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Abstract
Data-driven medicine is fundamental to improving the accessibility and quality of the healthcare system.
The availability of data is crucial for this purpose. In the context of a distributed analytics platform for
analyzing healthcare data – employing the Personal Health Train paradigm – we propose to implement
a solid data FAIRification infrastructure. This will allow us to achieve findability, accessibility, inter-
operability, and reusability of data, metadata, and results within a network of several medical centers
participating in the BETTER Horizon Europe project, where the study of rare diseases (such as intellectual
disability and inherited retinal dystrophies) will be targeted. Impacts will be visible to a large population
of healthcare practitioners, prospectively influencing health policymakers.
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1. Introduction
Data-driven medicine is a crucial research area for the achievement of a more and more high-
quality accessible healthcare system. Typically, the more data available for the intended analysis,
the higher the chance to achieve accurate results [1]. However, the amount of available patient
data is critical, especially in the context of rare diseases; here, even more predominantly than in
other diseases, data sets are available and usable only at single medical centers. Reasons for
the lack of data sharing are connected to ethical, legal, and privacy aspects and rules. Data
centralization is a viable option due to privacy concerns, particularly within the European Union,
where the General Data Protection Regulation (GDPR) imposes stringent privacy standards.

The Horizon Europe project BETTER (Better rEal-world healTh-daTa distributEd analytics
Research platform, https://www.better-health-project.eu/), started Dec. 1st, 2023, has proposed
the design and implementation of a decentralized infrastructure that will allow us to exploit the
full potential of large sets of multi-source health data. This will be achieved by using customized
AI tools to compare, integrate, and analyze datasets in a secure as well as cost-effective fashion.
The project will target various use cases involving 7 European medical centers; they will provide
sensitive patient data, including, possibly, clinical reports, medical images, genomic data (whole-
exome, whole-genome sequences), biological data (cellular and molecular pathways), metabolic,
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environmental and demographic data, patient interviews, forms, and therapies details. Only the
secure information will be made available and analyzed with a GDPR-compliant mechanism via
a Distributed Analytics paradigm called the Personal Health Train (PHT) [2].

As a technical partner of the project, Politecnico di Milano (i.e., the authors) will particularly
focus on BETTER’s objective to guide medical centers in collecting patients’ data following
a common schema in order to promote interoperability and re-use of datasets in scope. This
includes legal/ethical data protection authorizations as well as data documentation, cataloging,
and mapping to well-established ontologies. Attention will be devoted to the FAIRification
of handled data. Legal and ethical implications will be duly considered, and data access and
re-use procedures will be proposed. Data pseudonymisation will be performed as a default
preprocessing step, mitigating the risk of personal data leaks; this will be followed by data
quality and integrity assessment. A real-world large-scale data integration framework (based on
well-established ontologies) will be demonstrated taking into account heterogeneous datasets,
including those obtained by whole genome sequencing.
The platform will be tested primarily on two rare disease use cases, inherent to pediatric

intellectual disability and inherited retinal dystrophies; the final goal is to keep a high generality,
facilitating extension to various cases within the context of the European Data Space.
The rest of the manuscript briefly describes the PHT paradigm and illustrates our plan for

ensuring that FAIR principles [3] (i.e., Findability, Accessibility, Interoperability, and Reusability)
are guaranteed in the results of the project. Finally, we show how two use cases regarding rare
diseases can benefit from such an outcome.

2. A distributed analytics paradigm: The Personal Health Train
The intuition behind BETTER can be explained via a railway system analogy that includes trains,
stations, and train depots. The trains use the network to visit different stations to transport several
goods, which in this analogy correspond to analytical tasks. By adapting this concept to BETTER,
the analytical task is brought to the data provider (i.e., a medical center), whereas the data
instances remain in their original location (called station). Two mature implementations of PHT
have been implemented in the past: 1) PADME (Platform for Analytics and Distributed Machine
Learning for Enterprises, https://padme-analytics.de/) and 2) Vantage6 (priVAcy preserviNg
federaTed leArninG infrastructurE for Secure Insight eXchange, https://distributedlearning.ai/).
The first, PADME has been developed in the context of the University of Cologne and proven
successful in several clinical use cases in Germany. Vantage6 [4] was released by Maastricht
University and applied in many real-world healthcare use cases (e.g., oncology, cardiovascular
diseases, diabetes type 2). These platforms represent the starting point for the BETTER platform,
showing that federated learning in the healthcare domain is technically feasible. BETTER takes
this paradigm to the challenging context of a European-level project.

3. Scalable data FAIRification
Methodology. A solid infrastructure that is able to organize and share the needed information
at the central level (thus enabling pair-wise interchanges between the data providers’ stations)
is needed. For what regards metadata, we will be inspired by the DAMS approach [1], using a
general metadata schema to allow distributed analytics infrastructures to comply with FAIR
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principles. This will deal with business information (e.g., about social entities), technical
information about the train, and data information about the data provider. Differently, clinical
data types and related metadata are typically specific to the context of use, leveraging the
characteristics of the disease, of patients, and relevant parameters for the problem at hand.
BETTER is prepared to address the data management problem with an extremely general
approach. As these data types are not covered in DAMS, their management will be inspired by
our extensive previous work in the field (during the “Data-driven Genomic Computing” ERC
AdG n. 693174, running 2016-2021). More specifically, four directions in the agenda of BETTER
will be followed to guarantee the scalability of semantic/syntactic standards of clinical data
types:
1. Interoperability at the level of the same pathology will be guaranteed by having the partners

generating datasets agree upon the same standards.
2. We will employ a data schema that captures the main properties of a generic clinical context,

keeping a high abstraction level to encourage maximum interoperability (successful examples
are the Genomic Conceptual Model [5] and the COVID-19 Host Genetics Initiative Data
Dictionary [6]). Typically, clinical data involve demographic (or static) information on
the patient and longitudinal measurements related to medical encounters, treatment, or
laboratory measurements.

3. We will use a key-value paradigm for that information that is not shared among different
pathologies and that is specific to a given use case, thus creating a very flexible and expressive
data model that allows storing all relevant information without dealing with integration and
interoperability at the storage level (see [7]).

4. Semantic annotationwill bemade by using dedicated biomedical ontologies as we described in
[8], sourcing them from BioPortal (https://bioportal.bioontology.org/) and Ontology Lookup
Service (https://www.ebi.ac.uk/ols4). In this way, we will pursue complete semantic interop-
erability between the metadata associated with known ontology.

For genomic data, the BETTER project will initially acquire DNA and RNA sequencing data in
both FASTQ and BAM formats. All submitted sequence data will be aligned using the latest
human reference genome; variant and mutation calls will output VCF andMAF formats, whereas
gene and miRNA expression quantification data will be kept in TSV format. Other genomic
signals for tertiary data analysis will be homogenized according to guidelines of the Global
Alliance for Genomics & Health (https://www.ga4gh.org/).

FAIRification will be achieved by researching and developing dedicated preprocessing and
ETL (Extract, Transform, and Load) pipelines at each medical center where machine learning,
NLP, and Human-in-the-Loop techniques will be used to automatize some of the steps. Impor-
tantly, data pseudonymization will be performed by default, and data quality and integrity will
be assessed and monitored throughout the project. User-friendly FAIRification instruments will
be preferred (see https://github.com/maastrichtu-cds/epnd-fairification). Finally, dedicated ETL
processes will be developed to enable BETTER to interoperate with public health registries, Eu-
ropean Health Data Space (EHDS), the 1+Million Genomes initiative (1+MG), and the European
Open Science Cloud.

Working plan. As a first step, we will catalog datasets available at each medical center. Multi-
ple focus groups will be organized with both technical and clinical stakeholders to understand
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in depth the available datasets, more specifically: (1) dataset characteristics and size; (2) data
types with their attributes and value ranges; (3) pathology-related interpretation; (4) examples
of data usage in real-world scenarios.
Secondly, we will tackle Data Pseudonymisation. By default, data will be pseudonymized

before joining the BETTER platform, which requires the implementation of modules for: (1)
identifying personal data from images and text; (2) pseudonymization of reference ID to preserve
leakage between same patient samples; (3) where applicable, defacing of face images.
Thirdly, we will Design and develop a unified schema repository for medical centers’ data and

metadata integration. A unifying global model will be designed to accommodate all the data
formats and their describing metadata, and serve as a reference for the next analysis steps.
Finally, we will deal with FAIRification of medical centers’ datasets. We will develop ad-hoc

ETL pipelines to onboard health datasets to BETTER; this task will achieve data FAIRification
by scheduling transformation functions to adjust the initial content into appropriate destination
formats. Medical-center-specific data formats, protocols, and characteristics will be mapped to
a standard schema, enabling interoperability and federated learning.

4. Application to rare diseases
Intellectual disability (ID) is a rare pediatric disease, a common disorder characterized by
significant limitations of cognitive functions and adaptive behavior, with onset before the age of
18. It is estimated that approximately 1-3% of the global population has some form of intellectual
disability [9]. It occurs as a unique phenotype or in the context of rare forms of disease such as
syndromic neurodevelopmental disorders (NDDs, e.g., Coffin-Siris syndrome) and inborn errors
of metabolism (IEM, e.g., phenylketonuria) with neurological involvement. This use case aims
to elucidate how different etiologies of rare diseases and ID complex diseases lead to convergent
or divergent molecular mechanisms that underlie brain development and the mode of disease
in children and adolescents with ID. Many data types will be integrated, including clinical
data, brain images, genomic data (whole-exome, whole-genome sequences), and biological data
(cellular and molecular pathways). The proposed use case will have a substantial impact on: (1)
The health and social management of intellectual disability. From the knowledge and scientific
point of view, recovering new data from patients will facilitate the generation of new emerging
paradigms in ID. (2) The integration of genomic data in the newborn screening will have a
strong impact on health care and public health—possibly, on the speed of the diagnosis and the
possibility of diagnosing disease that is not possible to identify with the metabolic screening.
Inherited Retinal Diseases (IRDs) are a group of disorders characterized by the generally

progressive death or dysfunction of photoreceptors and retinal pigment epithelium cells, lead-
ing to loss of visual function, sometimes leading to legal blindness. It is estimated that this
group of diseases affects 1 in 3,000 people. IRDs are clinically very heterogeneous and can be
classified according to multiple parameters; in addition, IRDs present a high allelic and genetic
heterogeneity. An early molecular diagnosis is necessary to confirm the clinical diagnosis, offer
adequate care to patients, give genetic and reproductive counseling to families, choose the most
appropriate educational methods, and include in appropriate clinical trials based on genetic
information. Different datasets will be employed, e.g., genomic data (gene panels, clinical ex-
ome, whole exome, whole genome), clinical reports, and images. This use case aims to develop



algorithms to increase the percentage of successfully diagnosed patients when compared with
the success rate of targeted and/or whole exome sequencing or other pipeline analysis. The
patient and society would greatly benefit from this approach because: (1) a higher probability of
correct diagnoses would allow a more precise treatment plan for each patient; (2) accelerating
the genetic confirmation of the disease will lessen clinical visits and, as a result, the disease’s
economic burden.

5. Conclusion
The BETTER project relies on “bringing computation to data” via incremental and federated
learning, which avoids unnecessary data moving across medical centers while exploiting much
of the information encoded in such data. The project leverages past expertise gained in the
implementation of the PADME and Vantage6 projects, as well as in the health/genomic data
integration expertise of the Data-driven Genomic Computing project. In accordance with the
European Health Data Space (EHDS), BETTER will enable EU medical centers and beyond to
make full use of the potential offered by a safe and secure exchange, use, and reuse of health
data fostered by robust data FAIRification. In the context of intellectual disability and inherited
retinal dystrophies, – with a large potential of expanding the same paradigm to other diseases
– the generated analytical tools will help healthcare professionals become more proficient
in cutting-edge digital technologies, data-driven decision support, health risk surveillance,
and control activities, monitoring and management of healthcare quality levels, with positive
repercussion also on health policymakers, and innovators in general.
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