arrays are translated into
one 〈key, value〉 pair for each value in the array (e.g.,
see file__biological_replicates); empty arrays are not
translated (e.g., "dbxrefs").

Note that several replicates can be associated with each
file; in such a case, a progressive naming scheme tracks the
replicate to which each 〈key, value〉 pair relates. In the spe-
cific example, the file has two biological replicates, each with
five associated key-value pairs (in Listing 2 other pairs are
omitted for brevity). All elements in the replicate element
with id 4874c170-7124-4822-a058-4bb are transformed into
keys that start with "replicate__1__". Vice versa, elements

in replicate d42ff80d-67fd-45ee-9159-25a are transformed
into keys that start with "replicate__2__".
accession ENCSR635OSG
assembly hg19
award__pi__lab__name michael-snyder
file__accession ENCFF429VMY
file__biological_replicates 1
file__biological_replicates 2
file__file_type bed narrowPeak
replicates__1__@id /replicates/4874c170-7124-4822-a058-4bb/
replicates__1__biological_replicate_number 1
replicates__1__library__biosample__donor__age 6
replicates__1__library__biosample__health_status healthy
replicates__1__antibody__lot_id 940739
replicates__2__@id /replicates/d42ff80d-67fd-45ee-9159-25a/
replicates__2__biological_replicate_number 2
replicates__2__library__biosample__donor__age 32
replicates__2__library__biosample__health_status healthy

with non-obstructive coronary artery disease
replicates__2__antibody__lot_id 940739

Listing 2. Excerpt from example transformed file corresponding to
ENCODE file accession ENCFF429VMY.

4.3 Data Cleaning
After the transformation step, a typical key is a long string,
e.g., replicates__1__library__biosample__donor__age. As
this information applies to an ITEM, a much simpler at-
tribute name can be derived, e.g., donor__1__age. Such
name is later used to map values in the conceptual schema,
and is a much simpler key.

The Cleaner module applies transformation rules to
complex attribute names, so as to simplify them. For il-
lustration purposes, rules are indicated with the notation
antecedent ⇒ consequent. The antecedent of rules uses the
formalism of regular expressions: it recognizes the strings that
compose a complex attribute. The consequent, which is an
action encoded in the form of pattern matching replacement
strategy, builds a simpler string. The use of regular expres-
sions brings a simple formalization of cleaning algorithms
through language containment and language-recognizing
automata. Rules are source-specific, as they depend on the
way in which attribute names are encoded at each source;
after an initial design, they are applied to each transformed
file. Rules may require adjustments when the attribute en-
coding changes, or new attributes are created. We provide
a tool that assists designers in rule creation, ordering, and
maintenance.5

Informally, rules consist of an antecedent, recognizing an
input string, and a consequent, transforming it into a sim-
pler output string. The rule’s antecedent is a regular expres-
sion matching a sequence of keys; it contains parentheses,
which group parts of regular expressions positionally iden-
tify the rule’s parameters, used in the rule’s consequent as
numbered capturing groups.6 Some parameters are typed,
e.g., [0-9] denotes a sequence of digits; some keys may be
equivalently used, e.g., (age|sex) denotes an alternative.
The consequent can contain strings of characters or special
“dollar” symbols, which positionally refer to the content of
the antecedent’s variables. The consequent can be empty, in
which case no cleaned key is generated for the transformed
key, and the corresponding pair is removed.

5. https://github.com/DEIB-GECO/Metadata-Manager/wiki/
Rule-Base-Generator

6. The replacement strategy specified by a rule is implemented us-
ing the java.util.regex library (https://docs.oracle.com/javase/
8/docs/api/java/util/regex/package-summary.html), supporting full
regular expressions.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCBB.2020.2998954

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/DEIB-GECO/Metadata-Manager/wiki/Rule-Base-Generator
https://github.com/DEIB-GECO/Metadata-Manager/wiki/Rule-Base-Generator
https://docs.oracle.com/javase/8/docs/api/java/util/regex/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/package-summary.html

7

Rule Example. An example of a rule is:
replicates(__[0-9]__)library__biosample__(donor)__

(age|sex)(.*) ⇒ $2$1$3$4.
When replicates__1__library__biosample__donor__age

is considered as the input key, $2$1$3$4 produces a
concatenation of the content of the second variable donor,
with the first one __1__, with the third one age and finally
with the fourth one (i.e., anything that follows the third
parenthesis)—in this case an empty string. As a result, the
rule produces the string donor__1__age.
Formalization. A Cleaner is a source-specific method Ci =
〈Ti,Ci,RBi〉. For every transformed metadata file in Ti, it
converts the key k of each key-value pair 〈k, v〉 from its
transformed syntax to a cleaned version k′ of pair 〈k′, v〉. If
k′ is empty, a related pair is not produced. Files in Ci contain
cleaned key-value pairs and are produced by running the
rule engine Ci over Ti using the set of rules RBi .
Method. The description of the method requires the defini-
tion of relations between rules and of rule base.

Definition 1. (Rule Equivalence, Containment, and Partial
Overlap) Given two rules r, r′ ∈ RBi , their antecedents r.a
and r′.a, and the corresponding generated languages L(r.a) and
L(r′.a):
• r is equivalent to r′ when L(r.a) = L(r′.a);
• r is contained in r′ when L(r.a) ⊂ L(r′.a);
• r partially overlaps r′ when L(r.a) 6⊂ L(r′.a), L(r′.a) 6⊂
L(r.a), and L(r.a) ∩ L(r′.a) 6= ∅

Definition 2. (Rule Base) The RB Rule Base is a list of rules
such that rule r precedes rule r′ in RB if either 1) r is contained
in r′, or 2) r partially overlaps r′ and the user gives priority to r
over r′.

By effect of the above definitions, rules that are more
specific precede more general rules. When the intersection of
languages recognized by the rules is non-empty, the user can
specify the desired order in which the rules should appear
in the RB . When the intersection is empty, the rules’ order
in the RB corresponds to the order of insertion.

Building a Cleaner requires building the Rule Base (Al-
gorithm 2), by calling the function to insert a rule in the
right order (Algorithm 3), which is based on the comparison
between pairs of rules performed by the function COM-
PARE (Algorithm 4). When the Rule Base is prepared, it is
applied to the transformed files, in particular to the keys
from the 〈key, value〉 pairs in Ti (Algorithm 5). After the
consolidation of cleaning rules, a rule base can be repeatedly
applied to transformed data, until major changes occur at
the sources.

Algorithm 2 Rule Base Creation
function RBCREATION(RB ,SK ,AK)

UK ← AK − SK
while UK is not empty do

newRule← getRuleFromUser()
if userApprSimul(RB , newRule) then

RULEINSERTION(RB , newRule)
matched← matchAll(RB ,UK)
SK ← SK +matched
UK ← UK −matched

end if
end while

end function

Algorithm 2 takes as input RB , which stores the infor-
mation about rules in their order (Definition 1), SK , the set
of seen keys, and AK , the set of all keys retrieved from the
files of a given source. It first finds the unseen keys UK
(those that have not been considered for rule creation yet).
Then, until all unseen keys have been considered, the user is
asked to insert new rules and approve (or not) the simulated
effect of the incremented RB on all keys. When the user is
satisfied with the results, the rule is actually added to the
RB and the sets of keys are updated accordingly.

Algorithm 3 Rule addition in Rule Base
function RULEINSERTION(RB , newRule)

for r in RB do
res← COMPARE(newRule, r)
if res is EQUIVALENT then

if userPref (newRule, r) = newRule then
replaceRule(newRule,RB , indexOf (r))

end if
return RB

else if res is CONTAINED then
addRule(newRule,RB , indexOf (r))
return RB

else if res is PARTIALLY_OVERLAPS then
if userPriority(newRule, r) = newRule then

addRule(newRule,RB , indexOf (r))
return RB

end if
end if

end for
addRule(newRule,RB ,RB .size)
return RB

end function

Adding a new rule to the Rule Base means inserting it
in the correct position with respect to the order defined in
Definition 2. This is accomplished by Algorithm 3, which
iterates over the RB list and, based on the comparison
between each pre-existing rule with the one to be added,
determines the insertion position (in an “insertion sort”
manner).

Algorithm 4 Order comparison between rules
function COMPARE(r, r′)
Ar ← NFA2DFA(RegEx2NFA(r.a))
A′

r ← NFA2DFA(RegEx2NFA(r′.a))
if L(Ar) = L(A′

r) then
return EQUIVALENT

else if L(Ar) ⊂ L(A′
r) then

return CONTAINED
else if L(Ar) 6⊃ L(A′

r) ∧ L(Ar ∩ A′
r) 6= ∅ then

return PARTIALLY_OVERLAPS
end if

end function

Algorithm 5 Application of Rule Base to keys
function CLEANER(RB ,Ti)

Ci ← []
for each 〈key, value〉 ⇐Ti do

newKey ← matchF irst(key,RB)
if nonEmpty(newKey) then

add(Ci, 〈newKey, value〉)
end if

end for
return Ci

end function

Comparing rules means evaluating the containment re-
lationship between the languages generated by their an-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCBB.2020.2998954

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

tecedents, as described by Algorithm 4. Several procedures
exist to convert regular expressions into equivalent Non-
deterministic Finite Automata (NFA); we use the Brics Java
library [23] for automata implementations, which is based
on Thompson’s construction algorithm [24]. Then, NFA
need to be converted into equivalent Deterministic Finite
State Automata (DFA) Ar and Ar′—this can be done with
the Rabin-Scott powerset construction [25]. Later, the two
languages are checked for equivalence, containment and
partial overlapping (by using the automaton constructed
from the cross-product of states that accepts the intersection
of the languages). Algorithm 5 describes the Cleaner as
application of the Rule Base to the input dataset; rules are
applied in the order in which they appear in the Rule Base.
Example. Table 2 illustrates a cleaning process for ENCODE.
It assumes an initial set of transformed keys from Ti; for
each key, the user produces cleaning rules, driven by Al-
gorithm 2. Eventually, the method produces a rule base of
7 rules; their application to keys in Ti produces the set of
cleaned keys in Ci.

TABLE 2
Example of cleaning process.

Transformed keys in Ti

replicates__1__library__biosample__donor__age 32
replicates__1__library__biosample__donor__age_units year
replicates__1__library__biosample__donor__sex male
replicates__2__library__biosample__donor__age 4
replicates__2__library__biosample__donor__age_units year
replicates__2__library__biosample__donor__sex female
replicates__1__library__biosample__sex male
replicates__1__library__biosample__biosample_type tissue
replicates__1__library__biosample__health_status healthy, CAD
file__biological_replicates 1
file__technical_replicates 1_1
file__assembly GRCh38
file__file_type bed narrowPeak
replicates__1__biological_replicate_number 1
replicates__1__technical_replicate_number 1
replicates__2__biological_replicate_number 2
replicates__2__technical_replicate_number 1
assembly hg19

↓ RuleBase RBi

(1) replicates(__[0-9]__)library__biosample__(donor)__(age|sex)(.*)
⇒ $2$1$3$4

(2) replicates__[0-9]__library__biosample__sex.*⇒
(3) replicates(__[0-9]__)library__(biosample)__(biosample_)?(.*)

⇒ $2$1$4
(4) file__(biological|technical)_replicates⇒
(5) (file__)(file_)?(.*)⇒ $1$3
(6) (replicate)s(__[0-9]__)(.*)⇒ $1$2$3
(7) assembly⇒

↓ Cleaned keys in Ci

donor__1__age 32
donor__1__age_units year
donor__1__sex male
donor__2__age 4
donor__2__age_units year
donor__2__sex female
biosample__1__type tissue
biosample__1__health_status healthy, CAD
file__assembly GRCh38
file__type bed narrowPeak
replicate__1__biological_replicate_number 1
replicate__1__technical_replicate_number 1
replicate__2__biological_replicate_number 2
replicate__2__technical_replicate_number 1

For instance, rule (2) deletes the key: replicates__1__

library__biosample__sex. Rule (3), applied to the key:
replicates__1__library__biosample__biosample_type,
dictates that the key must be rewritten by concatenating
the content of the second parenthesis (i.e., biosample) with
the content of the first (i.e., 1), and with the content of the

donor
donor_id
source_id
species
age
gender
ethnicity

int
varchar
varchar
int
varchar
varchar

PK

N
N
N
N

biosample
biosample_id
donor_id
source_id
type
tissue
cell
is_healthy
disease

int
int
varchar
varchar
varchar
varchar
boolean
varchar

PK
FK

N
N
N
N
N

replicate
replicate_id
biosample_id
source_id
bio_replicate_num
tech_replicate_num

int
int
varchar
int
int

PK
FK

N
N

replicate2item
item_id
replicate_id

int
int

PK FK
PK FK

item
item_id
experiment_type_id
dataset_id
source_id
size
last_update
checksum
content_type
pipeline
platform
source_url
local_uri

int
int
int
varchar
bigint
timestamp
int
varchar
varchar
varchar
varchar
varchar

PK
N FK
N FK

N
N
N
N
N
N
N
N

Powered by Vertabelo, Design Your Database Online, http://vertabelo.com
biological_view 2018-12-20 11:43 PostgreSQL 9.x

1

Fig. 5. Logical schema of the GCM biological view.

fourth (i.e., type), obtaining at the end biosample__1__type.

5 DATA INTEGRATION

The META-BASE data integration process consists of three
phases. During data mapping, described in Section 5.1,
cleaned metadata is mapped into a global relational schema
that embodies the conceptual schema presented in Sec-
tion 2. Data mapping is a simple syntactic transforma-
tion; the following phase of value normalization and en-
richment, described in Section 5.2, produces homogenized
data equipped with appropriate ontological term labels,
references, hyponyms, hypernyms and synonyms. Finally,
the integrity constraint checker, discussed in Section 5.3,
provides methods for specifying and enforcing integrity
constraints that describe legal values in the META-BASE
repository. For a high-level workflow of the data integration
process refer again to Fig. 3.

5.1 Data Mapping
The Mapper module is in charge of the integration at the
schema-level of a set of cleaned keys produced for each
source. The method extends the work proposed in [8],
where we first introduced local-to-global mappings using
a classical Datalog [26] syntax. The current Mapper is part of
a broader integration workflow in which metadata is made
available as lists of 〈key, value〉 pairs; mapping rules build
relational rows from such pairs.

The global relational schema G is obtained as straight-
forward mapping from the conceptual schema in Fig. 1.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCBB.2020.2998954

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

It contains the central entity table ITEM, a set of entity
tables DONOR, BIOSAMPLE, REPLICATE, PROJECT, CASE,
DATASET, EXPERIMENTTYPE, which model as well 1:N re-
lationships, and two relationship tables ITEM2REPLICATE
and ITEM2CASE, which model the two N:N relationships.
Fig. 5 shows the logical schema of the biological view,
where PK denotes attributes forming the table’s primary
key, FK denotes foreign keys, N denotes nullable attributes,
multiplicity in the edge denotes a many mapping, a circle
on the edge denotes an optional mapping, and a cut on the
edge denotes a mandatory mapping.

Every source is represented by a set of cleaned files Ci,
each of which contains a set of 〈key, value〉 pairs, where
the keys are produced by the Cleaning phase. Mapping rules
assemble several values extracted from the key-value pairs
into rows of the relations in G. Their format recalls deductive
rules: each table of G corresponds to several rules for each
source, whose head is a predicate named as the table and
with the same arity as the table’s grade; the body lists
several attribute-value pairs such that attribute names are
matched to cleaned keys of files in Ci. The semantics of
mapping rules is also similar to that of deductive rules: if all
the attribute names of the body are matched to keys in Ci (in
deductive terms they unify), then the values corresponding
to those keys are assembled by the rule into relational rows.

TABLE 3
Example syntactic transformations for mapping rules.

Conc(s1, s2, c): concatenates s1 and s2 using c as separation string
Alt(s1, s2): outputs s1 if present and not null, else s2
Rem(s1, s2): removes the occurrences of string s2 from s1
Sub(s1, s2, s3): substitutes occurrences of s2 in s1 with the new s3
Eq(s, p): outputs true when s is equal to p, else false
ATD(a): converts a, a number followed by space and

unit of measurement, into the correspondent number of days
LCase(s): converts string s into its lower case version
Int(n): casts number n to its correspondent Integer format
Id(...): generates synthetic id for faster indexing of table t

from specified arguments

It is possible to apply to the values a set of pre-
defined syntactic transformations (SynTr), defined in Ta-
ble 3, which can be freely composed in mapping rules;
for example, to put into lowercase letters two values that
have been first concatenated with a space, the expression
LCase(Conc(value1, value2, “ ”)) can be used to generate a
value for a specific position of a row. Transformations can
be easily extended.
Formalization. A Mapper is a source-specific methodMi =
〈Ci,MBi〉. For every cleaned metadata file f in Ci, it
assembles several values v present in the pairs 〈k, v〉 of
f into rows of the tables of G. Rows are produced by
running the rule engine Mi over Ci using the mapping
rules in MBi . A mapping rule is a declarative rule of
the form: ENTITY(SynTr(v1),...,SynTr(vi),...,SynTr(vN))
 {〈k1, v1〉,..., 〈ki, vi〉,..., 〈kN , vN 〉} ⊆ f . The left-hand side
(LHS) and the right-hand side (RHS) of the rule are w.r.t.
the symbol; every vi in the LHS of the rule also appears
in the RHS of the rule (i.e., rule evaluations are finite), in a
positive form (i.e., rules are safe).
Method. Once mapping rules are fully specified, the method
consists simply in applying the rules to each file f in
Ci of data source i, in arbitrary order. Note that every

file associated with a data source, as produced by the
cleaning method, may have several versions for the same
key, numbered from 1 to nf (e.g., biosample__1__type,
biosample__2__type); each rule is applied for every version,
and associates it with a distinct row. When a version is
present (e.g., in rules for DONOR, BIOSAMPLE and REPLI-
CATE of Table 4), we denote it by generically naming the
keys in the rule’s RHS using j, and then generating a rule
for each value of j. For each vi in the rule’s LHS, if the
corresponding 〈ki, vi〉 in the rule’s RHS exists in f , then we
add SynTr(vi) to the result, i.e., a tuple in the ENTITY table
specified in the rule’s LHS.
Example. Table 4 illustrates all the rules required to build
the relational schema shown in Fig. 5 for the ENCODE data
source. Note that Oidt is the notation used for the Objec-
tIdentifier of table t, which is a unique accession identifier
retrieved from the source.

TABLE 4
Mapping rules for biological view of ENCODE source.

CENC = {Ci|i = ENCODE}, ∀f ∈CENC, j ≤ nf

DONOR(Id(OidD),OidD, v1,ATD(Conc(v2, v3, “ ”)), v4, v5)
{〈donor__j__accession,OidD〉,
〈donor__j__organism, v1〉,
〈donor__j__age, v2〉,
〈donor__j__age_units, v3〉,
〈donor__j__sex, v4〉,
〈donor__j__ethnicity, v5〉} ⊆ f

BIOSAMPLE(Id(OidB),Id(OidD),OidB , “tissue”, v2, NULL,Eq(v3, “healthy”), v3)
{〈biosample__j__accession,OidB〉
〈donor__j__accession,OidD〉,
〈biosample__j__type, “tissue”〉
〈biosample__j__term_name, v2〉
〈biosample__j__health_status, v3〉} ⊆ f

BIOSAMPLE(Id(OidB),Id(OidD),OidB , “cell line”, NULL, v2,Eq(v3, “healthy”), v3)
{〈biosample__j__accession,OidB〉
{〈donor__j__accession,OidD〉,
〈biosample__j__type, “cell”〉
〈biosample__j__term_name, v2〉
〈biosample__j__health_status, v3〉} ⊆ f

REPLICATE(Id(OidR),OidR,OidB , v1, v2)
{〈replicate__j__uuid,OidR〉,
〈biosample__j__accession,OidB〉,
〈replicate__j__bio_rep_num, v1〉,
〈replicate__j__tech_rep_num, v2〉} ⊆ f

ITEM(Id(OidI),Id(v1, v2, v3),Id(OidDS),OidI , v4, v5, v6, v7, v8,
Conc(“www.encodeproject.org”, v9, “/”),Conc(“www.gmql.eu...”,OidI , “/”))

{〈assay_term_name, v1〉,
〈target__investigated_as, v2〉,
〈target__label, v3〉,
〈dataset_name,OidDS 〉,
〈file__accession,OidI〉,
〈file__size, v4〉,
〈file__date_created, v5〉,
〈file__md5sum, v6〉,
〈file__pipeline, v7〉,
〈file__platform, v8〉,
〈file__href, v9〉} ⊆ f

ITEM2REPLICATE(Id(OidI),Id(OidR)) {〈file__accession,OidI〉,
〈replicate__j__uuid,OidR〉} ⊆ f

5.2 Data Normalization and Enrichment

During this step, specific values of the global schema are
associated with controlled terms, lists of synonyms and hy-
pernyms, and external references to specialized ontologies.
We consider nine semantically enrichable attributes of the
global schema: Technique, Feature and Target of experiment
types; Disease, Tissue and Cell of bio samples; Ethnicity and
Species of donors; Platform of items.

The adoption of a specific knowledge base for each
semantically enrichable attribute provides us with value nor-
malization, as we consider the values of reference knowledge
bases as a restricted vocabulary. Using external knowledge
bases (rather than creating a new one) is essential in the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCBB.2020.2998954

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

biomedical domain, where specialized ontologies are al-
ready available and their use boosts interoperability.

This process is supervised and requires a preliminary
selection of the most suitable ontologies to describe each
semantically enrichable attribute of the global schema.

5.2.1 Ontology Selection

The choice of attribute-specific ontologies took into account
the rules for selecting a bio-ontology given in [27]. Among
others available, we used four different services to evalu-
ate the best ontologies for nine ontological attributes from
GCM. These are: (a) BioPortal [28], (b) Ontology Recom-
mender [29], (c) Ontology Lookup Service (OLS, [20]), and
(d) Zooma.7 For each semantically enrichable attribute, we
searched all values using the four services, and computed
the best score for recommended ontologies.8 Finally, for each
pair attribute-ontology, we considered both the best match-
ing scores and the coverage (number of values of a given
attribute that were successfully annotated, i.e., matched to
an ontological term).

The results of our selection are shown in Table 5; for
each considered attribute, we indicate the preferred ontol-
ogy and three normalized indicators. COVERAGE indicates
the percentage of attribute values that are found in the
ontologies. SCORE is an average matching score of all the an-
notated attribute values weighted by ontology acceptance.
SUITABILITY is a measure of how much an ontology set
is adequate for an attribute. Note that a second preferred
ontology is added when the first one did not reach 0.85
coverage. In this case, indicators refer to the union of the
ontologies. Details on the procedure are given in [30].

TABLE 5
Choice of reference ontologies for semantically enrichable attributes.

Attribute Pref. ontologies Coverage Score Suitability

Technique OBI, EFO 0.857 0.486 0.490
Feature NCIT 1.000 0.854 0.893
Target OGG 0.950 0.747 0.948
Disease NCIT 0.978 0.784 0.802
Tissue UBERON 0.957 0.753 0.937
Cell EFO, CL 0.953 0.644 0.577
Platform NCIT 1.000 0.909 0.950
Ethnicity NCIT 0.962 0.907 0.912
Species NCBITaxon 1.000 0.667 1.000

5.2.2 Process

The Normalizer is supported by an interactive tool that:
1) calls external services to annotate values with con-
cepts from controlled vocabularies or dedicated ontologies;
2) asks for user feedback when annotations have a low
matching score; users can either accept one of the proposed
solutions, or manually specify new annotations.

The result of the normalization is contained within the
relational databaseK, called Local Knowledge Base, illustrated
in Fig. 6, populated from ontologies and referenced from the
global schema G. Specifically, we maintain the tables:

7. https://www.ebi.ac.uk/spot/zooma/
8. Recommender provides numerical scores, Zooma provides tags for

indicating the annotation quality. For BioPortal and OLS we computed
a score by considering the number of words with exact match in each
ontology.

ExperimentType
experiment_type_id
technique
technique_tid
feature
feature_tid
target
target_tid
antibody

int
varchar(128)
int
varchar(128)
int
varchar(128)
int
varchar(128)

PK

FK

FK

FK

Vocabulary
tid
pref_label
source
code
description

int
varchar(128)
varchar(8)
varchar(16)
varchar

PK

N

Synonyms
tid
label
type

int
varchar(128)
char(1)

PK FK
PK
PK

References
tid
source
code

int
varchar(8)
varchar(128)

PK FK
PK
PK

Relationships
tid_parent
tid_child
rel_type

int
int
char(1)

PK FK
PK FK
PK

1

Fig. 6. Relational schema of the Local Knowledge Base K, including
links to attributes of EXPERIMENTTYPE from the global schema G.

1) VOCABULARY: contains the term identifier and the term
preferred label, in addition to the ontology providing the
label, the code used for the label in that ontology and an
optional description.

2) REFERENCES: for a given term, contains references to
equivalent labels extracted from other ontologies (in the
form of a pair 〈Source, Code〉).

3) SYNONYMS: contains other labels that can be used as
synonyms of the preferred label in the chosen ontology.

4) RELATIONSHIPS: contains ontological hierarchical rela-
tionships between terms and the type of the relationships
(either generalization or containment).

The system provides the unfolding of the hierarchies as an
internal materialized view over the table RELATIONSHIPS,
used for faster query processing.
Formalization. The Normalizer is a source-independent
method N = 〈A,O〉. A is the set of semantically enrichable
attributes of the global schema G. For each attribute a in A
and each possible value of a,N generates the corresponding
entries in the Local Knowledge Base K, extracted from the
preferred ontologies of a in O, i.e., the set of reference
ontologies defined by the process described in Section 5.2.1.
Method. Value normalization and enrichment is a super-
vised procedure illustrated in Fig. 7. The workflow is ex-
ecuted for all values of semantically enrichable attributes,
and consists of two parts: 1) For each such value, the system
initially looks for a suitable term in the vocabulary of the
Local Knowledge Base; if a match is available, and the
term was already annotated in the past, the procedure is
completed. When the match is successful but annotations
are lacking, a user’s feedback is requested. 2) Terms that do
not match with the vocabulary, or whose annotations are not
approved by the user, are then searched within the specific
ontologies associated with the attribute, as defined in Sec-
tion 5.2.1. If matches are of high confidence (i.e., matching
score above a given threshold), the procedure is completed;
if the confidence is low, user feedback is requested. When
feedback is negative or there is no match, users are asked to
manually provide a new vocabulary term.
Example. Fig. 8 shows a tuple of the BIOSAMPLE global
table. Solid line nodes include normalized attribute values;
dashed line nodes represent some of the synonyms; dotted
line nodes represent hierarchies, labeled by the relevant
ontology (only a small subset is represented for brevity).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCBB.2020.2998954

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://www.ebi.ac.uk/spot/zooma/

11

Online KB ! Lookup
Match available

Local KB " Lookup

⟨$%%&, ($)*+⟩

No match

GCM
Annotation

Yes
Confidence OK?

No match

Yes
Previously annotated?

Match available

No

User feedback

User manual choice
Fail

User feedback

No

OkOk Fail

Fig. 7. Iterative supervised normalization and enrichment procedure.

Disease: Breast cancer

(adenocarcinoma)

SourceId: ENCBS789UPK

Type: cell line

Cell: MCF-7

MCF7

MCF-7 cell

MCF7 cell

BIOSAMPLE

NCIT_C5214

Breast

adenocarcinoma

mammary part of chest

mammary region

UBERON_0000310

IsHealthy: false

EFO_0001203

Breast carcinoma

Breast neoplasm

Ductal breast carcinoma

mammary Paget’s disease

Female reproductive gland

Mammary duct

Tissue: breast

is a

is a

is a

is a

is a

is a

Fig. 8. Normalization and enrichment of a BIOSAMPLE tuple.

5.3 Integrity Checker
At the end of the integration process, we introduce integrity
constraints, which define dependencies between values of
the global schema G. Preliminary versions of dependencies,
called contextual and dependent features, were introduced
in [8]. We consider pairs of attributes (AS ∈ RS and
AE ∈ RE), where RS and RE denote the starting and
ending tables in the G global schema, connected by a join
path in G. Given that G is an acyclic schema, there is just
one join path between any two tables in G.

Definition 3. A dependency rule between attributes
RS .AS and RE .AE of G is an expression of the form:
Boolean(RS .AS)→Boolean(RE .AE), where Boolean(A) is
a Boolean expression over an attribute A of G. The interpretation
of the dependency rule is that: when the Boolean expression in the
left part of the rule is true for a value vS∈AS , if there exists one
value vE∈AE such that 〈vS , vE〉 are connected by the join path
between RS and RE , then the Boolean expression on the right
part of the rule must be true for vE∈AE . Boolean expressions
include predicates IS NULL/IS NOT NULL as special cases.

Dependencies can be defined during the lifetime of the
META-BASE repository; they are manually defined and
their identification is not assisted by a tool, even if we
are evaluating to aid the production of such rules using
an Association Rules Mining approach inspired by [31].
Table 6 shows some examples of dependency rules. For
example, the first rule indicates that if the Species of a
DONOR is “Homo sapiens” and the donor is connected to
a DATASET through the only possible path in G, then the
Assembly of the dataset must be one of “hg19”, “hg38”, or
“GRCh38”. Dependency rules allow including in the GCM

relevant attributes that are not common to all data types. For
example, attributes Target and Antibody of EXPERIMENTTYPE
are of great interest in ChIP-seq experiments, but are not
significant in other experiments; a rule can specify that when
Technique is not “ChIP-seq”, then these attributes are null.

TABLE 6
Examples of dependency rules, including a description of the join path
connecting the two attributes used in the left and right parts of the rule.

〈eS , eE〉 in (DONOR·BIOSAMPLE·REPLICATE·ITEM·DATASET)
eS .Species = "Homo sapiens"→ eE .Assembly ∈ [hg19, hg38, GRCh38]

〈eS , eE〉 in (DONOR·BIOSAMPLE)
eS .Gender = "Male"→ eE .Disease 6= "Ovarian cancer"
eS .Gender = "Male"→ eE .Tissue 6= "Uterus"
eS .Gender = "Female"→ eE .Disease 6= "Prostate cancer"

〈eS , eE〉 in (PROJECT·CASE·ITEM)
eS .ProgramName = "ENCODE"→ eE .SourceId = "ENCFF.*"
eS .ProgramName = "TCGA"→ eE .SourceId =

"^[0-9a-z]{8}-([0-9a-z]{4}-){3}[0-9a-z]{12}$"
eS .ProgramName = "ENCODE"→ eE .SourceUrl is not null
eS .ProgramName = "TCGA"→ eE .SourceUrl is not null

〈eS , eE〉 in (BIOSAMPLE)
eS .Type = "tissue"→ eE .Tissue is not null
eS .Type = "cell line"→ eE .Cell is not null

〈eS , eE〉 in (PROJECT·CASE·ITEM·DATASET)
eS .ProgramName = "ENCODE"→ eE .Name = ".*ENCODE.*"
eS .ProgramName = "Roadmap Epigenomics"→ eE .Name =

".*ROADMAP_EPIGENOMICS.*"

6 VALIDATION

We verified the META-BASE architecture from three per-
spectives: 1) lossless integration: the process does not miss
information available in the original sources; 2) semantic
enrichment: semantic information complementing original
metadata helps in identifying relevant and additional items;
3) use evaluation: we measure the suitability of the repository
and of its user interfaces for the bioinformatics community.
Lossless integration. As the generation of all possible
queries and their manual check is not feasible, we per-
formed the evaluation on a restricted number of mean-
ingful example queries that show the effectiveness of our
approach. This evaluation is hard due to a number of issues,
including among others the following ones: i) query inter-
faces at sources are different from ours (e.g., free-text search
vs. attribute-based search); ii) sources assign metadata to
different entities (e.g., experiments vs. data files included in
experiments)

In our work, we carefully considered all these issues:
we studied the source query mechanisms at our best and
favored an exact-match strategy for the benefit of compar-
ison. Table 7 reports the number of items resulting from
seven exact-match queries as found either in the META-
BASE repository or in individual sources. Note that the
queries “H3K27me3”, “fat”, and “Illumina Genome Ana-
lyzer II” returned a number of matches in our system equal
to the sum of matches in the integrated sources. However,
Table 7 shows also some unavoidable difficulties, such as
semantic mismatch (i.e., items are false positives when they
match the searched string but their attribute’s semantic is
different from the one intended by the search). Indeed,
the query “MCF-7” suffers from a problem with ENCODE
matches: out of 6,442, only 1,322 (the ones found by our
system for the same source) actually refer to the value

12

�:K:-!K���
A��9�
�9�GHP9)LE�!I

�:K:-!K��� �9��
1��9����18

�GN)DG: ! �I:)-"GIE!

�GN)DG: ! �I:)-"GIE!

�GN)DG: ! �I:)-"GIE!

�I!H:I:KBG)

Q Q

G)"B#LI:KBG)-
D!:)B)#��LD!-

Item Experiment
TypeDonor BioSample Replicate Dataset Case Project

Technology Management

CellLine

H1-hESC

Format

bed narrow

Size

< 100000

Technique
Chip-seq

Assembly

hg19

Biology

Target

MYC

Extraction

Program

ENCODE

Species

Homo S.

!)GEB��

G)�!HKL:D�
�G !D

�G�:D�
-)GND! #!�
	:-!

�
:
H
H
B
)
#

�
)
I
B
�
A
E
!
)
K

�!"!I!)�!�
1)KGDG#B!-

�OK!I):D�

G)KGDG#P�
DGGCLH

�:HHB)#�

�LD!-

�!K: :K:��� �!#BG)� :K:���
Query editor: SELECT…; JOIN…; MATERIALIZE;

�OKI:���-

py
G

M
Q

L

�:K:-!K��� �9�1�����9�����1��
�9	�1��

D!:)!

D!:)!

D!:)!

QQ

�
G
:

B
)
#

G
EH
BD
!I

8!���!IMB�!-

�)
#B
)!

�!
HG
-B
KG
IP

�:
):
#!
I

�
3�
�

GI
!

-G
M

Q
L

�����	����HBH!DB)! �����	����I!HG-BKGIP �3���P-K!E

Fig. 9. Overall architecture for genomic data processing.

describing the cell line of the item, while the remaining ones
match with alternative information, regarding possible con-
trols, revoked files, or summary of the experiment. Likewise,
in ENCODE the query “RNA-seq” matches 5,503 items
only because this information is contained in related series
attributes, thus not describing the technique of the item.
Similarly, “breast” and “breast cancer” (to a lesser extent)
present a considerable number of false positives in GDC :
in the first case 1,509 items are wrongly matched due to
information regarding family members (e.g., tagged with
XML key “clinical_patient.family_history_cancer_type”), or
information that do not directly describe the sample.

TABLE 7
Comparison of # items from exact-match queries in META-BASE vs.

other sources. (ENC=ENCODE, Cis=Cistrome, 1KG=1000 Genomes).

Attribute Query META ENC GDC REP Cis 1KG
Target H3K27me3 1,990 814 - 381 795 -
Cell MCF-7 1,447 6,442 - - 125 -
Tissue fat 57 - - 57 - -
Tissue breast 23,729 92 24,788 94 264 -
Disease breast cancer 114 - 45 - 163 -
Platform Illumina Genome 981 723 - - - 258

Analyzer II
Technique RNA-seq 56,047 5,503 55,650 399 - -

Semantic enrichment. This aspect has been validated by six
biology experts, who have been asked to evaluate a random
set of 200 matches achieved by our supervised procedure
between metadata values and ontological controlled terms
(either preferred label or synonym) equipped with their de-
scriptions. Overall, 92% of results were considered “exact”,
“good” or “acceptable”; the process is detailed in [30].
Use evaluation. The usefulness of the META-BASE content,
accessed using GenoSurf [14], was evaluated by asking
40 informed users (i.e., computational biologists, bioinfor-
maticians and data scientists with interest in life sciences)
to complete a questionnaire of 10 composite queries and
to fill a form reporting on their overall experience with
the platform. Detailed results are shown in [15], overall
indicating positive feedbacks.

7 OVERALL ARCHITECTURE

META-BASE is part of a broad architecture, whose main
purpose is providing a cloud-based environment for ge-
nomic data processing. The overall system architecture is
presented in Fig. 9. In the left part of the figure we show
the META-BASE pipeline discussed in Sections 4 and 5; the
whole pipeline is configured using parameters provided as
a single XML configuration file. Each dataset (on the left) is
progressively downloaded, transformed and cleaned. The
data mapping method transforms cleaned attribute-value
pairs into the global database G. The normalization and
enrichment method adds references from the semantically
enrichable attributes to the Local Knowledge Base K, which
is implemented by relational tables. Interactive access to
the META-BASE repository is provided by a user-friendly
interface (not discussed in this paper), that uses the acyclic
structure of the global schema to support simple conjunctive
queries at the center of Fig. 9), in a style that is similar to
DeepBlue’s query interface [32].

As shown in the right part of Fig. 9, the META-BASE
repository can also be queried using the GMQL System
[16], which supports integrated data managment on the
cloud; the system is accessed through Web Services as
a common point of access from a variety of interfaces,
including a visual user interface, programmatic interfaces
for Python [33] and R/Bioconductor, and workflow-based
interfaces for Galaxy and FireCloud. The implementation is
executed using the Apache Spark engine, deployed either
on a single server or a cloud-based system.

8 RELATED WORK

Genomic repositories are growing in number, diversity
and complexity (see last Nucleic Acid Research yearly re-
port [34]). In this context, data integration challenges in the
omics domain are many, as reviewed in [35], [36]. There
have been efforts to integrate multiple projects in single
initiatives or portals, proposing a unifying data model or
strategy to offer integrated access and management of ge-
nomic data. Federated access of several databases is offered

13

by the BioMart [37] project, while Pathway Commons [38]
collects pathways from different databases into a shared
repository, and ExPASy [39] links many resources in life sci-
ences. Examples among consortia include: large epigenomic
players – e.g., ENCODE Data Coordination Center [40],
the International Human Epigenome Consortium [41], and
DeepBlue [32] of the Blueprint Consortium; cancer-related
consortia – e.g., GDC (data model: https://gdc.cancer.gov/
developers/gdc-data-model) and ICGC [42]. All such ac-
tors do not provide so far neither models nor integration
frameworks that are general enough to cover aspects falling
outside the specific focus of their scope. Differently, the
META-BASE approach is independent from specific sub-
branches of genomics and can be applied to a large number
of heterogeneous sources by any integration designer, in a-
posteriori fashion, i.e., without having to follow any guide-
lines in the preliminary production of metadata.

Instead of addressing the problem of integration, some
works promote methodologies to improve the process of
metadata authoring (i.e., preliminary preparation and submis-
sion) or the manual curation of metadata. Among these:
CEDAR [43], a system for development, evaluation, use,
and refinement of genomics and biomedical metadata, us-
ing ontology-based recommendations from BioPortal [28];
BioSchemas.org [44], which applies schemata to online re-
sources making them easily searchable; DNAdigest [45],
promoting efficient sharing of human genomic datasets;
DATS [46] boosting datasets’ discoverability.

Many works in the literature use conceptual models
(CMs) in the biomedical field [47], but they employ CMs
expressive power to undestand and explain biological enti-
ties and their interactions [48], [49], [50], [51]. Instead, we
propose in addition an architecture that uses a conceptual
model for driving data integration.

The process of semantic enrichment of metadata, includ-
ing the choice of appropriate ontologies [52] has been tack-
led both with source-independent methods [53], [54] and
with source-specific ones (for GEO [55], for ENCODE [56]).

9 DISCUSSION AND CONCLUSIONS

Genomic metadata integration is a complex process. We
have designed our solution by breaking the process into
several tasks and by associating powerful abstractions to
each task. The Cleaner, Mapper and Checker modules contain
new methods, all based on the interplay of different kinds
of rules. The Cleaner rules are inspired to grammar-based
transformations (where order matters), the Mapper rules are
expressed in a Datalog-like formalism (order independent),
the Checker rules are expressed as logical dependencies
(order independent). Each rule-based method is provided
with a formal description. The iterative process used in nor-
malization and enrichment, where the designer’s feedback
is needed in order to validate or suggest annotations, has
never been applied to genomic metadata. The significance of
our approach stands in providing a single framework where
the interplay of the three kinds of rules and of the effective
interaction with the designer drives the whole process.

The META-BASE repository currently includes datasets
from the ENCODE project (≈ 21 million metadata
〈key, value〉 pairs in 26,111 items from 4 datasets), GDC

(TCGA program, with ≈ 18M pairs, ≈ 100K items, 7
datasets), Roadmap Epigenomics (≈ 200K pairs,≈ 3K items,
6 datasets), Cistrome (≈ 80K pairs, ≈ 6K items, 2 datasets),
GENCODE and RefSeq annotations (≈ 1.3K pairs, 105 items,
4 datasets), and TADs from GEO (272 pairs, 14 items, 2
datasets). In total, our framework has imported ≈ 40M
〈key, value〉 pairs, which correspond to≈ 3.1K distinct keys.
The addition of new sources to the repository is ongoing;
our current commitment is to extend the data integration
process by adding relevant sources one-by-one, in an in-
cremental fashion. The resulting META-BASE repository is
an important resource for supporting biological and clinical
research. META-BASE can be easily re-instantiated in other
scientific database contexts where the problem of origin
heterogeneous sources also applies.

ACKNOWLEDGMENTS

This research is funded by the ERC Advanced Grant
693174 GeCo (data-driven Genomic Computing). The au-
thors would like to thank the contributions of Alessandro
Campi and of the master students Andrea Colombo, Fed-
erico Gatti, Riccardo Mologni, and Jorge Ignacio Vera Pena.

REFERENCES

[1] Consortium ENCODE, “An integrated encyclopedia of DNA ele-
ments in the human genome,” Nature, vol. 489, no. 7414, pp. 57–74,
2012.

[2] J. N. Weinstein et al., “The Cancer Genome Atlas pan-cancer
analysis project,” Nature Genetics, vol. 45, no. 10, pp. 1113–1120,
2013.

[3] M. A. Jensen et al., “The NCI Genomic Data Commons as an
engine for precision medicine,” Blood, vol. 130, no. 4, pp. 453–459,
2017.

[4] A. Kundaje et al., “Integrative analysis of 111 reference human
epigenomes,” Nature, vol. 518, no. 7539, pp. 317–330, 2015.

[5] 1000 Genomes Project Consortium, “A global reference for human
genetic variation,” Nature, vol. 526, no. 7571, p. 68, 2015.

[6] A. Palacio León and O. Pastor López, “From big data to smart
data: A genomic information systems perspective,” in Proc. 12th
Int. Conf. RCIS. IEEE, 2018, pp. 1–11.

[7] R. S. Gonçalves and M. A. Musen, “The variable quality of meta-
data about biological samples used in biomedical experiments,”
Sci. Data, vol. 6, p. 190021, 2019.

[8] a. Bernasconi et al., “Conceptual modeling for genomics: Building
an integrated repository of open data,” in Proc. 36th Int. Conf. ER.
Springer, 2017, pp. 325–339.

[9] A. Frankish et al., “GENCODE reference annotation for the human
and mouse genomes,” Nucleic Acids Res., vol. 47, no. D1, pp. D766–
D773, 2019.

[10] N. A. O’Leary et al., “Reference sequence (RefSeq) database at
NCBI: current status, taxonomic expansion, and functional anno-
tation,” Nucleic Acids Res., vol. 44, no. D1, pp. D733–D745, 2016.

[11] S. S. Rao et al., “A 3D map of the human genome at kilobase
resolution reveals principles of chromatin looping,” Cell, vol. 159,
no. 7, pp. 1665–1680, 2014.

[12] T. Barrett et al., “NCBI GEO: archive for functional genomics data
sets—update,” Nucleic Acids Res., vol. 41, no. D1, pp. D991–D995,
2012.

[13] R. Zheng et al., “Cistrome Data Browser: expanded datasets and
new tools for gene regulatory analysis,” Nucleic Acids Res., vol. 47,
no. D1, pp. D729–D735, 2018.

[14] A. Canakoglu et al., “GenoSurf: metadata driven semantic search
system for integrated genomic datasets,” Database, vol. 2019, 12
2019, baz132.

[15] A. Bernasconi et al., “Exploiting conceptual modeling for search-
ing genomic metadata: A quantitative and qualitative empirical
study,” in Adv. in Conceptual Modeling. Springer, 2019, pp. 83–94.

[16] M. Masseroli et al., “Processing of big heterogeneous genomic
datasets for tertiary analysis of Next Generation Sequencing data,”
Bioinformatics, vol. 35, no. 5, pp. 729–736, 2019.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCBB.2020.2998954

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://gdc.cancer.gov/developers/gdc-data-model
https://gdc.cancer.gov/developers/gdc-data-model

14

[17] ——, “GenoMetric Query Language: a novel approach to large-
scale genomic data management,” Bioinformatics, vol. 31, no. 12,
pp. 1881–1888, 2015.

[18] A. Bonifati et al., “Designing data marts for data warehouses,”
ACM Trans. Softw. Eng. Meth., vol. 10, no. 4, pp. 452–483, 2001.

[19] R. Kimball and M. Ross, The data warehouse toolkit: the complete guide
to dimensional modeling. John Wiley & Sons, 2011.

[20] S. Jupp et al., “A new ontology lookup service at EMBL-EBI,” in
Proc. 8th SWAT4LS Int. Conf. CEUR-WS.org, 2015, pp. 118–119.

[21] C. A. Davis et al., “The encyclopedia of DNA elements (ENCODE):
data portal update,” Nucleic Acids Res., vol. 46, no. D1, pp. D794–
D801, 2017.

[22] M. Masseroli et al., “Modeling and interoperability of heteroge-
neous genomic big data for integrative processing and querying,”
Methods, vol. 111, pp. 3–11, 2016.

[23] A. Møller, “dk.brics.automaton – finite-state au-
tomata and regular expressions for Java,” 2017,
http://www.brics.dk/automaton/.

[24] K. Thompson, “Programming techniques: Regular expression
search algorithm,” Commun. ACM, vol. 11, no. 6, pp. 419–422, 1968.

[25] M. O. Rabin and D. Scott, “Finite automata and their decision
problems,” IBM J. Res. Dev., vol. 3, no. 2, pp. 114–125, 1959.

[26] S. Ceri et al., “What you always wanted to know about Datalog
(and never dared to ask),” IEEE Trans. Knowl. Data Eng., vol. 1,
no. 1, pp. 146–166, 1989.

[27] J. Malone et al., “Ten simple rules for selecting a bio-ontology,”
PLoS Comput. Biol., vol. 12, no. 2, p. e1004743, 2016.

[28] P. L. Whetzel et al., “Bioportal: enhanced functionality via new
web services from the national center for biomedical ontology to
access and use ontologies in software applications,” Nucleic Acids
Res., vol. 39, no. suppl_2, pp. W541–W545, 2011.

[29] M. Martínez-Romero et al., “NCBO Ontology Recommender 2.0:
an enhanced approach for biomedical ontology recommendation,”
J. Biomed. Semant., vol. 8, no. 1, p. 21, 2017.

[30] A. Bernasconi et al., “Ontology-driven metadata enrichment for
genomic datasets,” in Proc. 11th SWAT4LS Int. Conf. CEUR-
WS.org, 2018, pp. 1–10.

[31] M. Martínez Romero et al., “Using association rule mining and
ontologies to generate metadata recommendations from multiple
biomedical databases,” Database, vol. 2019, 06 2019, baz059.

[32] F. Albrecht et al., “Deepblue epigenomic data server: program-
matic data retrieval and analysis of epigenome region sets,” Nu-
cleic Acids Res., vol. 44, no. W1, pp. W581–W586, 2016.

[33] L. Nanni et al., “PyGMQL: scalable data extraction and analysis
for heterogeneous genomic datasets,” BMC Bioinf., vol. 20, no. 1,
p. 560, 2019.

[34] D. J. Rigden and X. M. Fernández, “The 27th annual nucleic acids
res. database issue and molecular biology database collection,”
Nucleic Acids Res., vol. 48, no. D1, pp. D1–D8, 2020.

[35] Gomez-Cabrero et al., “Data integration in the era of omics: current
and future challenges,” BMC Syst. Biol., vol. 8, no. Suppl 2, p. I1,
2014.

[36] V. Lapatas et al., “Data integration in biological research: an
overview,” J. Biol. Res. Thessaloniki, vol. 22, no. 1, p. 9, 2015.

[37] D. Smedley et al., “The BioMart community portal: an innovative
alternative to large, centralized data repositories,” Nucleic Acids
Res., vol. 43, no. W1, pp. 589–598, 2015.

[38] I. Rodchenkov et al., “Pathway Commons 2019 Update: integra-
tion, analysis and exploration of pathway data,” Nucleic Acids Res.,
vol. 48, no. D1, pp. D489–D497, 2020.

[39] P. Artimo et al., “ExPASy: SIB bioinformatics resource portal,”
Nucleic Acids Res., vol. 40, no. W1, pp. W597–W603, 2012.

[40] E. L. Hong et al., “Principles of metadata organization at the
ENCODE data coordination center,” Database, vol. 2016, 03 2016,
baw001.

[41] D. Bujold et al., “The international human epigenome consortium
data portal,” Cell Syst., vol. 3, no. 5, pp. 496–499, 2016.

[42] J. Zhang et al., “The international cancer genome consortium data
portal,” Nat. Biotechnol., vol. 37, no. 4, pp. 367–369, 2019.

[43] M. A. Musen et al., “The center for expanded data annotation and
retrieval,” J. Am. Med. Inform. Assoc., vol. 22, no. 6, pp. 1148–1152,
2015.

[44] A. J. Gray et al., “Bioschemas: From potato salad to protein
annotation,” in Proc. 16th Int. Semant. Web Conf. (Poster Track), 2017.

[45] N. V. Kovalevskaya et al., “DNAdigest and repositive: connecting
the world of genomic data,” PLoS Biol., vol. 14, no. 3, p. e1002418,
2016.

[46] S.-A. Sansone et al., “DATS, the data tag suite to enable discover-
ability of datasets,” Sci. Data, vol. 4, p. 170059, 2017.

[47] O. Pastor, “Understanding the human genome: a concep-
tual modeling-based approach,” in Proc. 21st Int. Conf. DEXA.
Springer, 2010, pp. 467–469.

[48] L. Wang et al., “Biostar models of clinical and genomic data for
biomedical data warehouse design,” Int. J. Bioinform. Res. Appl.,
vol. 1, no. 1, pp. 63–80, 2005.

[49] J. F. R. Román et al., “Applying conceptual modeling to better
understand the human genome,” in Proc. 35th Int. Conf. ER.
Springer, 2016, pp. 404–412.

[50] A. L. Palacio et al., “A method to identify relevant genome data:
Conceptual modeling for the medicine of precision,” in Proc. 37th
Int. Conf. ER. Springer, 2018, pp. 597–609.

[51] G. Rambold et al., “Meta-omics data and collection objects (MOD-
CO): a conceptual schema and data model for processing sample
data in meta-omics research,” Database, vol. 2019, 01 2019, baz002.

[52] D. Oliveira et al., “Where to search top-k biomedical ontologies?”
Briefings Bioinf., vol. 20, no. 4, pp. 1477–1491, 2019.

[53] C. Jonquet et al., “A system for ontology-based annotation of
biomedical data,” in Proc. Int. Work. DILS. Springer, 2008, pp.
144–152.

[54] N. H. Shah et al., “Ontology-driven indexing of public datasets
for translational bioinformatics,” BMC Bioinf., vol. 10, no. 2, p. S1,
2009.

[55] C. B. Giles et al., “ALE: Automated Label Extraction from GEO
metadata,” BMC Bioinf., vol. 18, no. 14, p. 509, 2017.

[56] J. D. Fernandez et al., “Ontology-based search of genomic meta-
data,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 13, no. 2, pp.
233–247, 2016.

Anna Bernasconi earned her Masters in Com-
puter Engineering in 2015 from Politecnico di
Milano and University of Illinois at Chicago. Cur-
rently PhD candidate at Politecnico di Milano,
she works in the field of data-driven genomic
computing. Her research interests include bioin-
formatics data and metadata integration method-
ologies to support complex biological queries
answering.

Arif Canakoglu received his PhD Degree in
Computer Engineering in 2016 from Politecnico
di Milano and he is currently a Post-Doc fellow at
Politecnico di Milano, working in the field of data-
driven genomic computing and machine learning
applications in the bioinformatics area. His re-
search interests include databases, ontologies,
big data processing, cloud computing, machine
learning, and bioinformatics.

Marco Masseroli is Associate Professor at the
Dipartimento di Elettronica, Informazione e Bio-
ingegneria (DEIB) of Politecnico di Milano, Italy.
His research interests are in the area of bioin-
formatics, focused on distributed Internet tech-
nologies, biomolecular databases and ontolo-
gies to effectively retrieve, analyze, and integrate
genomic information with clinical and genomic
data. He is the author of more than 200 publi-
cations in international journals, books and con-
ference proceedings.

Stefano Ceri is Professor at the Dipartimento
di Elettronica, Informazione e Bioingegneria
(DEIB) of Politecnico di Milano. His research
has been generally concerned with extending
database technology; he has authored over
350 publications. He received two advanced
ERC Grants, on Search Computing and on
Data-Driven Genomic Computing (GeCo, 2016-
2021). He received the ACM-SIGMOD Innova-
tion Award (2013) and is an ACM Fellow.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCBB.2020.2998954

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

