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Abstract

The world is facing a multitude of challenges that hinder the development of
human civilization and the well-being of humanity on the planet. The Sustainable
Development Goals (SDGs) were formulated by the United Nations in 2015 to
address these global challenges by 2030.
Natural language processing techniques can help uncover discussions on SDGs
within research literature. We propose a completely automated pipeline that
1) fetches content from academic literature and prepares datasets dedicated to
five groups of SDGs; 2) performs topic modeling, a statistical technique used to
identify topics in large collections of textual data; and 3) enables topic exploration
through keywords-based search and topic frequency time series extraction.
For topic modeling, we leverage the stack of BERTopic scaled up to be applied
on large corpora of textual documents (we find hundreds of topics on hundreds
of thousands of documents), introducing i) a novel LLM-based embeddings com-
putation for representing scientific abstracts in the continuous space, and ii) a
hyperparameter optimizer to efficiently find the best configuration for any new
dataset. We additionally produce the visualization of results on interactive dash-
boards reporting topics’ temporal evolution. Results are made inspectable and
explorable, contributing to the interpretability of the topic modeling process.
The proposed LLM-based topic modeling pipeline allows users to capture insights
on the evolution of the attitude toward SDGs within scientific abstracts in the
2006-2023 time span. All the results are reproducible by using our system; the
workflow can be generalized to be applied at any point in time to any large corpus
of text data.

Keywords: Topic modeling, Text embeddings, LLM, Sustainable Development Goals,
Textual data analysis, Temporal trends
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Introduction1

Sustainable Development Goals (SDGs) are 17 United Nations’ global objectives iden-2

tified to address some of the biggest challenges of human civilization [1]. These goals3

include issues such as gender equality and education, poverty and hunger, health, and4

climate change. Each goal is designed to address a specific issue or a set of strongly5

related issues; however, all goals should work together to create a better and more6

sustainable future for humanity. We use keywords that describe SDGs as our point of7

access to a scientific literature landscape that is typically very vast and for which easy,8

flexible exploration is problematic. We accessed academic research outcomes through9

the Elsevier Scopus database, which stores a rich content of abstracts along with their10

metadata, via their RESTful API [2], focusing on the years’ range 2006-2023.11

For the analysis, we follow an unsupervised statistical approach based on natural12

language processing, specifically focused on topic modeling [3]. Unsupervised Topic13

Modeling is used to discover and analyze latent topics within a document, without14

leveraging pre-existing labels or supervision. This method works under the assumption15

that each document represents a single topic, or at least that one topic is preponderant,16

so as to exclude encompassing multiple topics at the same time.17

In our work, we frame topic modeling as a clustering task [4] over the latent space18

of embeddings, differently from other approaches that train end-to-end models for19

topic modeling, either based on classical methods [5] or language models [6]. Egger and20

Yu [7] surveyed four topic modeling techniques, namely latent Dirichlet allocation, non-21

negative matrix factorization, Top2Vec, and BERTopic [8]. In line with their analysis22

and the suggestions of a more recent survey by Abdelrazek et al. [9], we selected the23

neural model BERTopic to implement our approach for topic modeling from document24

clustering. Neural topic models are particularly appropriate to guarantee scalability25

(both in terms of model and data), flexibility (i.e., the ability to adapt to different26

tasks like, in our case, dynamic topic modeling), and the possibility of being embedded27

in end-to-end data pipelines; these aspects are particularly important in our scenario.28

Thanks to these characteristics, BERTopic has already been successfully used in social29

sciences [10–12], while other architectures were more popular in the previous years30

[13, 14].31

We propose to use BERTopic in a different domain: SDGs have generated much32

interest as a key to understanding the general attitude (both research-driven and33

general-public) toward high-stakes themes related to many transverse continents and34

socioeconomic groups. SDGs have been investigated through several different tech-35

niques either comprehensively [15, 16] or individually [17, 18]. Some work focused on36

extracting SDG-related topics of discussion on social media comment threads [19, 20]37

or on online news [21]. Saheb et al. [22] targeted a small corpus of 182 research abstracts38

focused on a specific area (artificial intelligence solutions for sustainable energy), while39

Raman et al. [23] selected a small corpus of 448 research abstracts on green/sustain-40

able AI. Even if, to a small extent, the employed techniques and the domain of interest41

overlap with our focus, all mentioned works significantly differ from ours in the scale42

of their elaboration. Indeed, typically, they are based on small datasets (a few hun-43

dred documents) and consequently build very small topic models (e.g., [22] identifies44

8 topics, [21] 10 topics, [20] 17 topics, and [23] 5 topics). The work by Smith et al. [24]45
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is more similar to ours in spirit; here, about 30k abstracts related to SDG 3 (Good 46

Health and Well-being) are analyzed, and about 200 topics are identified. Our inno- 47

vation is to make this kind of analysis completely reproducible on any large dataset 48

and to expose it on a user-friendly interface. In parallel, this allows us to complement 49

previous efforts by providing a complete overview of all SDG-related keywords. 50

Here, we propose to adopt an LLM-based topic modeling pipeline named TETYS 51

(standing for ‘Topics Evolution That You See’), which has the following characteristics: 52

• it can be run on big-text datasets in a completely automated mode; 53

• it enhances BERTopic [8] default configuration with an LLM-based embedding 54

computation; 55

• it employs an innovative parameters’ optimization mechanism that randomly 56

searches the parameters’ space to optimize a Density-Based Clustering Validation 57

(DBCV) score – thus making running the same pipeline on multiple big datasets 58

practical; 59

• it allows us to build interpretable topic models for big corpora of complex (i.e., 60

scientific/technical) text documents; and 61

• it builds a Web platform providing a complete overview of the topics, with 62

interactive exploration of topics’ representation over time. 63

In this manuscript, we deliver the results of applying TETYS on five groups of 64

documents (called macro-areas) that concern a collection of SDG-related keywords 65

(respectively on Basic Human Needs and Well-being; Environmental Sustainability; 66

Economic Development and Employment; Equality and Social Inclusion; and Global 67

Partnerships and Peace). The pipeline was optimized to run on each of these groups 68

of documents. Our TETYS platform, exposed at http://gmql.eu/tetys/, is a Web 69

interface that makes results explorable for any stakeholder. 70

Materials and Methods 71

We overview the preparation of the text corpora and then describe the TETYS 72

pipeline, divided into its sub-pipeline for building and fitting the topic model and its 73

sub-pipeline dedicated to topic exploration artifacts. 74

Datasets preparation 75

We extracted abstracts and metadata of research publications from Scopus, one of the 76

largest repositories for academic peer-reviewed documents, including journal articles 77

and conference proceedings. Scopus was established by the publisher Elsevier [25] and 78

is considered relatively more comprehensive than Web of Science [26]. Scopus has 79

enabled many text mining approaches, also using topic modeling [27] in very specific 80

domains such as personal information privacy [28] or public procurement [29]. 81

Next, we detail how we grouped the SDGs to define five overarching macro-areas 82

that include a significant number of abstracts to be analyzed with our approach. Then, 83

we describe the strategy to retrieve abstracts and their metadata from Scopus API 84

and, finally, we detail the data cleaning process. 85
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M Included SDGs Keywords #abst.

M1

1 No Poverty
Poverty alleviation; Food security; Public
health; Education access; Water quality;
Sanitation infrastructure; Healthcare
provision.

333,901
2 Zero Hunger (original)
3 Good Health and Well-being 320,798
4 Quality Education (final)
6 Clean Water and Sanitation

M2

7 Affordable and Clean Energy
Renewable energy; Urban sustainability;
Sustainable consumption; Climate change
mitigation; Marine biodiversity; Ecosystem
conservation; Energy efficiency.

399,922
11 Sustainable Cities and Communities (original)
12 Responsible Consumption and Production 339,949
13 Climate Action (final)
14 Life Below Water
15 Life on Land

M3

8 Decent Work and Economic Growth Economic growth; Innovation ecosystems;
Infrastructure development; Entrepreneurship
support; Industrialization strategies; Industrial
Innovation; Labor market dynamics.

50,482
9 Industry, Innovation, and Infrastructure (original)

41,218
(final)

M4

5 Gender Equality Gender empowerment; Social equity; Inclusive
policies; Women’s rights; Minority rights;
Income inequality; Social justice.

33,769
10 Reduced Inequality (original)

25,017
(final)

M5

16 Peace, Justice, and Strong Institutions Legal institutions; International cooperation;
Peace efforts; Sustainable development
cooperation; Global governance; Justice
systems; Multilateral agreements.

56,275
17 Partnerships for the Goals (original)

33,769
(final)

Table 1: Description of five macro-areas (M) grouping the SDGs. M1 = Basic Human
Needs and Well-being; M2 = Environmental Sustainability; M3 = Economic Develop-
ment and Employment; M4 = Equality and Social Inclusion; M5 = Global Partnerships
and Peace. Numbers of abstracts are reported as i) number of original abstracts, and
ii) number of abstracts after deduplication and data cleaning (in bold type).

Definition of SDG macro-areas86

We grouped the initial SDGs into macro-areas to make it easier to identify big topics,87

trends, and relationships, thereby providing a clearer picture of sustainable devel-88

opment as a whole. We chose not to exceed some hundred thousand documents,89

as this proved effective in previous works [30] and is recommended in BERTopic90

documentation [31].91

We queried ChatGPT [32] with an appropriately crafted prompt asking to group92

the 17 SDGs into 5 macro-areas, each concisely described through 7 keywords, which93

are likely to be selected by the authors of the scientific papers; the output was carefully94

checked by dedicated domain experts for each macro-area, to avoid potential biases in95

keyword selection [33] – final keywords are described in Table 1.96

Data and metadata retrieval97

Due to its extensive coverage and being one of the most trusted databases in the98

academic field, we selected Scopus as our data analysis source.99
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We accessed programmatically the corpus of literature data provided by Scopus, 100

by employing its Academic Research APIs [34] through two endpoints: 101

(1) Scopus Search API enables users to submit queries to the Scopus index and 102

retrieve relevant metadata in user-specific text formats and the link to the 103

corresponding abstracts. 104

(2) Abstract Retrieval API allows us to retrieve an abstract after searching its link 105

using the first endpoint. 106

The endpoint (1) uses a query parameter that allows a boolean search with field 107

restriction; we employ the fields pubstage set to “final” to exclude preprints, pubyear 108

starting from 2006 up to 2023 included, language to include English-language 109

abstracts, and key for specifying keywords related to the abstracts (contained in 110

author-specified keywords or automatically-indexed keywords). By enclosing terms to 111

be searched in double quotation marks, we employ a similarity-based “search for a 112

loose or approximate phrase” exposed by API. While (1) fetches the identifiers of doc- 113

uments of interest, the actual abstracts with their metadata are retrieved by calling 114

(2), one paper at a time. 115

Data cleaning 116

For each macro-area, we obtained a dataset of ten-to-hundred thousands of documents 117

(see numbers in the last column of Table 1), each equipped with a set of 20 metadata 118

fields. We removed from the metadata set the rows that did not have a corresponding 119

abstract document, or that lacked a Digital Object Identifier (DOI), title, or publi- 120

cation date (see Figure 1 for the distribution of missing values per each metadata 121

field). 122

Fig. 1: Heatmap representing the percentage of missing metadata API fields (rows)
per macro-area (columns). Cells with no number indicate that the metadata field is
present in all records. Lighter colors indicate the metadata field is heavily lacking.
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Then, we performed data deduplication for rows with the same digital object iden-123

tifier and/or internal Scopus identifier. Finally, we enforced the time window of interest124

for the publication date, keeping only abstracts published between 2006 and 2023125

(included), and converted the dates into the Python DateTime format. At the end126

of the stage, we enforced the selection of abstracts written in English. Refer again to127

Table 1 (last column, second value) for counts of papers after the deduplication.128

In Figure 2, we present the distribution of abstracts published each year, in the129

considered period, for each macro-area (M1 to M5). The trend shows a general increase,130

which confirms aspects such as the increased global awareness of sustainability issues,131

the development of technology, and the growing number of researchers. Interestingly,132

M1 (Basic Human Needs and Well-being) and M4 (Equality and Social Inclusion) show133

a spike during the period 2020-2023, likely due to the COVID-19 pandemic, while M5134

(Global Partnerships and Peace) exhibits a less right-skewed distribution w.r.t. others.135

Fig. 2: Data distribution over the years for all five macro-areas.

TETYS Pipeline136

Our pipeline consists of two sub-pipelines (see Figure 3), one for topic modeling and137

one for topic exploration. The first sub-pipeline is dedicated to building a solid topic138

model and fitting it to the current dataset, arranging for an interpretable model repre-139

sentation. The second sub-pipeline is concerned with extending the information within140

the topic model, allowing exploration via keyword-based search and adding simple141

distance metrics and time series on which statistical tests can be drawn.142

Every step in the two sub-pipelines is performed on five different datasets (each143

based on one of the previously defined macro-areas); each process produces, as a result,144

a topic model that can be explored in a Web-based dashboard. The pipeline instances145

are completely separated; when appropriate, others could be generated independently146

from one another as the data architecture, the backend, and the frontend are general147

and can be configured based on need.148

Topic modeling149

We base our work on BERTopic [8], a topic modeling framework that leverages six150

steps to achieve unsupervised latent topic identification and textual representation151

learning. It requires 1) converting documents into embeddings, 2) reducing the dimen-152

sionality of the embeddings; 3) clustering the reduced embeddings; 4) tokenizing153

documents; 5) using a word-weighting scheme; and 6) optionally tuning the obtained154

topic representation.155
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Fig. 3: TETYS pipeline architecture.

The default configuration employs, respectively, in the first five steps: the sentence- 156

transformer BERT (SBERT [35]); the Uniform Manifold Approximation and Pro- 157

jection (UMAP) dimension reduction technique [36]; the Hierarchical Density-Based 158

Spatial Clustering of Applications with Noise (HDBSCAN) [37]; the word tokenizer 159

CountVectorizer [38]; and a class-based term frequency–inverse document frequency 160

(c-TF-IDF) model [39]. 161

Since BERTopic’s first conception, several enhancements have been introduced. 162

Thanks to its modular structure and the possibility of completely customizing its 163

pipeline, we searched for the best possible configuration given each macro-area domain 164

and dataset at hand. With respect to a standard configuration of the BERTopic stack, 165

TETYS introduces several contributions: 166

• we replaced the default SBERT with a Large Language Model (LLM) for the 167

computation of embeddings; 168

• we designed an innovative systematic optimizer for the two hyperparameter- 169

tuning steps of the pipeline (dimensionality reduction of embeddings and their 170

clustering) – this mechanism allows us to evaluate multiple configurations with 171

different parameters, quickly converging to a (local) optimal one; 172

• we implemented a model registration functionality, to persist the output of the 173

optimization phase and the consequent model fitting. 174

In the following, we discuss more in-depth these three novelties, followed by a brief 175

description of the classical steps offered by BERTopic (including the tokenization and 176

the representation of topics with its tuning). 177

LLM-based embeddings computation 178

In order to learn the latent topic structure of a dataset, we map each abstract to a 179

point in an embedding representation, leveraging LLMs. 180
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On June 20th, 2024, we inspected the Massive Text Embedding Benchmark181

(MTEB) leaderboard [40] and selected the general-purpose model that maximized the182

average performance over a set of criteria listed by the leaderboard, while satisfying183

the memory constraints of our setup (more details in Results, ‘Execution and time184

performances’).185

We selected the second release of the Salesforce embedding model (SFR-186

Embedding-2 R LLM [41]). The model was trained on abstracts concatenated with187

the corresponding paper title, producing 4096-dimensional embedding representa-188

tions. This choice replaced the default component SBERT proposed in [8] (which189

featured a much lower dimensional space). The selected SFR model is known to190

bring enhancements across all downstream tasks, with particularly notable improve-191

ments in clustering and classification tasks, making it a top-performance model on the192

HuggingFace MTEB benchmark leaderboard, at the time of our development.193

In the absence of documentation for the SFR-Embedding-2 R model, we referred to194

the SFR-Embedding-Mistral [42] model, its closest documented ancestor model. This195

is trained on a variety of data from different tasks. For clustering tasks, it utilizes data196

sourced from the preprint repositories arXiv, bioRxiv, and medRxiv, while applying197

filters to exclude development and testing sets.198

Loading the SFR-Embedding-2 R model and dataset into GPU memory was non-199

trivial. Due to its large size, it was impossible to simultaneously load the model200

and dataset and encode the abstracts into embedding vectors. We exploited the201

transformers.pipelines API [43] and its built-in mechanisms for lazy loading and202

on-demand processing, which efficiently manage memory usage. The pipeline processes203

the data in manageable chunks, not requiring the whole data to be loaded in the GPU204

memory, only the necessary parts of the model and data are loaded when needed.205

Hyperparameter optimizer206

In order to evaluate the goodness of the intermediate topic models that are gener-207

ated (each one based on a specific configuration of the parameters set), we introduce208

an optimization mechanism. In our previous work [30], we had proposed to optimize209

hyperparameters by performing a grid search, i.e., trying all the possible combinations210

to maximize the clusters’ one-to-one relative density connection using the Density-211

Based Clustering Validation (DBCV) [44] score (spanning -1 for lowest quality to 1212

for highest quality). The DBCV score is a performance metric for clustering algo-213

rithms; however, we leveraged this metric for all our hyperparameters as DBCV not214

only assesses the quality of the clusters but also provides valuable insights into the215

cohesiveness and separation of topics. Note that, here, our guiding principle was to216

select a validation metric that aligns with the nature of our clustering method and217

the constraints of our unsupervised, model-agnostic setup.218

Clearly, with grid search, we can always achieve the optimal configuration, even if219

at the cost of spending a significantly longer time. Here, we experiment with a random220

search, which involves sampling a fixed number of hyperparameter combinations (much221

smaller than the total number of possible configurations). With this option, we obtain222

satisfactory results, allowing us to scale our approach up to any number of TETYS223

execution pipelines; specifically, we propose the following steps:224
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(1) We generate the parameters’ space including four parameters for dimensional- 225

ity reduction (UMAP) and four parameters for clustering the embeddings (see 226

Table 2 for the parameters ranges including the tested ⟨ start, end, step ⟩ scheme). 227

(2) We define a finite number of random search steps (empirically, we appreciated 228

that –once around the 100th step– the local maximum solution found by the 229

random search typically approximates the global maximum one found with the 230

grid search approach). 231

(3) Until the number of steps identified in (2) is reached, we experiment with one 232

configuration at a time as follows: 233

(i) Draw one configuration in the parameters’ space (see Table 2). 234

(ii) Run UMAP and HDBSCAN with the selected configuration on a validation 235

subset of the current dataset (a randomly sampled 20% of the dataset). 236

(iii) Calculate the corresponding DBCV score. 237

(iv) If the DBCV score is not the current best (local) maximum one, discard 238

the configuration and proceed to the next one. If it is the current best one, 239

proceed with Model registration and Model fitting. 240

(4) The model with the highest DBCV (once the random search steps are concluded) 241

is considered the best one and employed for the following BERTopic steps. 242

Step Parameter name Parameter range M1 M2 M3 M4 M5

UMAP

n neighbors (1, 100, 5) 20 20 100 50 100
min dist (0, 1, 0.05) 0 0 0 0 0
n components (5, 50, 5) 5 10 10 28 35
metric (‘euclidean’) — ‘euclidean’ —

HDBSCAN
min samples (10, 100, 10) 75 75 10 10 15
min cluster size (25, 100, 5) 25 25 25 25 25
cluster selection method (‘eom’, ‘leaf’) — ‘eom’ —

Table 2: For each step and parameter, we report the value ranges ⟨start, end, step⟩
tested by the optimizer of the hyperparameters of the dimensionality reduction and
the clustering steps. The last five columns report, for each of the five macro-areas,
which parameters configuration led to the best DBCV performance, thus used for the
model fitting.

In the best run for each macro-area, we obtained DBCV scores of, respectively, 243

0.52, 0.76, 0.39, 0.46, and 0.38 using the parameters’ values reported in the last five 244

columns of Table 2. 245

Model fitting and registration 246

Once the optimizer has selected the final parameters set, we run the Model registration 247

and Model fitting components. 248

During Model registration we save the model in two formats: (i) pickle, a binary 249

object for quality checks during this optimization process; (ii) safetensors, a PyTorch 250

model [45] ready to be used for future inference on new data that the model has 251

not seen. This component is designed to address the challenges posed by the stochas- 252

tic nature of the HDBSCAN algorithm. It ensures that the best model found during 253
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hyperparameter optimization is saved immediately and preserved for future use. The254

main advantage comes from the fact that reinitializing the BERTopic model, even with255

the same hyperparameters, can yield different results, due to the randomness involved256

in HDBSCAN initialization. This variability can lead to a model that underperforms257

compared to the one identified during the hyperparameter optimization phase. By258

incorporating the registration component, we not only ensure that the integrity of the259

best-performing model is preserved, but also that any subsequent analysis or applica-260

tion of the model is based on a consistent and reproducible version. A disadvantage261

of this approach is that we need to store multiple models; since we do not know in262

advance which model will perform the best among all the models found, we need to263

keep track of several versions, consistently increasing memory usage. Additionally, the264

time required to fit the model can be significant for certain parameter configurations.265

To address this issue and avoid saving models that will not be useful, we added the266

possibility of saving the model only if 1) it is the best model found thus far, and 2)267

its DBCV score is greater than a 0.30 threshold limit, which we identified empirically268

through manual inspection of preliminary results.269

Then, Model fitting involves exploiting the hyperparameters corresponding to the270

current DBCV score. With these parameters, we run UMAP and HDBSCAN on the271

whole dataset (100%). Note that, while in UMAP the parameters correspond to hyper-272

parameters observed during validation, for clustering we need to fit the model –with273

its selected hyperparameters– to the data and compute the actual parameters (e.g.,274

number of clusters, center of clusters, etc.). As an outcome of running this component,275

we build the final models, on which subsequent steps of BERTopic are applied.276

Topic representation and tuning277

The three remaining steps in the BERTopic pipeline contribute to achieving inter-278

pretable, synthetic representations of topics. The first step involves an abstract279

vectorization (performed with the default scikit-learn [38] CountVectorizer).280

Second, we fit the c-TF-IDF model with the reduce frequent words parameter281

set, which considers the square root of the normalized frequency of the terms (i.e.,282

words). With this model, we obtain the most relevant terms (i.e., topics) per class,283

with their frequency. This corresponds to a textual, human-understandable represen-284

tation for each cluster. The most important topics can be retrieved using the TF-IDF285

representations.286

Third, to improve our topic representation, we target the reduction of similar287

keyword repetition, such as those with the same root word or variations (e.g., singular288

and plural forms of the same word). More distinct and meaningful keywords, without289

redundancy, ensure that each keyword adds value to the overall representation and290

understanding of the topic. For this, we employ Maximal Marginal Relevance (MMR),291

which selects keywords for topic representation, based on their relevance score and292

their dissimilarity to previously selected items. The goal is to maximize the relevance293

score while minimizing redundancy. MMR allows us to get a clearer, more accurate294

picture of the keywords, where topics are more distinct and meaningful, while making295

them easier to understand and interpret.296
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Topic exploration 297

While the first sub-pipeline essentially allows us to systematize the customization 298

of a BERTopic-like process, the second sub-pipeline creates a set of support data 299

structures and representations useful to make topic exploration possible on dedicated 300

visual dashboards. 301

First, we adopt the word cloud [46] package to generate word clouds with the most 302

frequent terms of each topic, thereby providing a visual representation to inspect the 303

topic content. 304

Second, we enable a keyword-based search, by exploiting the find topics function 305

implementation in BERTopic [8], which essentially allows inputting a simple search 306

term (possibly including spaces) to retrieve a list of similar topics equipped with their 307

score of similarity w.r.t. the input term. 308

Third, we compute per-topic time-series, representing the counts of papers pub- 309

lished during the observed period 2006-2023. Our approach builds time-series using 310

a parametric number of months in each time bin. For each abstract, we con- 311

sider the date when it was published and the topic it belongs to; then, given 312

a time granularity (1-month, 3-month, 6-month, or year), we compute bins cor- 313

responding to the requested timeframe. As an output, we obtain tuples of the 314

form ⟨topic id, (bin id, start date),#abstracts in bin⟩. This method resembles the 315

Dynamic Topic Modeling techniques proposed within BERTopic [8]; essentially, we 316

add run-time computation of features that are useful for analyzing time-series: i) bin- 317

ning; ii) absolute/relative frequency (we normalized the count w.r.t. the number of 318

total abstracts published in that bin); and iii) ranking. In this way, we can interpret 319

the values as pointwise measures of the intensities of the topic, as other previous works 320

on dynamic topic modeling [3]. Taking advantage of these time-series, we generate line 321

plots for the counts of abstracts per bin. 322

Finally, we implement two statistical tests. To check if the trend difference of two 323

periods of the same topic is significant, we use the non-parametric Kruskal-Wallis 324

test [47], typically employed for comparing sample medians (checking if two groups 325

are sampled from the same population). The test produces a p-value, enabling the 326

acceptance or rejection of the simple null hypothesis “there is no significant differ- 327

ence in the topic representation in periods T1 versus T2” (we adopt the library 328

SciPy.stats.kruskal [48]). We use the 5% p-value as the threshold for significance; 329

lower p-values allow the rejection of the null hypothesis [47]. To check if the trend dif- 330

ference of multiple periods of the same topic is significant, we apply Kruskal-Wallis to 331

all intervals and verify if at least one interval is significantly different from the others. 332

To understand which interval deviates from others, we use the Dunn test [49] with 333

multiple testing corrections. 334

Results 335

In the following, we describe the five obtained topic models, evaluate them by com- 336

parison with those obtained using a baseline pipeline, and finally propose the topic 337

exploration dashboard. 338
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Extracted topics overview339

In the five macro-areas we found, respectively, 550 topics (Basic Human Needs and340

Well-being), 856 topics (Environmental Sustainability), 181 topics (Economic Devel-341

opment and Employment), 136 topics (Equality and Social Inclusion), and 167 topics342

(Global Partnerships and Peace). The number of identified topics is roughly propor-343

tional to the number of abstracts for each macro-area (see Table 1). M1 and M2 are344

the biggest macro-areas, as they also include more Sustainable Development Goals345

compared to M3-M5.346

For a quick overview, in Figure 4 we present diagrams illustrating the distribution347

of topics, only including the top 30 topics based on their abstracts’ counts. The y-axis348

maximum values are 5,000 for M1, 2,500 for M2, 1,400 for M3, 600 for M4, and 1,400349

for M5.350

Fig. 4: Distribution of the 30 largest topics based on the number of abstracts associ-
ated with each of them for each macro-area and configuration.

Figure 5 shows, for each macro-area, its intertopic distance map. This map places351

the topics in two dimensions, where the Euclidean distance between any two of them352

represents their similarity: the closer they are, the more semantically similar they are.353

Topics are represented as circles, and their size depends on the number of abstracts354

they gather. Due to the projection from a higher-dimensional space to two dimensions,355

we observe several overlaps in the map. In the figure, the five largest topics for each356

area are connected to their corresponding word-clouds.357

In M1 (Basic Human Needs and Well-being), the ‘pollutants’ and ‘bacteriological358

sanitation’ topics are likely related to the Clean Water and Sanitation goal (SDG359

6). Topics on ‘cancer’ and ‘smoking’ are closely connected with the Good Health and360

Well-being goal (SDG 3). The topic related to ‘health and diets’ is probably derived361

from publications related to Zero Hunger (SGD 2);362

In M2 (Environmental Sustainability), the terms ‘workloads, virtualisation and363

energy-aware’ seem related to the optimization of computing resources, and probably364

are in connection with energy consumption in data centers. The ‘electric vehicle and365

charging’ topic can also be related to the same goals. Hydrogen is considered a clean366

energy carrier [50] and is often connected with clean and renewable energy, thus, topics367

related to it can be connected to both Affordable and Clean Energy and Responsible368

Consumption and Production goals (SDGs 7 and 12). The topic with the ‘watersheds,369

urbanising and ecosystems’ terms seems closely related to the Sustainable Cities and370

Communities goal (SDG 11). The terms ‘levelized, microgrids, and hybrid’ are often371

associated with sustainable energy problems and solutions, which are closely related372

to the Affordable and Clean Energy goal (SDG 7).373
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Fig. 5: The biggest and most interesting topics from the five macro-areas

In M3 (Economic Development and Employment), the topics on ‘liquidity, macroe- 374

conomic, and profitability’ and on ‘tourism-related’ are connected to the Decent Work 375

and Economic Growth goal (SDG 8). Instead, the topics on ‘methodological modern- 376

ization’ and ‘environmental urbanization’ appear related to the Industry, Innovation, 377

and Infrastructure goal (SDG 9). 378

In M4 (Equality and Social Inclusion), the topic of ‘victimization and abuse’ is 379

related to the Gender Equality goal (SDG 5), while other topics can be connected 380

more generally to the Reduced Inequality goal (SDG 10). 381

In M5 (Global Partnerships and Peace), topics look very versatile, possibly because 382

the concept of “partnership” can include many different ideas and realizations. 383

Execution and time performances 384

The primary computational cost is in embedding generation and the subsequent model 385

fitting phase; all remaining processing is negligible in comparison. To run our topic 386

modeling sub-pipeline, we employ a virtual machine equipped with an NVIDIA A100 387

(40GB) GPU [51], 32 virtual CPUs, 64 GB RAM, 60 GB SSD, and 500 GB HDD. 388

Note that the NVIDIA A100 (40GB) represents, de facto, the minimal commodity- 389

grade GPU suitable for LLM inference. In cases where equivalent or superior hardware 390

is unavailable, lighter models, such as MiniLMs and ParagraphLMs - available in the 391
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SBERT library [35] - can operate on lower-end configurations, including CPU-only392

setups. However, these models are architecturally outdated and less performing.393

Empirical evidence suggests that LLM inference with reasonable memory for con-394

text management requires approximately 2.5 times the full-precision model size in395

VRAM. In our case, inference and fitting with the 7B SFR-Embedding-2 R model396

(13.5 GB) on the NVIDIA A100 was feasible for input lengths comparable to a typi-397

cal document (i.e., literature abstract text), using 27 GB when loaded into the GPU398

memory (out of 40 GB available) and 26.49 GB (fp32) memory (out of 64 GB RAM399

available) – at initialization time. The use of quantized models or reduced input length400

can lower hardware requirements, though often at the cost of reduced accuracy.401

Execution time scales linearly with dataset size for embedding computation and has402

a variable impact on dimensionality reduction (UMAP) and clustering (HDBSCAN).403

For scalability reference, a small dataset such as M5 (33,769 abstracts) required 2h404

48m for embeddings calculation and 23m for model fitting; a larger dataset such as405

M2 (339,949 abstracts) required 25h 18m for embeddings calculation and 1h 51m for406

model fitting.407

Evaluation of topic modeling results408

We proposed a customized implementation of the BERTopic pipeline, where a local409

optimal configuration can be found by exploiting our hyperparameters optimization410

and model registration mechanisms. This procedure is necessary due to the high quan-411

tity of data and the need to use many different models (e.g., five in our case) to be412

trained and fitted at the same time. A quantitative evaluation of a model can be413

obtained at each single iteration (with a new candidate hyperparameter configura-414

tion) by leveraging the DBCV score. Then, the final selected configuration is assessed415

through a manual evaluation, as described next.416

For evaluating the TETYS pipeline, we compared two different configurations used417

in our specific use case:418

• Baseline: Allenai-SPECTER Embedding Model (this is a non-LLM model419

developed by AllenAI [52]), with hyperparameters (exact) grid search method.420

• TETYS: SFR-Embedding 2 R Embedding Model ([41]), with hyperparameters421

random search method.422

Note that the Baseline configuration leverages Scientific Paper Embeddings using423

Citation-informed TransformERs (SPECTER), a pre-defined model developed to424

learn general-purpose vector representations of scientific documents. It builds on the425

architecture of Transformer-based language models, in particular, SciBERT [53], an426

adaptation of the BERT model architecture [54] to the scientific domain. The model427

is trained on abstracts concatenated with the corresponding paper title; it produces428

768-dimensional embedding representations. This configuration is much smaller and429

faster to fine-tune, thus, we use a grid search strategy for hyperparameter tuning to430

iterate over all combinations of parameters. The embedding model is specialized for431

scientific documents, which perfectly corresponds to our task.432

On the other hand, the TETYS configuration is the novel one proposed in this work,433

as described in the ‘Materials and Methods’ section. This configuration is larger and434

very time-consuming for the fitting process. Since we introduced model registration435
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in the original pipeline –storing the best-performing model identified at any point– it 436

became impractical to try all possible combinations for models, as fitting some models 437

for certain macro-areas can take a long time (i.e., approximately exceeding an hour). 438

For this reason, a random search strategy was used to avoid excessive computation 439

time. Due to this, we may not find the best possible model (rather, one that achieves a 440

local maximum of the DBCV score). Note that the embedding model is more general 441

and optimized for a broader range of tasks (differently from SPECTER). Supplemen- 442

tary Table 1, in the Appendix, presents the values of the hyperparameters for the best 443

models obtained using the two configurations in the five macro-areas scenarios. 444

Quantitative assessment 445

The Density-Based Clustering Validation (DBCV) quantitatively evaluates the quality 446

of the topics’ structure identified by the model. It provides an overall score that allows 447

us to assess embeddings computation and hyperparameter search (for dimensionality 448

reduction and clustering), providing one optimal configuration for a given dataset 449

(macro-area). 450

In addition to DBCV, we considered other topic modeling-specific metrics that hint 451

at the quality of the resulting models. These include topic cohesion and diversity scores. 452

For coherence, we compute three standard measures: Cv, CUMass , and CNPMI , as 453

proposed in [55], using the gensim [56] implementation. For topic diversity, we use the 454

implementation provided in OCTIS [57]. These metrics assess how interpretable and 455

distinct the topics are. In all cases, higher values indicate better quality. Note that, as 456

reported by Stevens et al. [58], these metrics often correlate with other factors such as 457

the number of topics in the model and the noise in the labels of the topics. Empirically, 458

models producing too many or poorly defined topics tend to have lower coherence, 459

while noisy textual representations tend to have higher diversity scores. While DBCV 460

remains our reference metric, these topic modeling-specific metrics helped to validate 461

the semantic and structural quality of the topics generated downstream. 462

Table 3 provides an overview of the number of topics and corresponding metrics’ 463

values for the five macro/areas. DBCV scores are also compared in the radar plot in 464

Figure 6, showing an overall consistent improvement in the LLM-based configuration. 465

We note that for M1 (Basic Human Needs and Well-being) and M2 (Environmental 466

Sustainability), the LLM-based configuration model produced a significantly greater 467

number of topics compared to the non-LLM-based configuration model. Surprisingly, 468

for M5 –probably the most heterogeneous dataset (as observed in the analysis of 469

the five largest topics of Figure 5)– the number of topics found with the Baseline 470

configuration is consistently greater than the one with the TETYS configuration. This 471

is possibly due to the particular combination of n components and the n neighbors 472

parameter values in TETYS: we are using a higher-dimensional space and forcing the 473

model to look for a much larger neighborhood, resulting in fewer bigger clusters (w.r.t. 474

the Baseline configuration). 475

Manual analysis 476

As an unsupervised technique, topic modeling attempts to identify topics within col- 477

lections of documents without leveraging any other information, labels, or predefined 478
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Baseline TETYS

#topics DBCV Cv CUMass CNPMI Diversity #topics DBCV Cv CUMass CNPMI Diversity

M1 301 0.44 0.563 -1.487 0.068 0.801 550 0.52 0.611 -1.412 0.088 0.637
M2 424 0.72 0.496 -2.310 0.041 0.752 856 0.76 0.552 -2.056 0.052 0.563
M3 98 0.36 0.455 -0.731 -0.059 0.739 181 0.39 0.499 -0.772 -0.017 0.615
M4 42 0.44 0.428 -0.910 -0.040 0.852 136 0.46 0.476 -0.879 -0.041 0.646
M5 291 0.37 0.425 -0.929 -0.074 0.838 167 0.38 0.568 -0.928 -0.001 0.736

Table 3: For each macro-area/configuration, overview of number of topics identified by
the models and maximum achieved DBCV score, Cv, CUMass , CNPMI , and Diversity.

Fig. 6: DBCV scores for both model configurations for five macro-areas

topics. Then, evaluating the quality of topic models becomes a challenging task that479

requires domain knowledge and expertise in the fields covered by the scientific papers480

under consideration.481

The goal of our evaluation is to determine whether the LLM-based topic model482

is better at assigning topics (as we postulated), given the enhanced potential of483

the employed embedding model. Our manual evaluation was carried out for two484

macro-areas, i.e., M1 (Basic Human Needs and Well-being) and M2 (Environmen-485

tal Sustainability), which are the largest ones and encompass the greatest number of486

Sustainable Development Goals.487

By employing the same two configurations of the previously described quantitative488

assessment, we performed the inference on a test set of 50 abstracts for each macro-489

area; these abstracts were new, i.e., not seen by the models in the training phase (thus,490

here, we speak about ‘inference’ rather than ‘fitting’). In these datasets, we did not491

include any abstract assigned to the special topic “-1” (i.e., that does not belong to492

any valid topic) by any of the two configurations.493

After classifying the abstracts with both configurations, we asked two researchers494

who are experts respectively in the domains of M1 and M2, to manually assess each495

abstract. They were equipped with a spreadsheet whose rows represent single arti-496

cles; for each article, we provided the abstract, doi, and additional metadata (such as497

the author-defined keywords and the subject category). For both the Baseline con-498

figuration and the TETYS configuration we provided the topic ID, topic probability,499

topic name, number of abstracts assigned to the topic, and the list of the ten most500
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represented terms in the topic (along with their frequency). Given this information, 501

the evaluators were asked to indicate the identifiers of the most suitable topic among: 502

1) the ones available in the Baseline configuration; and 2) the ones available in the 503

TETYS configuration. By comparing the evaluators’ choice with the ones derived from 504

the automatic configurations, we computed the Precision, Recall, and F1-scores (see 505

Table 4). TETYS achieves better results in all the indicators—specifically, the F1- 506

weighted score shifts from ∼70% to ∼90% in both M1 and M2 cases. We note that 507

the Baseline performed better in M1, which is consistent with the fact that the tar- 508

geted macro-area M1 ‘Basic Human Needs and Well-being’ is semantically closer to 509

the training set focus of SPECTER, as opposed to M2 ‘Environmental Sustainability’. 510

Baseline TETYS

Avg type Precision Recall F1 Precision Recall F1

M1
Micro 0.800 0.800 0.800 0.920 0.920 0.920
Macro 0.719 0.725 0.713 0.861 0.881 0.868

Weighted 0.805 0.800 0.719 0.897 0.920 0.905

M2
Micro 0.700 0.700 0.700 0.920 0.920 0.920
Macro 0.675 0.714 0.686 0.859 0.870 0.862

Weighted 0.660 0.700 0.672 0.910 0.920 0.913

Table 4: Precision, recall, and F1 scores for both configurations run on
M1 and M2. Note that, in case of multi-class imbalanced data classifica-
tion tasks, like the one we are resolving, the Micro average is considered
the most appropriate and meaningful one.

Moreover, we asked our evaluators to declare a preference between the assignment 511

obtained using the Baseline configuration versus the one obtained using the TETYS 512

configuration. Here, we allowed three possible choices: 513

• the evaluator concludes that the assignment obtained by the Baseline configu- 514

ration is superior; 515

• the evaluator concludes that the assignment obtained by the TETYS configura- 516

tion is superior; 517

• none of the assignments is clearly superior w.r.t. the other one (undefined). 518

Evaluator’s choice M1 Percentage M2 Percentage

Baseline 18% 16%
TETYS 56% 60%
undefined 26% 24%

McNemar’s test result p-value 0.0025 p-value 0.0004
(h0: baseline > TETYS) statistic 9.0 statistic 8.0

Table 5: Ballot comparison, with statistical evidence that
TETYS configuration is strongly preferable to the Baseline
in both M1 and M2.
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Table 5 reports the number of each selected option in percentage. We statistically519

tested the preference of one configuration over the other; along the guidelines indicated520

in Schuff et al. [59], we performed the non-parametric McNemar statistical test [60]521

(used for paired nominal data), ignoring the ‘undefined’ cases. For both macro-areas,522

we observed a strong statistical preference for the TETYS configuration over the Base-523

line one, rejecting the null hypothesis in both cases, with -respectively- 0.0025 and524

0.0004 p-values.525

From this small experiment, we conclude that the LLM-based configuration is526

slightly better or at least as good as the non-LLM-based configuration. We expect527

that such restrained improvement is due to the use of the random search strategy for528

the LLM-based model, which means that we likely settled for a model that is not the529

best possible one.530

By manual inspection of topics, we also observed that the TETYS configuration531

allowed us to achieve better quality, interpretability, and diversity [9]. TETYS also532

improved flexibility over the Baseline, because the LLM has more knowledge about533

different domains, while SPECTER was specific for the dataset (used for training)534

covering the medical/biological domain; note that SPECTER-AllenAI can be consid-535

ered a very strong baseline for the requested task, as it is specifically designed for536

scientific literature.537

Dashboard for interactive exploration538

The results of the TETYS pipeline are made available through a Web application539

(http://gmql.eu/tetys/), demoed in [61], that allows users to appreciate the topics540

(resulting from the topic modeling sub-pipeline) and their characteristics, including541

their representation in time (resulting from the topic exploration sub-pipeline).542

Figure 7 represents the system architecture divided into a frontend and a backend.543

The frontend contains a Web application working as a Client with functionalities544

that allow users to select a macro-area of interest, filter the content of the topic model545

using keywords or a specific publication’s DOI, visualize the content, and download it546

(through plots and tables).547

The backend contains four modules. Data persistence is taken care of in the548

Database (collecting publications metadata and information describing the topics,549

like their trends over time, stored as time-series data) and in theML Model registry,550

which stores the topics models of the project as large pickle objects. The database551

is implemented with DuckDB [62], an in-process analytical database, that we use to552

exploit the efficiency in data storage and retrieval of the Apache Parquet format [63].553

These two modules can be queried by the central Server, i.e., the orchestrator of554

TETYS: this includes a project registry along with services to perform keyword-based555

search and similarity-based search over the five different projects (one per macro-556

area). In each project, we allow analysis (i.e., statistical testing) and results download.557

Keyword-based search is exploited to find ranked topics that are close (i.e., relevant)558

to specific keywords. Similarity-based search is exploited to find ranked topics that559

are relevant to a specific point in the embedding space, i.e., one abstract – identified560

through its DOI. These search procedures make use of the External service of Cross-561

ref APIs [64], which retrieve all the papers’ information that can be visualized in the562
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Fig. 7: System architecture

application. Note that the Model registry contains the models that, for each project, 563

infer the most relevant topics for any query, both keyword-based and DOI-based. 564

The TETYS dashboard allows us to directly inspect the results obtained by our 565

pipeline, supporting users in exploring topics, which would be a tedious and time- 566

consuming task if performed manually. Users are asked to select one macro-area out 567

of the five offered. For each macro-area, they can either select one of the trending (i.e., 568

biggest) topics shown in a scrollable gallery or start their search using a keyword or 569

a specific DOI. These two possibilities allow them to access two possible pages: the 570

Single Topic page (see Figure 8, Panel A) or the Topic Comparison page (see Figure 8, 571

Panels B/C). Panel A shows a descriptive card of the topic with its wordcloud and 572

star diagram, a component for performing two-interval or multi-interval comparisons 573

between user-selected time spans of the topic time series, and a downloadable list of 574

publications that are assigned to the topic. Panel B shows a set of topics selected by 575

the user from a pool of topics related to the searched keyword; topics (max. 5) can 576

also be selected during multiple consecutive searches (as shown in Panel C). Their 577

corresponding time series are shown on the same graph, where users can (de)select 578

tracks as needed and use a slider to focus on a time span of interest. Different time 579

resolutions can be set; the relative frequencies of the topics in one specific time instant 580

can be visualized on hover. 581
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A

C

B

…

Fig. 8: Pages of the TETYS Dashboard of M1 (Basic Human Needs and Well-being).
A) Single Topic page; B) Topic Comparison page with a single keyword search session;
C) Topic Comparison Page with multiple keyword search sessions.

Methods Literature Review582

Topic modeling and clustering583

A growing body of work challenges the conventional boundary between topic model-584

ing and clustering, highlighting the feasibility of clustering-based approaches as viable,585

often superior alternatives. Thompson and Mimno [65] demonstrated that cluster-586

ing token-level contextualized embeddings from pre-trained language models (PLMs)587

like BERT and GPT-2 can yield topic-like structures with performance equivalent to588

or better than traditional Latent Dirichlet allocation, especially in capturing poly-589

semy and scaling across topic numbers. Sia et al. [4] further support this direction;590

they show how clustering word embeddings using hard and soft clustering algorithms591

that are more sophisticated than k-means, combined with appropriate feature reduc-592

tion techniques, can produce coherent, computationally efficient topics. Early work593

on whole-document embeddings, such as SPECTER, also exhibits proof that PLMs594

encode topical information and are aware of cross-topic relatedness; e.g., Engineering,595

Mathematics, and Computer Science are close to each other, whereas Business and596

Economics are close to each other.597

In addition to the curse of dimensionality caused by the high-dimensional embed-598

dings produced by LLMs, clustering algorithms selected for topic modeling should599

also be robust against non-convex-shaped clusters, since, as indirectly demonstrated600

by Petukhova et al. [66], document clusters may not exhibit convex shapes. In these601

20



cases, density plays a critical role, reinforcing the importance of choosing clustering 602

methods that adapt to these structural realities. 603

For these reasons, density-based techniques are particularly well-suited for 604

document grouping and topic modeling tasks. DBSCAN, its hierarchical version 605

HDBSCAN, and other optimized variants, such as QuickDBScan and KDTreeDB- 606

SCAN [67], are gaining traction due to their ability to detect clusters of arbitrary 607

shape and manage outliers effectively in this context. 608

These developments underscore the growing relevance of density-based clustering in 609

topic modeling, suggesting that future efforts can benefit substantially from integrating 610

these modern, non-parametric strategies. 611

Clustering high-dimensional data 612

Dimensionality reduction techniques for clustering high-dimensional data, such as doc- 613

ument embeddings, were extensively explored to improve both the quality and the 614

efficiency of clustering. While traditional techniques like Principal Components Anal- 615

ysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) cover most of 616

the use cases, more recent research highlights the advantages of UMAP in preserving 617

both local and global structures when reducing dimensionality. UMAP’s adaptability 618

across embedding spaces from various language models makes it especially useful for 619

document clustering tasks. Notably, Allaoui et al. [68] demonstrated that applying 620

UMAP as a preprocessing step significantly boosts the performance of standard clus- 621

tering algorithms like k-Means and HDBSCAN, leading to more coherent clusters and 622

faster computation. 623

Extraction of labels for topics 624

There has been extensive research on weighting schemas that significantly impact 625

model performance in representing topics. Foundational approaches include basic 626

occurrence counting, term frequency (TF), and Term Frequency-Inverse Document 627

Frequency (TF-IDF) [69], along with their variations. Okapi BM25 extends TF-IDF by 628

normalizing weights based on document length relative to the corpus average, address- 629

ing biases in longer documents [70]. Several studies have systematically compared these 630

weighting schemas to assess their influence on the topic model’s performance [71]. 631

For short texts specifically, to address the challenge of sparsity in building word co- 632

occurrence statistics, Zuo et al. [72] developed pseudo-document approaches, noting 633

that semantically irrelevant terms can disproportionately influence topic identification 634

– a problem also marginally addressed by weighting schemas like Okapi BM25. Other 635

solutions mitigated this tendency by applying feature engineering techniques to extract 636

high-quality vocabularies from the initial corpus before the actual topic modeling 637

process and by providing contextual cues to the topic model [73]. 638

Another significant direction in term-weighting research focuses on entropy-based 639

approaches that identify informative words for topic modeling. Li et al. [74] intro- 640

duced an entropy weighting (EW) scheme that leverages conditional entropy, measured 641

through word co-occurrences, to automatically assign higher weights to informative 642

words and lower weights to less meaningful terms. Bridging traditional and neural 643
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approaches, Dieng et al. [75] introduced the Embedding Topic Model (ETM), which644

represents both words and topics as vectors in a shared embedding space. ETM places645

words into topics based on vector proximity, leveraging semantic relationships beyond646

co-occurrence patterns while maintaining a generative process similar to LDA but647

with a logistic-normal distribution. This neural network-optimized approach draws648

words from their semantic context, resulting in more coherent topic representations649

than possible with traditional term weighting schemas.650

Beyond document-level weighting, researchers have also explored class-level or651

cluster-level approaches beyond traditional document-level weighting, as exemplified652

by cTF-IDF implemented in BERTopic. While our research focuses on longer, single-653

language documents, where text preprocessing techniques like stop-words removal are654

sufficient for extracting coherent topics’ labels, it is worth noting emerging directions655

that involve large language models and transcend traditional weighting approaches,656

such as PromptTopic [76] and Mu et al. [77], which leverage advanced prompting tech-657

niques, topic seeding, and summarisation. However, these advanced methods come658

with significant computational costs that must be weighed against their potential659

benefits.660

Discussion661

Main contributions. The proposed system presents a series of innovations that include662

the possibility of applying the BERTopic pipeline in a customized way on big data663

corpora, the optimization of the hyperparameter search, and the storage of interme-664

diate models to obviate the stochastic nature of HDBSCAN. From the technological665

point of view, our system poses the basis for applying the pipeline to many diverse666

domains and text corpora, provided that the constraints of our setup are observed.667

Design notes. Regarding the use of LLMs for embedding computation, we observed668

that BERTopic models developed with LLM-based embedding models typically iden-669

tified more topics than models developed with non-LLM-based embedding models.670

One of the likely reasons is the dimensionality of the embedding vectors, which is671

much larger in the case of LLM-based embedding models (4096 >> 768). In a larger672

latent space, the model has a better capacity to distinguish between similar but dif-673

ferent topics, which can be difficult for models in a small latent space. In addition674

to the larger dimensionality of the latent space and better semantic representation,675

LLM-based embedding models are, in their essence, more powerful, since they are676

pre-trained on much larger and extensive text data, on top of using more advanced677

learning techniques and fine-tuning.678

Regarding the choice of clustering quality-driven optimization, we chose the679

Density-Based Clustering Validation (DBCV) score as our primary optimization cri-680

terion as it is designed to evaluate clusters of arbitrary shapes and varying densities,681

accounting for cluster compactness and density separation (high density vs low density682

areas) – key properties of the clustering structures we investigated in our unsupervised683

setting and high-dimensional latent space representations. Other typical topic met-684

rics are not specifically suited for high-dimensional density-based clustering. We did685
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not select the Silhouette Score or Calinski-Harabasz Index, as both rely on assump- 686

tions of convex cluster shapes and separation that are not suitable for density-based 687

methods in high-dimensional spaces. We excluded the Adjusted Rand Index (ARI), 688

which assumes hard partitions, making it incompatible with our soft clustering setup. 689

Finally, the Davies-Bouldin Index, while occasionally adapted for density-based meth- 690

ods, was discarded as limited in its ability to handle clusters of arbitrary shapes, as 691

also noted in the original DBCV paper [44]. 692

Limitations. A limitation in the current approach is related to the representation of 693

topics. Since we run topic modeling as an unsupervised task on a high-dimensional 694

latent space, given topics may appear not to be precisely separated from a textual 695

perspective – as they can share terms in their representations. Through manual inves- 696

tigation, we verified that this is not due to limitations in the topics’ identification 697

process; instead, the problem rather pertains to representation extraction. We are con- 698

fident that this issue will be solved with the application of new language models that 699

are fine-tuned for this purpose. 700

Moreover, in our evaluation, we did not discuss the stability and efficiency [9] of 701

our topic model, as they are not integral to our process. Note that, after the first 702

fitting of the topic model, we reuse the model and update it with new entries during 703

inference, without being affected by concerns of stability or efficiency. 704

Finally, TETYS currently supports only English as the input language, and input 705

texts are limited in length, approximately equal to typical abstract size, due to GPU 706

memory constraints of our experimental setup (single A100 40GB) and embedding 707

model limitations, because texts are embedded as a whole. 708

Impact and future challenges. Regarding the specific working instance exposed in the 709

TETYS dashboard, focusing on SDGs-related literature, we believe the system can 710

be useful to a very broad range of stakeholders, including users such as students, 711

researchers, or professionals who are interested in deepening their knowledge on an 712

area of research and need a fast way to grasp a general idea of the main topics and their 713

evolution in the last twenty years. Possibly, one such dashboard could be extended 714

into a product useful to funding bodies, universities, or research centers. 715

Future work includes evaluating whether a single embedding for a full-length doc- 716

ument is meaningful or if it is better to split texts into chunks and embed each 717

separately, as commonly done in retrieval-augmented generation (RAG) tasks. 718

Conclusion 719

The TETYS pipeline is based on BERTopic; we enhanced it by using LLMs for the 720

embedding computation. Then, for each data corpus at hand, we can find a local max- 721

imum in the random search space of the hyperparameter configuration that regards 722

dimensionality reduction and clustering. This configuration is used for model registra- 723

tion and fitting. Given a corpus of text documents in input, eventually, our pipeline 724

builds a valuable trade-off between the best and “fastest-to-find” topic model possible. 725

We measure the goodness of configurations one by one by leveraging DBCV, while we 726

assess the overall arrangement with a thorough manual evaluation. 727
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This arrangement is particularly fit for big data corpora; we additionally enrich728

the pipeline result by enabling keyword-search and dynamic topic modeling with time729

series exploration using configurable time-bins and relative frequencies (with ranking).730

The final result exposes a rich computational model and associated metadata to the731

users, making topics’ exploration interactive and possible on a large scale.732

In this work, we demonstrated the power of the TETYS pipeline by running it on733

five different text document corpora generated from the Scopus database by collecting734

research abstracts that are pertinent to a specific set of Sustainable Development735

Goals, as defined by the United Nations. This approach allowed us to automatically736

uncover the attitude and the topic trends found in research literature about themes737

of interest for the general community.738

Moving beyond research-related text, we expect to reapply the pipeline and its739

paradigm to other application domains that may particularly benefit from this kind740

of data analytics, i.e., analyzing topics’ evolution of legislative text from different741

countries and systems.742
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Appendix 743

Macro area Config. Pipeline step Parameter Value

M1

Baseline
301 topics

UMAP
n neighbors 20
n components 5
min dist 0.0

HDBSCAN
min cluster size 25
min samples 100

TETYS
550 topics

UMAP
n neighbors 20
n components 5
min dist 0.0

HDBSCAN
min cluster size 25
min samples 75

M2

Baseline
424 topics

UMAP
n neighbors 50
n components 10
min dist 0.0

HDBSCAN
min cluster size 25
min samples 50

TETYS
856 topics

UMAP
n neighbors 20
n components 10
min dist 0.0

HDBSCAN
min cluster size 25
min samples 75

M3

Baseline
98 topics

UMAP
n neighbors 20
n components 10
min dist 0.0

HDBSCAN
min cluster size 25
min samples 50

TETYS
181 topics

UMAP
n neighbors 100
n components 10
min dist 0.0

HDBSCAN
min cluster size 25
min samples 10

M4

Baseline
42 topics

UMAP
n neighbors 50
n components 28
min dist 0.0

HDBSCAN
min cluster size 25
min samples 50

TETYS
136 topics

UMAP
n neighbors 50
n components 28
min dist 0.0

HDBSCAN
min cluster size 25
min samples 10

M5

Baseline
291 topics

UMAP
n neighbors 5
n components 5
min dist 0.0

HDBSCAN
min cluster size 25
min samples 10

TETYS
167 topics

UMAP
n neighbors 100
n components 35
min dist 0.0

HDBSCAN
min cluster size 25
min samples 15

Table 1: Hyperparameter values for macro areas M1
to M5, in both configurations Baseline (non-LLM with
grid search) and TETYS (LLM with random search),
considering the UMAP and HDBSCAN steps. From
both steps, we omit metric = ‘euclidean’ as it is
always the same value for both UMAP and HDBSCAN,
as well as cluster selection method = ‘eom’ as it
is always the same value for HDBSCAN.
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[11] Ebeling R, Sáenz CAC, Nobre JC, Becker K. Analysis of the influence of political 806

polarization in the vaccination stance: the Brazilian COVID-19 scenario. In: 807

Proceedings of the International AAAI Conference on Web and Social Media. 808

vol. 16; 2022. p. 159–170. 809
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