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Abstract—The recent COVID-19 pandemic has posed novel
challenges to the big data and knowledge management com-
munity. The unprecedented availability of viral genomes on
public databases has made possible the data-driven exploration
of viruses’ evolution (especially of SARS-CoV-2, the virus re-
sponsible for the disease). Properties of data and knowledge
in the genomic and virological domain may fuel data science
methods for the identification and possible prediction of critical
phenomena, such as the emergence of variants with improved
transmissibility/virulence and recombined strains. A number of
tools have been produced to explore the variants’ trends or
suggest hypotheses on the evolutionary mechanisms of the virus.
In this perspective, we elaborate on plausible directions of this
field of research, which are still applicable to the SARS-CoV-2
virus but may become even more relevant in the context of new
outbreaks (e.g., monkeypox, malaria, diphtheria). Expressly, we
point to 1) data-driven identification of mutations or variants with
potential impact; 2) data-driven identification of recombination
events – creating opportunities to overcome selective pressure and
adapt to new environments and hosts (e.g., livestock or humans).
These directions can be framed within genomic surveillance mea-
sures, characterized by the possibility of tracking viruses by using
their genome, which is collected, sequenced, and submitted to
public databases by laboratories around the world. If successful,
genomic surveillance substantially supports the understanding
of novel viral pathogens and of their dangerousness in terms
of prevalence, infectivity, and transmissibility; the implemented
services can be of great utility to decision-makers in healthcare.
Here, we draw current trends, challenges, and future directions
of data-driven services for genomic surveillance.

Index Terms—Genomic surveillance, big data analytics, big
data services, virology, pathogen evolution

I. INTRODUCTION

The developments in high throughput DNA sequencing
technologies (called Next Generation Sequencing [1]) and the
recent reduction in costs [2] represent an important achieve-
ment and turning point for modern molecular biology. NGS
technologies have become routinely employed in different
fields of genomic research. Different sequencing platforms
and sample preparation approaches, in laboratories worldwide,
contributed to a revolution in the detection and discovery
of viral genomes. The spread and evolution of pathogens
can be currently tracked by the comparison of NGS-based
genomic sequences [3] derived from different specimens and
collected at different locations, a methodology called genomic
surveillance. Effective tools for pathogen genomics surveil-

lance represent the first defense lines against current and future
epidemics.

Even if effective surveillance does not require the sequenc-
ing of a specimen from every case, it is important that enough
sequence data is collected from representative populations to
detect new variants and monitor trends in circulating variants.
Genomic surveillance for SARS-CoV-2 has thus far been
based on the wide availability of genomes deposited around the
world [4] and has been considered of the uttermost importance
by the World Health Organization – which has also established
a working group dedicated to it [5].

Infectious diseases that emerged in the last decade (see, e.g.,
SARS, MERS, Zika, and Ebola) and more recently (SARS-
CoV-2), have demonstrated the importance of genomic data
to study the evolution of pathogens, tracking their spread,
and generating a deeper understanding of infectious diseases.
Even when they are not discussed in the news, outbreaks are
continuously detected; indeed, the US Centers for Disease
Control and Prevention (CDC, [6]) reports 13 U.S.-Based
Outbreaks (including, e.g., fungal meningitis, Salmonella in-
fections, hepatitis A), seven Travel Notices Affecting Interna-
tional Travelers (including, e.g., Fungal Infections in Mexico,
Malaria in Costa Rica, or Nipah Virus in Bangladesh), and four
International Outbreaks, i.e., the Coronavirus Disease 2019
– announced January 2020, the U.S. monkeypox outbreak –
announced May 2022, and two Ebola outbreaks in August
2022 respectively in the Democratic Republic of the Congo
and Uganda.

All viruses change when they replicate and spread in a
population. Most of the acquired mutations in their genome are
silent (i.e., not translated into proteins) or neutral (i.e., unlikely
to change key features), meaning that they do not affect the
virus’ ability to spread or escape the immune response because
they do not alter the major proteins involved in infection
and transmission. Although rare, mutations that instead im-
prove these abilities can eventually be selected, leading to a
competitive advantage over the wild (i.e., original) type of
virus. When this happens, novel forms of the pathogen with
improved epidemiological features can emerge and circulate
in a population—see “variant of interest” (VOI) or “variant of
concern” (VOC) as named by the World Health Organization
(WHO) [7].

Because of the complexity of viral infectious diseases,



understanding the origin, the evolution of the virus, and its
molecular basis requires continuously updated data, allowing
to produce investigations that rely on it and can consequently
shape timely effective responses. During COVID-19 times, the
bioinformatics community has observed the production of an
exorbitant amount of data [8]; the total number of collected
and sequenced genomes of SARS-CoV-2 available worldwide
went from a few hundred in March 2020, up to about one
hundred thousand in August 2020, and to more than 10 million
in 2022, reaching 15.6 million at the time of writing, in June
2023 (about 3.5 years since the first outbreak). There has been
a continuous deposition of SARS-CoV-2 sequences to public
repositories; a similar approach has been adopted for Influenza
and Monkeypox data [9]. All other viruses have reference
databases, although smaller amounts of data [10].

In this paper, we focus on two threads of viral genomic
surveillance research:

• data-driven variant identification;
• data-driven recombination events identification.

In these fields, several methodologies are being studied – some
of which have been and can still be offered in the form of data-
driven services, made available to the research community or
to the wider public. In the following, Section II presents the
ingredients of the domain that are useful to understand the
remaining of the paper; Section III describes the research field
in charge of monitoring the rise of viral variants, reporting
a number of tools usable by a wide public for studying
variants; Section IV reports on the past and current efforts
for the identification of viral recombination; finally, Section V
describes the open challenges in the genomic surveillance
context and Section VI concludes the chapter with future
directions.

II. BACKGROUND

Until the COVID-19 pandemic, the data and knowledge
referring to viral domains have been the prerogative of molecu-
lar biologists and virologists. Starting then, the unprecedented
richness of information has attracted the attention of a much
broader research community, with the consequent rise of
organization and systematization efforts.

In [11] we presented CoV2K, a high-level description of
information related to SARS-CoV-2. Here, we denote as
Knowledge the established information about the virus and
as Data the actual genomes or their fragments, which are
continuously produced and represent data points for analysis.
The knowledge ecosystem includes information on variants
(with their names, presenting organization, and computational
methods to determine them); their effects reported in research
studies or alternative evidence (such as their resistance to
monoclonal antibodies, convalescent/vaccine sera, transmissi-
bility, or virulence); and their characterization (in terms of sets
of mutations, with specific positions and molecular changes,
along the structure of the viral genome or specific proteins).
Moreover, it includes the characteristics of mutations due to
their original and alternative nucleotide or amino acid residues
– these present several features, such as changes in polarity,

hydrophobicity, or charge. Finally, it includes the definition of
particular regions of the genome with given functions.

The data ecosystem, instead, includes information about
actual genomes – previously described in the Viral Conceptual
Model (VCM, [12]. These have been collected and sequenced,
involving the use of specific sequencing platforms (with an
associated accuracy and coverage) and algorithms (e.g., to
perform genome assembly and variant calling). Additionally,
it includes epitopes, which are strings of amino acid residues
from a virus protein that can be recognized by antibodies or
other host receptors.

In the CoV2K model, knowledge and data are connected by
many relationships, driving a process of data and knowledge
integration. Next, we delve into the details of the two core
concepts of the model, i.e., mutations and variants.

Mutations are found either at the DNA or RNA level
(depending on the kind of virus – SARS-CoV-2 is RNA-
based), called nucleotide mutations, or at the protein level,
called amino acid changes. Nucleotide mutations occur at
specific positions of the virus genome, causing deletions,
insertions, or substitutions. They have a position, where the
reference nucleotide is changed into an alternative one, af-
fecting a certain length of the sequence. As an example, the
notation A23403G indicates that the 23403rd nucleotide of
the sequence, which was Adenine in the virus wild-type, has
been changed into a Guanine. These mutations can be silent
(neutral or synonymous) when they do not change the amino
acid sequence, or non-synonymous, when they change the
translated amino acid sequence. They also have a position,
which is relevant to understand which protein functionalities
may be impacted. The most common notation for amino acid
changes is a string that mentions the protein and the mutation
signature. For example, S:D614G denotes a substitution at the
614th position of the Spike protein, from the wild-type typical
Aspartic Acid (D) to Glycine (G). Since several mutations
may jointly produce stronger effects, the co-occurrence of
nucleotide mutations or amino acid changes on a single viral
genome is also relevant.

Variants are forms of a virus that are considerably different
from its original wild-type, as they accumulated a set of
amino acid changes that characterize their phenotypic char-
acteristics [13]. The definition of variants is produced with
a phylogenetic analysis based on the use of phylogenetic
trees [14]; these trees describe the precise chain of evolution-
ary changes leading from one viral genome to the next. As a
result, a separation of viral sequences into lineages is defined
– these share common ancestries and the same amino acid
changes. Based on phylogenetics, wide complex taxonomies
are produced to categorize viruses, continuously challenged by
new strains [15].

In the case of SARS-CoV-2, a number of nomenclatures
are used to denote specific lineages. The most common ones
are those proposed by Pangolin [16], Nextstrain [17], and
GISAID [9]. Given the societal and mass-media impact of the
pandemic, the WHO proposed a naming scheme for variants
aiming for wide adoption, based on the Greek alphabet [18].



During the years of the COVID-19 pandemic, several variants
have attracted the attention of the research community and the
general public. The most notable ones are Alpha, Delta, and
Omicron – in four forms (respectively denoted as Omicron
1, 2, 4, and 5). Previously, other variants of interest were
indicated, named Beta, Gamma, Epsilon, Zeta, Eta, Theta, Iota,
Kappa, Lambda, and Mu. At the time of writing (June 2023),
the WHO does not recognize any circulating variant of concern
but only two circulating variants of interest, i.e., XBB.1.5 and
XBB.1.16, respectively named Kraken and Arcturus, accord-
ing to the unofficial nomenclature proposed on Twitter by T.
Ryan Gregory [19]. These derive from recombination events
of two sub-lineages of Omicron 2 and have recently threatened
vaccine efficacy [20], [21]. Aside from WHO, surveillance of
variants and their effects is also performed by national and
international organizations such as the US Centers for Disease
Control and Prevention, the European Center for Disease and
Control, and Public Health England.

III. DATA-DRIVEN SARS-COV-2 VARIANT
IDENTIFICATION

A. Datasets

The landscape of relevant resources and initiatives dedicated
to data collection and retrieval of virus sequences was sur-
veyed in [22]. The space of contributors can be partitioned
by considering general institutions that host data sequences,
primary sequence deposition databases, and tools provided for
directly querying and searching them. The three main organi-
zations providing open-source viral sequences are NCBI (US),
EMBL-EBI (Europe), and DDBJ (Japan); they operate within
the broader context of the International Nucleotide Sequence
Database Collaboration [23]. NCBI hosts the two, so far, most
relevant open viral sequence databases: GenBank [10] contains
the annotated collection of all publicly available DNA and
RNA sequences; RefSeq [24] provides a stable reference for
genome annotation, gene identification and characterization,
and mutation or polymorphism analysis. GenBank has been
continuously updated thanks to the abundant sharing of multi-
ple laboratories and data contributors around the world (SARS-
CoV-2 nucleotide sequences have increased from about 300
around the end of March 2020 to 7.1 million as of June
2023). EMBL-EBI hosts the European Nucleotide Archive
[25], which also accepts submissions of raw sequencing data,
sequence assembly information, and functional annotations.
While the INSDC consortium provides full open access to
sequences, the GISAID initiative [9] was created in 2008 with
the explicit purpose of offering an alternative to traditional
public-domain data archives, as many scientists hesitated to
share influenza data. GISAID hosts EpiFlu™, a large sequence
database, which started its mission for influenza data and
has expanded with EpiCoV™ having a particular focus on
the SARS-CoV2 pandemic (about 15.6 million sequences as
of June 2023). In 2022, the initiative extended its interest
also to Monkeypox genomes. Finally, COG-UK [26] is a
national-based initiative launched in March 2020 thanks to big
financial support from three institutional UK partners; alone,

it contributed 20% of the world production of SARS-CoV-2
genome sequences.

B. Methods

The emergence of mutation and variants has traditionally
been studied with phylogenetics methods, which accumulate
individual sequences along the tree of the virus, built incre-
mentally. When a branch becomes rich in sequences, it is a
candidate variant to be investigated. The phylogenetic analysis
takes into account the entire history of the viral genome
evolution. However, the wide abundance of data occurred
for SARS-CoV-2 has motivated the experimentation of other
data mining techniques, i.e., methods that study the virus
characteristics independently from the traditional phylogenetic
techniques.

Methods initially concentrated on the monitoring of indi-
vidual amino acid changes, such as the rise of the Spike
protein D614G mutation [27], which soon became prevalent
worldwide or the spread of the Spike A222V mutation that
was supposedly generated in Spain and then spread throughout
Europe during the Summer of 2020 [28].

As the COVID-19 pandemic progressed, research interests
shifted toward the study of groups mutations, co-occurring on
the same genomes – possibly leading to increased transmission
rates and changed antigenicity of the SARS-CoV-2 virus,
hampering testing, treatment, and vaccine development [29]–
[31].

Considerable efforts have been dedicated to building surveil-
lance systems that take advantage of this big data corpus,
by employing temporal analysis of mutations to assist in the
identification of candidate variants and their possible effects
[40]. A number of studies have described typical SARS-CoV-2
mutational profiles across different countries and regions [41],
proposing statistical indicators for location-based mutation
evolution [42] and observing changes that become recurrently
prevalent in different locations, thus suggesting selective ad-
vantages [27]. Several methods have been developed to study
prevalent SARS-CoV-2 mutations over time and how they be-
have in a coordinated manner. Basically, many works consider
functions that describe the prevalence of different mutations
and – when a number of these are behaving similarly – they
recognize a possible distinct variant. In Table I we report the
salient characteristics of some works, including those based on
phenetic clustering of prevalent SARS-CoV-2 mutations over
time [32]–[34]; time-series clustering [35]–[37]; and weighted
networks of frequency trajectories of mutations [38], [39].
We here selected only works that study these phenomena
on a pandemic scale, whereas we exclude the vast literature
analyzing the evolution of mutational patterns that are typical
of a specific geographical area.

C. Services

Several tools arose during the pandemic, providing services
that leverage the big datasets of SARS-CoV-2 sequences of
international institutions such as GISAID and NCBI Virus
(GenBank). Specifically, in the first two years, many online



TABLE I
OVERVIEW OF DATA-DRIVEN METHODS FOR VIRAL VARIANT IDENTIFICATION

Proponent Study description

Yang et al. [32]
2020

Methods: Various clustering analyses.
Results: Identified six types of strains and underlying signature single-mutations.
Highlight: Suggested that single-mutations could become an important consideration in SARS-CoV-2 classification and
surveillance.

Chiara et al. [33]
2021

Methods: Phenetic method based on the similarity of groups according to their observable phenetic attributes. Complementary to
existing methods for facilitating the identification of variants in the viral genome.
Results: Identified 22 distinct haplogroups, gathered in four major macro haplogroups.
Highlight: Suggested that the emergence of novel types is unlikely to be driven by convergent evolution and independent fixation
of advantageous substitutions, or by a selection of recombined strains.

Chiara et al. [34]
2023

Methods: Automated/reproducible way to map genetic diversity in time and across different geographic regions.
Results: Captured highly biased geographic distributions (in a complementary way w.r.t. current SARS-CoV-2 nomenclature
standards).

Abe et al. [35]
2021

Methods: Unsupervised machine-learning method based on a batch-learning self-organizing map (BLSOM) for oligonucleotide
composition.
Results: Separation of lineages defined by GISAID (with phylogenetic methods) with high precision, further subdivided into
clusters.

Bernasconi et al. [36]
2021

Methods: For all countries with sufficient data, it computed weekly counts of amino acid changes. It searched clusters of single
changes time series; retained only those referring to increasing trends sufficiently different from previous weeks.
Results: Timely association of clusters to variants of interest/concern whose characterization was publicly available.
Highlight: First work to claim that the emergence of variants could be traced through purely data-driven methods, suggesting a
possible predictive application for an early warning system.

De et al. [37]
2022

Methods: Machine learning algorithm for temporal clustering of the sequences, where distances were measured with the
Levenshtein definition.
Results: Emerging persistent variants (in agreement with known evidence) were identified, defined as “chains that remain stable
over time” – whereas emerging variants with epidemiological interest were “branching events that occur over time”.
Drawback: Validation only performed on the Alpha variant data. Highlight: Preliminary prediction test, done on the AY.4.2
(known as ‘Delta plus’).

Huang et al. [38]
2022

Methods: Weighted network framework to model the frequency trajectories of mutations, without requiring prior subtype
assignment.
Results: The identified variants were positively assessed by using phylogenetic trees.
Highlight: Convenient data representation showing that it is possible to rapidly and easily recognize variants overcoming prior
viral subtyping.

Negi et al. [39]
2022

Methods: Cluster and network analysis, based on the intuition that mutations within clusters increased in frequency simultaneously.
Results: Identification of worldwide rapidly spreading mutation and of region-specific groups of mutations.

applications were devoted to visualization purposes (e.g., the
COVID-19 Viral Genome Analysis Pipeline [27], GESS [48],
coronApp [49], and VirusViz [50]) with a focus on mutation-
based exploration.

With time passing, tools that are more sophisticated in their
mutation and variant hunting purposes, have been offered to
the community. Some form of a watch of variations is put in
place by the World Health Organization – with several tools
available to the public including the COVID-19 dashboard [51]
– and GISAID, which integrates on its platform CoVizu [52]
and CoVsurver [53]. Nextstrain [17] has a dedicated dashboard
to interact with the Nextstrain phylogenetic Tree, available
using GISAID data or open data (e.g., from GenBank).
Other services were contributed by research centers: CoV-
Spectrum [43], COVID-19 CG [44], and Outbreak.info [45].
At Politecnico di Milano, we implemented ViruClust [46] and
VariantHunter [47]. Table II shows a selection of the tools with
salient characteristics and differences.

IV. DATA-DRIVEN RECOMBINATION EVENTS
IDENTIFICATION

Recombination represents a major contributor to the evolu-
tion of RNA viruses, occurring both in segmented and non-
segmented ones. “Parents” and “child” are conventional terms
used to refer to the strains that recombine and the resulting
new strain; “donor” and “acceptor” refer to the parent strains,
represented in a greater and lesser amount, respectively [54].
Recombination within different sublineages of the same virus
requires co-circulation and co-infection of the same host;
indeed, recombination events create chimeric genotypes be-
tween viral strains that infect the same cell. The clinical
and epidemiological relevance of these new combinations is
substantial as they have the potential to create genotypes with
unique virulence and transmissibility characteristics.

Unlike other viruses that have emerged in the past two
decades, coronaviruses have a high rate of recombination [55].
Phylogenetic and phylodynamic methods are essential to study
the spread and evolution of viruses; they are based on the as-
sumption that the shared history of pathogens - when isolated



TABLE II
OVERVIEW OF SERVICES FOR VARIANT EXPLORATION BASED ON BIG DATASETS OF VIRAL SEQUENCES

Service Used data Mutation search Metadata search Claimed purpose

CoV-Spectrum [43] GISAID + Swiss nucleotide;
amino acid

date;
location

Tracking of known variants; identification of new SARS-CoV-2
variants of concern.

COVID-19 CG [44] GISAID amino acid date;
location

Tracking SARS-CoV-2 single-nucleotide mutations and lineages,
useful to study SARS-CoV-2 transmission, evolution, diagnos-
tics, therapeutics, vaccines, and intervention tracking.

outbreak.info [45] GISAID lineage;
amino acid location Getting insights into the evolution of the virus SARS-CoV-2 for

genomic surveillance: hypothesis generation tool.

ViruClust [46] GISAID lineage date;
location

Performing comparisons of SARS-CoV-2 genomic sequences
and lineages in space and time, with the integration of differ-
ent types of functional annotations; monitoring the evolution
of SARS-CoV-2, facilitating the identification of variants or
mutations of potential concern.

VariantHunter [47] Nextstrain/GenBank lineage;
amino acid

4-week period;
location

Running analysis of amino acid changes frequency to observe
interesting variant trends or identify novel emerging variants.

from different hosts - can be described by a phylogenetic tree.
Nonetheless, recombination does not follow this assumption,
making it problematic to use phylogenetic methods to study re-
combining pathogens [56]. Thus, inference and computational
big data-driven methods become necessary [57].

Recombination has not been highly prevalent in the three
years of the SARS-CoV-2 pandemic and identification of early
recombinant genomes has been difficult also due to the fact
that the phylogenetic structure of SARS-CoV-2 is driven by a
limited number of mutations (possibly often clustered in short
regions of the genome). The contribution of recombination to
the evolution of this virus has been considered generally low,
although recently accelerating [58].

Many have studied the first recombination events and tried
to delineate the extent to which recombination was expected to
shape SARS-CoV-2 in the following years [59]–[61]. The first
relevant recombination event has been reported to be between
Alpha and Delta SARS-CoV-2 variants (Japan, second half of
2021) [62]. Delta and Omicron 1 co-circulated from November
2021 until February 2022: cases have been reported of co-
infection [63]; one case appeared to be due to laboratory
artifacts [64]. All these recombinants were soon out-competed
by Omicron 2. A full report is provided by Focosi et al. [54]
Notably, the only Variants Of Interest by the WHO at the
time of writing [7], i.e., XBB.1.5 and XBB.1.16, both derived
from the lineage XBB, which recombined from two different
descendants of Omicron 2.

Before SARS-CoV-2, viral recombinants were identified
using algorithms implemented in 3SEQ [65] and RDP3 (Re-
combination Detection Program version 3 now evolved into
RDP5 [66]. These algorithms aggregate several phylogenetics-
based methods to test recombination hotspots and pinpoint
patterns of interest with matrix-based visualizations. A number
of studies applied these methods also to SARS-CoV-2 datasets
[58], [60].

Table III presents the currently available recombination-
detection methods (and connected services) that have been

tested on SARS-CoV-2.

V. OPEN CHALLENGES

Genomic surveillance is the process of constantly moni-
toring pathogens and analyzing their genetic similarities and
differences; it has become of worldwide interest since the
first COVID-19 outbreak at the end of 2019, but can be
put in place for any kind of pathogen. In these last three
years, the fast emergence of SARS-CoV-2 mutations and their
possibly severe epidemiological/immunological implications
have called for continuous and worldwide monitoring of viral
genomes.

At Politecnico di Milano, we produced a series of results
starting from modeling efforts to understand the domain [11],
[12], passing through visualization implementations [50] and
providing effective methods [36] and services [46], [47] for
variant tracking. In parallel, we have also studied how co-
occurrence of specific mutations on lineages can suggest
evolution directions [73]. Additionally, our perspective on the
impact of Omicron mutations on target assays or vaccines
has been commented on the Virological.org forum [74] and a
preliminary attempt to spot recombination on pandemic scales
has been concluded [72].

We defend that – despite the ongoing drop of interest of
the international community toward SARS-CoV-2, possibly
motivated by the end of three years of draining pandemic –
we, as a community, should not leave aside the opportunities
given by this abundance of data and promising computational
problems.

Before, we saw that there exist methods that are mainly
based on unsupervised machine learning algorithms that ex-
ploit a range of features that describe the trends of the epi-
demic. However, such methods present five main limitations:

• they need big amounts of data to produce statistically
relevant evidence;

• they need data to be submitted within a short timeframe
from the collection;

• they are still far from being completely automatic;



TABLE III
OVERVIEW OF DATA-DRIVEN METHODS FOR VIRAL VARIANT IDENTIFICATION

Proponent Study description

VanInsberghe et al. [59]
2021

Methods: Novel lightweight approach for detecting genomes that are (only potentially) recombinant.
Results: Estimation of the % of recombinant circulating viruses (∼0.2-2.5%). Tested on database updated on February 16th,
2021, when no relevant recombinant lineage had been spotted yet.

Muller et al. [67]
2022

Methods: Bayesian framework (Markov chain Monte Carlo approach) to infer recombination networks (for all coronaviruses).
Results: Showed that recombination is extremely common in the evolutionary history of SARS-like coronaviruses. First
approach setting the basis for Bayesian phylogenetic tracking.

Ignatieva et al. [61]
2022

Methods: Parsimony-based method (KwARG) to reconstruct possible genealogical histories for samples of SARS-CoV-2
sequences. It allowed for pinpointing specific recombination events that could have generated the data.
Results: Estimated the minimal number of recurrent mutations required to explain the data set (containing 228 sequences
collected between November 2020 and February 2021) in the absence of recombination.

Preska Steinberg et al. [68]
2023

Methods: Adaptation of the non-phylogenetic, computationally-efficient mcorr method (originally developed for the
analysis of bacterial genomes) to infer the parameters of homologous recombination for SARS-like coronaviruses.
Results: Inference of recombination rates for unsampled viral reservoirs.

Zhou et al. [69]
2023

Methods: Information theory approach (VirusRecom) for viral recombination analysis, not relying on specific mutation
sites. A recombination event was intended as a transmission process of “information” that can be accounted for by using
a weighted information content to quantify the contribution of recombination to a given region on the viral genome.
Results: Shown on simulated data and a few recombinant lineages (namely, XD, XE, and XF), with no information on how
it would apply to pandemic-scale data.
Service: Available as Python source code on GitHub.

Turkahia et al. [70]
2022

Methods: Approach (RIPPLES) based on breaking the potential recombinant sequence into distinct segments and replacing
each of them onto a global phylogeny using maximum parsimony; the reported donor and acceptor are those that result in
the highest parsimony score improvement relative to the original placement on the global phylogenetic tree.
Results: Run on the phylogeny of May 2021, RIPPLES discovered 223 recombination events within branches of the
same Pango lineages and 366 inter-lineage recombination events. These recombinants indicated approximately 2.7% of the
sequenced SARS-CoV-2 genomes belonged to the detectable recombinant lineages. Tested on simulated samples and on
the recombinants identified in [60].
Service: Implemented in the RIVET tool [71].

Alfonsi et al. [72]
2023

Methods: Approach based on the frequency of nucleotide mutations occurring within lineages (as defined by a reference
nomenclature or otherwise determined clusters) and within all the genomes of a given sequence collection. These are used
to score viral genomes by means of a likelihood-based approach and detect recombinant sequences of two lineages.
Results: Recombinant SARS-CoV-2 genomes (or lineages) with one or two breakpoints are recognized with high accuracy,
within reduced turn-around times and small discrepancies with respect to the expert manually-curated standard nomenclature.

• they disregard the possibility of interoperating sequence
and mutation data with known characteristics of the virus;

• they consider frequencies of mutations co-occurring on
genomes, but no other epidemiological factors.

In the following, we outline the open challenges and try to
motivate the interest of the research community that designs
big data services.

A. Support for small-data scenarios

Unfortunately, monitoring based on big data is coarse-
grained and limited in its potential. Especially new viral
pathogens, which may arise unexpectedly, will not provide
an ideal big-data genomic surveillance setting. It is likely that
new alarming events will be more easily caught by analyzing
the arrival of small batches of uncharacterized sequences
with selected characteristics. The future potential of genomic
surveillance stands in small data rather than in big data.
Learning from the experience built on COVID-19, new efforts
should work towards methods that allow handling the data of
a future viral human epidemic, supporting small data-driven
analysis.

Given a virus that is starting to spread in the population, a
novel framework should be put in place that aims to provide

several analysis modules, whose information can be used in
a complementary fashion: 1) historic analysis of patterns of
mutations that regularly reappear in the evolutionary history
of the virus; 2) systematic annotation of conserved areas and
highlighting of mutations in such conserved areas; 3) score
computation to evaluate the level of concern of observed
genomes; 4) identification of sites that are under positive
selection; 5) prediction of possible effects on protein functions
caused by arising mutations.

New approaches could be then tested on epidemic cases
known worldwide, namely small batches of open data regard-
ing COVID-19 cases, Monkeypox (2022), Zika (2015-2016),
and Ebola (2013-2016). When achieved, solutions of this kind
would further advance the state of the art in understanding
the various facets of genomic surveillance depending on the
available small (or, rather, “not so big”) data and the domain
context.

B. Continuous sharing of genome sequences

The continuous and massive depositions of sequences on
behalf of worldwide laboratories are of the uttermost im-
portance for surveillance. Unfortunately, in the first part of
the pandemic, there were large delays between the biologi-



cal material collection and the data submission [75]. More
recently, during the second half of 2022 and the first part of
2023, data sources have recently suffered a strong slowdown
in submissions. Moreover, the GISAID data source – which
has been the undisputed leader of SARS-CoV-2 data sharing
(even with many limitaitons [22]) is becoming more and
more under scrutiny from scientists and funders around the
world [76], [77]. As observed by one of the most virologists
of the pandemic, Edward Holmes of the University of Sydney,
a lesson learned from the pandemic is that data sharing is the
most important thing that the community can do to support
the prevention and control of pandemics.

C. Completely automated methods and services

Many methods and some services for variant and recom-
bination identification are already offered to the community.
However, all of them still need to be triggered by user queries.

Completely automatic warning systems – based on the early
availability of sequences that are deposited to public databases
– should be proposed, taking advantage of the lessons learned
in the COVID-19 scenario.

An automatic monitoring mechanism could be used in the
future as a means to provide alerts to the general scientific
community on the emergence of potentially dangerous mu-
tations in selected regions or in otherwise refined clusters
of collected sequences. Such a system could put at work a
daily genomic surveillance paradigm for sequences presenting
mutations and patterns that are already known in the literature
for their behavior or effects.

D. Integration of sequences and domain-knowledge

Currently, the provided methods and services tend not to
integrate knowledge that is known a priori from domain
experts or previous studies. It would be important to build
a continuous integration framework that feeds data analysis
pipelines with known facts. From this perspective, we can
consider, in parallel, a wide range of annotations that can
be gathered from public databases or predicted based on
similar -known- scenarios. In this sense, a systematic approach
could consider separated modules, each in charge of gathering
one kind of information that – when merged with other
modules’ information – can support the understanding of the
complex mechanisms of the virus. Three are the expected
main areas of interest: 1) functional annotations of protein
regions; 2) conserved genomic regions (i.e., areas that are
typically not mutated); 3) positive selection events (based on
the identification of mutations that – according to predictions
– can confer an advantage in the evolution of the virus).

This kind of information may be predicted by tailored
algorithms, extracted from public databases, or extracted from
scientific literature when no organized knowledge base is
available. In this direction, we worked on CovEffect [78],
a deep learning-based framework to extract SARS-CoV-2
mutations/variants effects from scientific abstracts. A large
language model (GPT-2) is used to predict a series of tuples
from a textual abstract in the form ⟨variation, effect, change

of effect level⟩. For example, we can extract that the mutation
V367F occurring on the Spike protein leads to a virus’
infectivity that is higher than the corresponding wild-type
virus (i.e., the one not showing the mutation).

E. Modeling other epidemiological aspects

For many research questions (e.g., estimating the relative
transmission rates of SARS-CoV-2 variant of concern and
variants of interest [79]), observing frequencies of mutations
co-occurring on genomes is not sufficient. In order to capture
the rich epidemiological behavior of SARS-CoV-2, additional
information is required, such as confirmed case data or the
dependency of mutations (and the related raised variants)
upon the demography of the geographic territories where they
occurred.

VI. FUTURE DIRECTIONS

A. Different geographical scales

Future-generation genomic surveillance services should
tackle different geographical scales:

1) Regional settings, which need to properly monitor epi-
demics in local territories and organize alerting methods
for bigger (country-level) organizations. An example is
that of Lombardy, the region of Italy where the COVID-
19 pandemic originally spread [80]. Another example is
brought by the Brazilian states of the Amazonas and
Ceará [81], [82]

2) Low-resources settings. The WHO has recently analyzed
the context of a number of African countries where
attempts to monitor COVID-19 and SARS-CoV-2 evo-
lution have been undermined by understaffed infrastruc-
tures and a lack of resources [83].

3) Worldwide setting. This is by default monitored by the
World Health Organization, with several tools available
to the public, including the COVID-19 dashboard [51],
periodic bulletins, and the institution of the WHO Tech-
nical Advisory Group on Virus Evolution (TAG-VE) in
November 2021 [84], which has the goal of developing
and implementing a global risk-monitoring framework
for SARS-CoV-2 variants, based on a multidisciplinary
approach.

B. Continuous reporting

Future-generation genomic surveillance services should be
supported by data warehousing tools capable of producing
continuous summarization, with expressive power ranging
from descriptive statistics to complex data mining tasks, con-
cerned for example with the distribution of mutations over
relevant locations of the virus.

Dynamic semi-automatic learning approaches should build
reactive reports on sequence characteristics and distribution,
important for clinics, hospitals, or triage centers. They would
provide quasi-real-time feedback to respond to relevant clinical
questions generated by the virus research community: What
are the infection clusters? Where are isolates with specific



characteristics coming from? Which are the most common
variants? What can we say about co-occurring variants?

In short, by looking at a few new sequences, it would be
possible to already anticipate (or, even, predict) the implica-
tions of its spread and the variant’s representativeness in the
observed population.

C. Support for other viruses and hosts

Past experience with emerging infectious diseases in the
last decade, such as SARS, MERS, Zika, and Ebola, has
demonstrated the importance of genomic data to study the
evolution of pathogens. The most relevant work and meth-
ods have been developed for studying SARS-CoV-2, given
the data and information available for this virus. However,
several data resources are also available for other kinds of
viruses, as reviewed by [85], with NCBI Virus [86] and NIH
Viral Genomes [87] being the most valuable and worldwide
employed resources. GISAID itself has recently expanded to
monkeypox with the EpiPox™ database.

In short, there exists a wealth of data and research ques-
tions on which future approaches can be tested. Genomic
surveillance services should be used to monitor the spread of
viruses also in hosts different from humans [88], as it cannot
be excluded that pandemics could turn into panzootics [89].
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F. Nascimento, G. Silva, Á. Costa, D. Duarte, K. Pessoa, M. Mejı́a
et al., “COVID-19 in Amazonas, Brazil, was driven by the persistence
of endemic lineages and P.1 emergence,” Nature Medicine, vol. 27, p.
1230–1238, 2021.

[82] F. A. da Silva Oliveira, M. V. de Holanda, L. B. Lima, M. B. Dantas,
I. O. Duarte, L. G. Z. de Castro, L. L. B. de Oliveira, C. R. K. Paier,
C. d. F. A. Moreira-Nunes, N. C. B. Lima et al., “Genomic surveillance:
Circulating lineages and genomic variation of SARS-CoV-2 in early
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