Reactive Knowledge Management

Stefano Ceri
Politecnico di Milano
Milano, Italy
stefano.ceri @polimi.it

Abstract—Today’s large knowledge graphs are conceived
mainly for supporting search and e-commerce within large com-
panies such as Google or Amazon, with well-crafted knowledge
creation rules. Our recent experience of the COVID-19 pandemic,
when knowledge has grown at unprecedented rates and has been
often contradictory, inspired us to capture a huge gap in existing
concepts and technology: today’s knowledge management does
not adequately support such a disruptive process. In this article,
we propose the design and prototyping of the next generation
of knowledge management concepts and systems, which will
support domain diversity and scientific evolution as foundational
ingredients.

Change management is based on a reactive approach, well-
established in database systems, but so far lacking in knowledge
systems. We propose the reactive interaction of several knowledge
hubs, each developed within a scientific domain and “owner” of
a portion of a common knowledge representation. Knowledge is
represented as graphs, with nodes and edges; edges may inter-
connect nodes from different hubs. Most importantly, reactive
rules cross the hub’s borders and create the premises for a dis-
ciplined knowledge evolution, even under the pressure of crises.
Similar challenges are not restricted to the recent pandemic and
can address other crisis scenarios, including the catastrophic
consequences of climate change or the recent (r)-evolution in
artificial intelligence, studied by several scientific communities,
whose management requires complex and controversial choices.

Index Terms—Knowledge Management, Knowledge Hubs, Re-
active Processing

I. INTRODUCTION

COVID-19 created an unprecedented challenge for the pro-
duction of scientific knowledge. Several scientific communities
have been called into action to understand and model the
impact of COVID-19, resulting in a huge and swift production
of amazing scientific results. While biotech experts, virolo-
gists, and clinicians were on the front line in fighting the
pandemic, many other communities have been mobilized —
to name a few, epidemiologists, economists, social scientists,
and psychologists. Unexpected events — such as the rise of new
viral variants, the governance of vaccination programs, and
the use of non-pharmacological measures to circumvent the
contagion — have reshaped anti-pandemic strategies throughout
the last two years. Among the sources of scientific controver-
sies, a striking example is the debate on “how, how long, how
strictly” that put into action containment measures for limiting
viral spreading (such as lockdowns or travel restrictions),
considering an array of negative effects on the economy and
society at large [1]], [2].

Anna Bernasconi
Politecnico di Milano
Milano, Italy
anna.bernasconi @polimi.it

Alessia Gagliardi
Politecnico di Milano
Milano, Italy
alessial.gagliardi @mail.polimi.it

Similar challenges, which were exacerbated by the pan-
demics, are indeed characterizing many aspects of societal
evolution, where sudden events radically change a scenario
of incremental evolution. Other highly impacting challenges
are posed by climate change, similarly studied within different
scientific communities, featuring an increase in frequency and
effects of catastrophic events that need to be contrasted not
only by short-term interventions but also by highly controver-
sial long-term policies [3]], [4]]. Similarly, last year’s evolution
of Al technologies has the potential of introducing a new
radical change in many aspects of our society [5], [6].

The rapid acquisition of new knowledge was not assisted
by adequate technology for knowledge management. The
current practice is not appropriate to react to changes; large
knowledge graphs that empower the search engines of major
companies — such as Google [7] and Amazon [8] — change in-
crementally, according to strict graph creation rules, enforced
to guarantee a uniform and robust search. The community
of the semantic web has produced technologies for linking
semantic resources [9]], but most efforts are focused on data
integration, harmonization, and linking rather than dealing
with controversial decision-making scenarios. Our vision has
the objective of enhancing knowledge management for dealing
with radical knowledge changes, by formalizing the concepts
and designing the models, methods, and technology for a new
class of reactive knowledge management systems.

Along this view, knowledge management is organized
around the concept of knowledge hubs; each hub reflects the
requirements of a given scientific community (which may
internally host interdisciplinary contributions) and uses the
most suitable models and methods for knowledge creation
and management. However, knowledge hubs do not act in
isolation; they communicate by means of declarative data
abstractions that interconnect them and support reasoning at a
global level. In our vision, selected portions of the available
knowledge at each hub will contribute to the creation of
knowledge to be integrated and shared with other hubs. More
specifically, each knowledge hub will have control over a
specific portion of a partitioned knowledge graph, by having
full responsibility for the management (i.e., creation, update,
or deletion) of the nodes assigned to that partition. While
most edges will also be managed within the graph, a few
well-crafted edges, designed according to agreed data linking
protocols, define knowledge bridges by connecting nodes
managed by different hubs. In this way, available knowledge

at each hub will be integrated, thereby generating a single (but
partitioned) knowledge graph.

Our driving principle for managing knowledge change is to
augment knowledge management with reactive components,
which perceive local changes and produce — as a reaction
— new global knowledge; they augment classic methods al-
ready implemented and used in database management systems,
but still completely lacking in knowledge management prac-
tice. Today’s knowledge managers are passive: they are not
equipped to radically change their content based on occur-
ring events. Surprisingly, the work on active databases [10],
[11] has not yet influenced the development of knowledge
managers. However, the addition of reactive components is
perhaps even more relevant for knowledge managers, which
are affected by major changes at a coarse granularity, rather
than databases, where the so-called “database triggers” are
enacted as a result of elementary changes.

In this vision, reactive knowledge managers support a highly
expressive reactive rule language, enabling high-level reason-
ing; rules follow a classic event-condition-action paradigm,
where events are raised at knowledge creation (i.e., creation
or deletions of nodes and edges), conditions (renamed guards)
check if potential hazards occur, and — if so — actions (renamed
alerts) look for critical conditions and, if occurring, produce
side effects on the knowledge (i.e., addition or deletion
of nodes and edges). Ideally, a query language over such
graphs should add to classic relational calculus also recur-
sion, data aggregation, and statistical extensions (e.g., various
expressions for defining statistical significance). In order to
effectively reflect knowledge partitioning, guards should be
evaluated within a single hub, whereas alerts could in the most
general case involve several hubs, both in terms of required
knowledge and side effects.

An important question is to evaluate which underlying
technology is most suited in order to support this vision. Tech-
nological solutions provided by the semantic web community
provide many ingredients towards our objectives, including
expressive knowledge languages (e.g., RDFS/OWL) and pow-
erful data linking methods. However, we are also witnessing
important progress in graph databases, in terms of scalable
solutions for big data management as well as semantic enrich-
ment in the direction of query language standardization [12],
[13] and richer support of classical relational concepts, such
as schemas and keys, in the context of property graphs. In
particular, we subscribe to this effort with our proposal of
defining standard triggers for property graphs. Thus, along
with our proposal, we also briefly examine how it could be
supported by means of suitable extensions of graph databases.

This article is organized as follows: after the related work
(Section [M), we introduce reactive knowledge graphs (Sec-
tion [[I), by first discussing its partitioning into knowledge
hubs, then illustrating the reactive rules with their components
(events, guards, alerts), presenting orthogonal rule classes,
and finally discussing how logging can be supported in our
framework, using the concept of alert nodes. We also present,
in section (Section [IV), a prototype implementation of these

concepts on Neodj, one of the most widely used graph
database systems. In the discussion (Section , we indicate
future research topics and explain how reactive knowledge
management can shape our responses to crisis scenarios.

Our proposal is general and suited to manage arbitrary crisis
scenarios; to give substance to our vision, we consider, as a
running example, a simple scenario inspired by the COVID-19
pandemic, and use it to exemplify each aspect of the proposal.
In our COVID-19 related research, we developed the CoV2K
model [|14]], a knowledge graph interconnecting large datasets
of SARS-CoV-2 sequences (EpiCoV [[15]] and GenBank [16])
and epitopes (IEDB [17]) with knowledge entities representing
variants, their effects (in terms of disease severity, transmis-
sibility, vaccine escape, etc.), their composition (in terms of
sets of mutations, which have specific positions along the
structure of the viral genome/proteins), the peculiarities of
mutations (due to their original and alternative nucleotide or
amino acid residues), and the definition of particular regions
of the viral genome, with given functions. A public API
(http://gmql.eu/cov2k/api/) allows users to perform targeted
searches that interconnect data and knowledge. In CoV2K,
nodes are clustered within areas, representing topics of interest
that are studied by different communities; thus, CoV2K is a
partitioned knowledge graph, in agreement with the definition

that will be given in Section

II. RELATED WORK

Knowledge graphs are knowledge bases that use a graph-
structured data model to integrate data. The term became
popular around 2010 when knowledge graphs gained popu-
larity both in academia and industry. In general, they are di-
rected labeled graphs composed of nodes and edges, used for
the organization and integration of information about known
“entities”. One of the most important initiatives is Wiki-
data’s Knowledge Graph [18], a collaboratively edited open
knowledge graph providing data, which includes information
extracted from Wikipedia. As of 2023, Wikidata contains
more than 100 million distinct entities (or objects) [[19] and
more than one billion relationships among them, extracted
from different catalogs in various languages and published by
independent data providers. Knowledge graphs are part of the
search engines hosted by major companies, such as Google [7]],
Bing [20]], and Amazon [§].

Graph databases are increasingly employed for representing
the connections that exist in the real world [21]]. Thanks to their
expressive query languages and strong performance, they are
steadily more used to store large knowledge graphs. Standards
for graph databases are emerging, most importantly the Graph
Query Language (GQL) [22]]; GQL is strongly inspired by
Cypher [23]], the query language of Neo4j [24], which in turn
is the most successful graph database engine to date [25].

The research community has proposed various approaches
for enriching the semantics of graph databases, first by shap-
ing them in the form of Property Graphs [26], and then
by defining the notions of PG-Keys and PG-Schema. PG-
Keys [27] are unique identifiers assigned to arbitrary subsets

http://gmql.eu/cov2k/api/

of nodes and edges within a property graph database. A PG-
Schema [28|] adds to property graph databases a formalized
schema, addressing the need for a standardized approach to
schema management, enabling users to define and enforce
data constraints, specify relationships, and establish a clear
structure for their graph data.

In a recent manuscript, we proposed PG-Triggers [29].
Triggers exist since the birth of relational databases [10]; they
have been studied in [11] and formalized in the ISO-ANSI
SQL3 Standard [30]. So far, they have not been formalized
by the graph database research community, although they can
be informally supported by various graph database systems.
Hence, we introduced PG-Triggers as a proposal for influenc-
ing future standard development and suggesting new directions
to the evolution of graph databases.

III. REACTIVE KNOWLEDGE GRAPHS
A. Fartitioned Knowledge Graphs

A Knowledge Graph is modeled as a property graph,
whose elements are nodes and edges, which are directed links
between nodes; we assume both nodes and edges to be labeled,
and they can include valued properties. Although this is a
minimum requirement, knowledge graphs could be further
enriched with other semantic aspects, e.g., those discussed in
PG-Schema [28]] and PG-Keys [27].

In our approach, knowledge graphs are partitioned. More
precisely, each node is assigned to a knowledge hub, which is
responsible for creating and administering these nodes and the
internal relationships (i.e., edges) connecting them. Selected
relationships may connect nodes assigned to different graphs,
thereby linking knowledge hubs and allowing exchange among
different communities. Data linking has a long tradition,
following Tim Berners-Lee’s terminology [31] that has been
later adopted by the Semantic Web Community [32[], [33].

Running Example: COVID-19 and SARS-CoV-2. In this
article, we consider a reactive knowledge graph for monitoring
the spreading of a dangerous viral mutation in a geographical
region. We identified four knowledge hubs, represented in
Fig. [T}

o Experimental hub (E) that studies mutations’ effects.

e Analysis hub (A) that performs viral genome sequenc-
ing within a given region and associates each human-
collected sample with known viral variants.

e Clinical hub (C), located at a given hospital within a
region.

e Regional hub (R), responsible for deciding the policies
for a given region; it collects information from sequenc-
ing centers and hospitals in that region.

For a precise definition of the data graph, we use the abstrac-
tions from the PG-Schema proposal [28]], taking advantage of
its rich semantics. The adoption of PG-Schema makes graph
databases more similar to relational databases, especially with
a STRICT graph type definition, where nodes and relation-
ships are uniquely identified by labels, in the same way as
table names identify relational tables. The PG-Schema of our
running example is shown in Fig.

B. Reactive Rules

Reactive rules for knowledge graphs follow an event-
condition-action paradigm, where events monitor graph
changes, i.c., creation and deletion of nodes and edges or the
setting and removal of labels and properties; the condition, also
called guard, monitors the situation that is created after the
knowledge change; if the situation requires further analysis,
the action, called alert, checks for a critical condition; if it
occurs, the alert produces side effects. A simple and minimally
impacting side effect is to create a special node, called
alert node, whose content summarizes the critical condition
observed in the graph. Thus, a reactive rule is defined by the
quadruple <Event, Guard, Alert, Alert node>. Next, we detail
the role of each component, exploiting the Cyphe query
language [23]].

e The Event is any of the following pairs: cre-
ation/deletion of nodes/relationships, or setting/removal
of labels/properties. Along the tradition of relational
triggers, each specific node or relationship that is changed
in the graph is denoted by the transition variable NEW.
Events referring to a relationship should normally refer to
an internal relationship, i.e., relationships interconnecting
nodes managed by a given hub.

e The Guard is an existential predicate, written in Cypher,
normally focused on information managed within a hub;
when true, it reveals situations that deserve further inves-
tigation.

e The Alert is a Cypher query of arbitrary complexity that
further analyzes the situation, to determine whether it is
critical: when this happens, the Alert produces a new
node that retrieves from the entire knowledge graph the
information necessary to manage the critical situation.

o The Alert node is labeled Alert, it has three mandatory
properties, the associated rule, the hub producing the
rule, and the creation time of the alert; then, it has
additional properties that depend upon the specific critical
situation.

Each rule is created within a hub, responsible for specifying
the guard and alert and for designing the information carried
by the Alert node; the hub is assigned based on the specific
domain knowledge mastered at that hub. The produced Alert
nodes are shared by all hubs; the history of Alert nodes is made
accessible by means of a suitable data structure (as described
in Section |lII-D).

Note that graph database engines (e.g., Neo4j) provide a
coarse granularity for events, as they capture just the insertion
or deletion of nodes and edges, with their labels and properties.
We instead force the guards to be relevant only to nodes
and relationships with a given label — this is similar to the

'Cypher syntax has rounded brackets for (nodes) and arrows for
-[:relationships]->. Queries represent graph patterns through the database
data, e.g., (node)-[:is_connected_to]->(otherNodes). The keyword MATCH
(like SELECT in SQL) searches for an existing pattern in the database;
a match can be optional or conditioned to a WHERE predicate. Parts of a
pattern/query can be referenced by means of variables, multiple query parts
can be chained together using WITH.

A GUARD
New mutation

EXPERIMENTAL HUB (E) ANALYSIS HUB (A)

V./Y New unassigned

GUARD

sequences REGIONAL HUB (R)

er_x___'

| ALERT |
| New mutation |

Ihas critical effect!
4

Sequence 1 J

1

Mutation
Effect 1

}7 Mutation 1

. Sequence 2
Mutation 2

Sequence 3
Sequence 4

Mutation
Effect 3

k Mutation 3
‘,— Mutation 4

J,

Sequence 5

Mutation

Effect 2 Sequence 6

Mutation
Effect 3

Mutation 5

Sequence 7

Sequence 8 J

7 Sequence9

ALERT '
Region-based count
of unassigned sequences
above threshold

Delta
N S |
Omicron y ALERT T
‘ALERT } CLINICAL HUB (C) 1Significant increase of |
. T | region-based ICU |
Region-based count of 1 admissions \
unassigned sequences | | —=—-—=== T——
with critical-effect-
mutation above threshold Patient 1 "— 1CU treatment
Unknown
variant
Patient2 = ICU treatment
Patient 3 ‘ 4
Hospital
GUARD

[Count of patients with
/) critical-effect-mutation
above threshold

Fig. 1. Partitioned knowledge graphs for the running example; it includes the experimental (E), analysis (A), clinical (C), and regional (R) hubs. Nodes of the
graph describe (from left to right) mutation effects, mutations, labs, sequences, variants, hospitals, regions, patients, and their treatments. Four rules R1-R4

are specified by pairing guards and alerts.

CREATE GRAPH TYPE CovidGraphType STRICT {
(mutationType: Mutation {name STRING, protein STRING}),
(criticalEffectType: CriticalEffect {description STRING}),
(sequenceType: Sequence {accession-id STRING}),
(variantType: Variant {name STRING}),
(labType: Laboratory {name STRING}),
(patientType: Patient {patient-id STRING, admissionDate DATE,

name STRING, sex CHAR}),

(icuPatientType: IcuPatient {admittedTolcu BOOL}),
(hospitalType: Hospital {name STRING}),
(regionType: Region {name STRING}),
(:mutationType)-[riskType: risk]->(:criticalEffectType),
(:mutationType)-[foundInType: foundin]->(:sequenceType),
(:sequenceType)-[belongsToType: belongsTo]->(:variantType),
(:sequenceType)-[sequencedAtType: sequencedAt]->(:labType),
(:patientType)-[hasSampleType: hasSample]->(:sequenceType),
(:labType)-[locatedInType: locatedIn]->(:regionType),
(:patientType)-[treatedAtType: treatedAt]->(:hospitalType),
(:patientType)-[treatedWithType: treatedWith]->(: icuPatientType),
(:hospitalType)-[locatedInType: locatedIn]->(:regionType)
// Constraints
FOR (x:sequenceType)
EXCLUSIVE MANDATORY SINGLETON x.accession-id,
FOR (x:patientType)
EXCLUSIVE MANDATORY SINGLETON x.patient-id }

Fig. 2. PG-Schema specification for the running example.

triggers targeting tables, a mechanism that occurs in relational
databases. Note also that, by limiting the alert action to
creating a new Alert node, in this paper, we do not further
discuss the real-world reaction that will deal with the critical
situation. Finally, note that alerts with arbitrary side effects can
cause the cascade of node and relationship changes, thereby
introducing problems such as the termination and confluence
of reactive computations [11]], [34].

Running Example: Reactive Rules. Let us consider rule

R2 of Fig. [I] restated as follows: when a new unassigned
sequence is created, if the number of unassigned sequences
for a geographical region goes above a critical threshold,
then define an alert with suitable information. Fig. [3| shows
the quadruple <Event, Guard, Alert, Alert node> both in
visual form (A) and as Cypher code (B). Specifically: (1)
the triggering event is the creation of a new node of type
Sequence; (2) hence the guard includes a check on the
corresponding label and a condition that the NEW sequence
is unassigned; (3) the alert is a complex query counting the
unassigned sequences in any laboratory of the region and
returning a true value if such count is above a given threshold;
(4) the new Alert node includes the rule acronym, the hub, the
creation time, and the value of the counter.

C. Rule Classification

We distinguish two orthogonal classes of reactive rules;
based on their scope, rules are:
e intra-hub, when their scope (nodes and relationships
affected by guards and alerts) is within a single hub;
o inter-hub, when their scope is arbitrary.
Considering instead the possibility of consulting state infor-
mation, rules are:

o single-state, when their Alert part refers just to the current
state of the knowledge graph;
multi-state, when their Alert part requires comparing

several states of the knowledge graph.

Running Example: hub-specific reactive rules. Fig. [I]
illustrates four reactive rules; all of them monitor events of
type “new node created”. We next present them informally;
the full account of the four rules, expressed in Neo4j APOC-
triggers (see Section [IV)), is in the GitHub repository [33].

The Experimental Hub presents a single-state and intra-
hub rule R1. The guard checks for a mutation creation, and

A v oo aerr (|
GUARD Region-based count
— New unassigned of unassigned

sequence

sequences
above threshold

ALERT CONDITION CREATION
CHECK ON LABEL

‘Is the new node of type
Sequence?’

CHECK CONDITION

node:label
‘Does this new sequence = ‘Alert’
belong to an unassigned

variant?’

B TRIGGERING EVENT ALERT
Create_node (Sequence) MATCH (NEW) - [:SequencedAt]- (:Lab)
-[:LocatedIn] - (r:Region)
MATCH (:Variant{name: ‘unassigned’})
—[:BelongsTo] - (s:Sequence)
CHECK ON LABEL - [:SequencedAt] - (:Lab) - [:LocatedIn]-(xr)
node:label = ‘Sequence’ WITH COUNT(s) as sequences
WHERE sequences >= threshold
ALERT NODE CREATION
CHECK ON CONDITION
EXISTS (NEW)-[:BelongsTo]- CREATE (:Alert{rule: ‘R2’, hub: ‘E’,

datetime: DATETIME(),

(:Variant{name: ‘unassigned’}) N_sequences: sequences) }

Fig. 3. Schematic representation of rule R2 (A) and Cypher code (B) for
each element of the scheme.

the Alert then checks if the new node has a connection with
a node of type Effect and critical property.

The Analysis Hub presents two reactive rules R2 and R3;
they share the Guard, which looks for the existence of new
sequence nodes whose variant has not been defined yet (i.e.,
unassigned sequences). Both rules refer to the labs within
a given region; they are inter-hub (as they need to access
the region node in the region hub; the second one needs
also to access the experimental hub) and single-state, as their
predicates use fixed thresholds.

Finally, the Clinical Hub has a single rule R4 whose Guard
counts the number of patients associated with a mutation
with a critical effect within a region and returns a true value
when the counter exceeds a threshold. The Alert compares the
number of patients in the ICU in the current and past states
and produces an Alert node if such comparison indicates a
significant increase; thus, the rule is inter-hub, multi-state.

D. Alert nodes logging and its exploitation

As mentioned in Section rules may compare multiple
states of the knowledge in the graph. While this problem is
well-managed by active databases for the relational model by
means of the NEW and OLD transition variables, respectively
denoting the state transition associated with the transaction that
causes the trigger activation, in a graph database the concept
of OLD state of the graph is missing, and more in general
we do not want to exploit the concept of transaction to define
knowledge rules - as knowledge graphs may be contributed
by processes which are not under centralized transactional
control. Thus, we need to think of an out-of-the-box solution
to tackle this problem.

Given that reactive knowledge bases can apply to a variety
of scenarios, we opted for considering application-specific
time intervals, whose length may vary (e.g., from minutes to

hours, days, weeks). Accordingly, a period of observation
refers to a specific time interval during which alert information
is recorded and stored; the comparison of alert information
over various periods allows for identifying trends and patterns
over time.

CREATE GRAPH TYPE EssentialSummary STRICT {
(summaryType: Summary {date DATE}),
(alertType: Alert {rule STRING, hub STRING, dateTime DATETIME, OPEN }),
(currentType: summaryType & Current),
(:summaryType)-[nextType: next]->(:summaryType),
(:summaryType)-[hasType: has]->(:alertType)
/] Constraints
FOR (x:summaryType)
EXCLUSIVE MANDATORY SINGLETON x.date,
FOR (x:alertType)
EXCLUSIVE MANDATORY SINGLETON x.dateTime }

Fig. 4. PG-Schema specification for the Essential Summary

To manage this information, we designed an auxiliary graph
data structure, called Essential Summary, whose function is
to cluster Alert nodes relative to the same period. In this
model (shown in Fig. E]), each time interval is associated
with a Summary node, progressively labeled and carrying
a specific time point as a property. The most recently created
summary node is denoted as Current node; when new Alert
nodes are created (with the usual properties and an OPEN
schema to allow for additional ones), they are linked to the
current node. At the end of the current interval, a new summary
node is created, labeled with its specific time, representing the
new current node. As shown in Fig. 5} the Summary nodes
(including the current one) are chained by a next relationship,
which allows traversing the Essential Summary data structure
from the oldest summary up to the current node.

As a whole, the knowledge base consists of the entire
knowledge graph, which is subject to arbitrary changes in
its content, and the Essential Summary structure, containing
all the nodes of type alert created along the knowledge base
history. Rules may refer to arbitrary parts of the knowledge
base and Essential Summary. We argue that this model, once
coupled with careful modeling of the information contained in
the Alert nodes, elegantly supports concepts that recall the old
and new states of active databases, although with a periodic
nature set by the need of the knowledge management scenario.
Indeed, this model can be much more powerful, as properties
associated with Alert nodes are arbitrarily complex.

Running Example: Alert node logging. Recall that rule
R4 of the Clinical Hub requires comparing the number of
ICU patients between two subsequent states (periods); we here
discuss an alternative implementation of R4, that we denote as
R4'; Assume that an auxiliary rule R5, activated by each new
patient admitted or discharged from ICU treatment (not shown
in Fig. [I), computes their daily count over a given region;
hence, at each period (of 24 hrs), summary nodes are linked to
Alert nodes, written by rule R5, with properties Region and
IcuPatients. Let us focus on the *Lombardy’ region.

Dayt,, Day t,

NdRd

PC

Fig. 5. Schematic representation of the Essential Summary data structure,
showing four periods, each one day long.

Day t,; Day t,,

Then, the daily difference (either positive or negative) of
ICU patients can be computed by summing the current value
of ICU patients in Lombardy and comparing it with the counter
of ICU patients in Lombardy of the previous day, available in
the Essential Summary. Then, in the Alert of rule R4/, a first
query counts today’s number of ICU patients in Lombardy
and a second query reads the counter of patients in Lombardy
from yesterday’s summary. The Alert code for R4’ is then:

MATCH

(:Region{name: ‘Lombardy’ })
—[:LocatedIn] - (:Hospital)
—[:TreatedAt] - (:Patient)
—[:TreatedWith] - (i:IcuPatient)

WITH count (i) as TodayIcuLomb

MATCH (a:Alert{rule:‘R5’,Region: ‘Lombardy’})
—[:has]—-(:Summary)-[:Next]—-(:Current)

WITH a.IcuPatients as YesterdayIcuLomb,
TodayIcuLomb

WHERE toFloat (TodayIcuLomb-YesterdayIcuLomb) /
toFloat (TodayIcuLomb) > 0.1

Finally, rule R4’ creates the Alert node:

CREATE (:Alert{rule: ‘R4’, hub: ‘C’,
datetime: DATETIME (), Region: ‘Lombardy’,
description: ‘Significant Increase
of ICU patients’})

The availability of daily counts of IcuPatients along the
Essential Summary structures makes it possible to compute
more interesting statistics, such as mobile averages (e.g., over
the last seven days) so as to monitor critical situations more
carefully, by smoothing peaks.

IV. MAPPING REACTIVE KNOWLEDGE RULES TO NE0O4J

In this section, we consider how reactive rules can be
deployed on the Neo4j prototype. We concentrate upon the
concepts introduced in Section [[TI} by dealing with knowledge
partitioning, rule translation, and alert logging.

A. Partitioned Knowledge Graphs

As knowledge partitioning into distinct hubs reflects the
presence of several diverse knowledge domains, we expect that
knowledge within each hub will be produced autonomously,
as a result of the models and methods of a well-identified

community, that is typically of a scientific nature but may
also include regulatory committees, e.g., from geographic
regions. Each community manages data in arbitrary formats,
but we expect that a data subset will be eventually produced
in graph format, for supporting knowledge exchange and
sharing, yielding to the partitioned knowledge graph presented
in Fig.

A partitioned graph database can be supported by many
underlying architectural choices. Each partition could be man-
aged by a different database engine, in the context of a
federated system; in such cases, links among partitions can
be supported along classic methods discussed in the semantic
web and linked data community [9]]. Alternatively, the entire
graph could be supported within a single, scalable database
engine, possibly deployed on the cloud. For what concerns
data modeling, we simply expect that each node of the graph
will include, as a mandatory property, the identity of the
hub where the corresponding information is owned. Then,
any Cypher query over such a graph can be interpreted as a
federated database query, and executed in a way that depends
upon the underlying architecture.

B. Rule Translation

Reactive rules in databases are typically implemented us-
ing event-driven triggers; they are not directly supported in
Cypher, thus we consider APOC (Awesome Procedures on
Cypher), a community-contributed library for augmenting the
Cypher query language supported by Neo4ﬂ The library
includes over 450 procedures, providing functionalities for
utilities, conversions, graph updates, data import, data transfor-
mation, and manipulation. We here provide a general scheme
for the syntax-directed translation from knowledge rules into
Neo4j APOC triggers, by considering a rule activated on node
creation; along [29], the translation can be easily generalized
to all rule events.

We use the apoc.trigger procedures, which handle
events and their processing. By means of these procedures,
triggers can be created, deleted, paused, and resumed; the
creation of a trigger uses the following syntax (excluding
parameter config, not relevant for the trigger translation):

apoc.trigger.install (dbName, triggerName, statement,

selector)

We next describe the syntax-directed translation of reactive
rules into APOC triggers, described in Fig. [The APOC
install procedure has four parameters: the dbName, the
triggerName, the statement (surrounded by a red rect-
angle) and the selector (i.e., action time). The richest
parameter is the statement, which is constructed as a
sequence of three sub-statements.

o The first one is a call to the UNWIND clause, returning
each node created by the rule into the cNode variable.

o The second one is used to translate the Condition part of
the rule, using the cNode variable.

2We refer to Version 5.10, available as of August 2023.

NEW NODE

CREATED GUARD

statement of

'triggerName' apoc.trigger

— New unassigned
sequence

above threshold

ALERT CONDITION CREA

W! ALL apoc.trigger.install(
Region-based count ' e'
—_ of unassigned

" UNWIND [$createdNodes| AS cNode
[condition query(cNode)l

CALL apoc.do.when(

NEW: label

*Does this new sequence
belong to an unassigned
variant?’

_[statement (NEW)| ',

YIELD value RETURN * ",

{NEW:cNode})

phase: 'afterAsync'});

Fig. 6. Syntax-directed translation from reactive rules to Neo4j APOC triggers.

CALL apoc.trigger.install (‘dbName’, ‘triggerName’,
"UNWIND $createdNodes AS cNode
MATCH (cNode)-[:BelongsTo]
—(:Variant {name: ‘unassigned’ })
CALL apoc.do.when (
NEW: Sequence,
‘MATCH (NEW)-[:SequencedAt]- (:Lab)
—[:LocatedIn] - (r:Region)
(:Variant {name: ‘unassigned’})
—[:BelongsTo] - (s:Sequence)
—[:SequencedAt] - (:Lab)-[:LocatedIn]-(r)
WITH COUNT (s) as Nsequences
WHERE Nsequences >= threshold
CREATE (:Alert{rule: ‘R2’, hub:
datetime:DATETIME (), N_sequence:
V', {cNode: NEW})
YIELD value RETURN
{phase: "afterAsync’});

MATCH

‘B,
Nsequences})’,

"
* r

Fig. 7. Translation of the rule presented in Fig. E| into a Neo4j APOC trigger,
generated along the syntax-directed translation of Fig. |§l

o The third one uses the APOC do.when procedure for
translating the Action part of the rule, and possibly
creating the Alert node.

The do.when procedure, in turn, has four parameters: the
condition, the action if the condition is met, the action if the
condition is not met, and the operands that can be used in
the condition and action. In particular, the fourth parameter
assigns the cNode value to the NEW variable, which can be
used in the do.when condition and action.

The do.when condition checks that the NEW variable is
upon a node having the correct label. The first do.when
action is executed when the condition is true; it uses the
Alert condition (taken from the left side) and is completed
by the Alert node creation (also taken from the left side),
which is performed when the Alert condition reveals a critical
situation. Finally, the trigger is completed by fixed code
(YIELD value RETURN =), which has no side effects.

Let us consider the rule presented in Fig. [3} its translation
into a Neo4j APOC trigger, generated along the syntax-
directed translation scheme of Fig. [} is shown in Fig. [}

C. Management of Essential Summary

Essential summaries must be periodically managed, by
tracking each change of period. In Neo4j, this processing

CALL apoc.periodic.repeat("graph timestamp",

"MATCH(s:Summary) current datetime — datetime of

WITH e ORDER BY s.versionDate DESC the last Summary node > 24 hours
WITH collect(s)[0] AS summary

CALL apoc.do.wher{(dateTime()+duration. p p=

y.creationTime), dateTime()

> dateTime()+duration('PT24H),

J——>Select the Current node

——Remove the label Current

CREATE (new:Current:Summary{date: date()}) — Create the new Current node with the current date

)—-Add a ‘Next’ relationship between the new Current node
and the last Summary node

['MATCH (c:Current)

VE c:Current

[MERGE (c)-[:NEXT]->(new)

RETURN new',

AN

YIELD value RETURN value.node AS node”, 3600);

Fig. 8. Creation of the Essential Summary. The APOC-based periodic repeat
query activates at every hour. The first query checks that more than 24 hours
have elapsed since the last creation of a new summary node. The second query
is activated only when a new Current node must be created and appended to
the chain of summary nodes.

can be performed by using the apoc.periodic procedure,
capable of periodically executing a statement, with the syntax:

apoc.periodic.repeat (‘name’, statement,
repeat-rate-in-seconds)

Parameters refer to the statement name, the Cypher statement
to be executed, and the period of execution; another parameter
config is not relevant for the periodic execution. The method
is illustrated in Fig. [8] The latest summary (LS) is initially
retrieved, and then a test is performed about the time elapsed
between the LS daytime and the current time; when it exceeds
24 hours, the Essential Summary structure is extended by
adding a new summary node, labeling it as the current node
and linking it to LS. Note that this solution requires a central-
ized management process, whereas all other aspects of reactive
knowledge management can be distributed and parallelized.

D. Experiments over large graphs

We considered the development of an alerting system based
upon reactive rules, signaling those regions where severe cases
are significantly increasing; in particular, a critical situation
occurs when admissions grow by 10% during two consecutive
days. With a naive design, this condition is recognized by
a rule whose guard is simply the creation of a new patient;
the alert is a comparison of counters of patients, grouped by
region, which extracts critical regions and creates Alert nodes
reporting the Region’s name and the number of patients in the

two consecutive days. The execution time of the trigger for an
increasing number of patients is shown in Fig. [9] where both
execution time and patient number are in logarithmic scale.
The system scales linearly; the execution of 1M trigger in-
stances takes about one thousand seconds (i.e., 16.6 minutes).
We executed experiments on a one-node server powered by
an Intel Xeon CPU E5-2660 with 56 cores and 378GB of
RAM; here, Neo4j runs on a dedicated docker image with a
maximum allowed RAM of 200 GB and a cache of 80 GB.

Reactiveness of trigger fired by patients nodes

--+- Execution time

10

10 -

10 -

Seconds

107 -

10°
Patients

Fig. 9. Execution time for triggers enacted at each new patient

We then considered how to improve rule execution times
while keeping the same semantics, and observed that the
computation of summary information by regions is repeated
for each patient, while in principle it should be performed
just once for each region; we then designed a second version
of the rules, which uses essential summaries. We added to
the patient creation script a new operation, linking each daily
summary node to regional statistics, storing for each region the
counter of patients. Then, we designed a new rule triggered
by the creation of regional daily statistics, that monitors the
creation of summary nodes and compares, for each region, the
counters in the current day’s summaries with the counters in
the previous day’s summary, found by accessing the current
node and traversing the Essential Summary data structure. The
second rule design performs globally much better, as shown
in Fig. we show the summary computation time and the
execution time of triggers, both in the order of seconds, while
patients increase are still in logarithmic scale. We note that
the former execution time grows with the number of patients,
and the latter is essentially stable, as it mostly depends on the
number of regions, which is fixed.

V. DISCUSSION

We explored the design of knowledge management systems
capable of coping with crisis scenarios, when knowledge is
rapidly produced within different scientific communities; we
demonstrated these concepts at work in a prototype, inspired
by our recent research on COVID-19, and we also showed that
graph databases can adequately support these concepts, once
deployed on big data graphs.

Reactiveness using Stat nodes

-+- Creation of summarizing nodes ;
/

-+~ Execution of trigger J
20]
i

Secands

05

0.0 y T T
100 10° 108

Fig. 10. Execution time for summary computation and triggers enacted at
each new summary creation

In our future work, we intend to push these concepts further,
by turning them into the design of a solid architecture for
reactive knowledge management, with well-identified archi-
tectural components, also considering that each knowledge
hub will be deployed by distinct scientific organizations or
regulatory bodies using its own computing infrastructure; we
will therefore deal with supporting knowledge management in
a distributed/federated setting, both from a computational and
organizational point of view.

Rule design is a complex and intriguing field of research,
briefly touched on in our experimental section, where we
showed that data summarization in rule design may lead
to significant global savings; indeed, several problems open
up, from a careful design of Alert nodes describing critical
situations to adding full reactive capacity to rules by extending
rules beyond the creation of Alert nodes. Supporting reactive
processing directly within rules can be very effective, as
reactions to critical conditions may be programmed directly
within knowledge systems, but may cause rule cascading
and therefore introduce other rule design problems, including
guaranteeing their termination.

We would also like to experiment with how reactive process-
ing can support what-if scenarios, by designing different cases
of rule reactions and then showing their effects, by letting
the knowledge management system evolve in different ways.
This of course requires deeper changes to the infrastructure
and a tight integration of reactive processing with hypothetical
reasoning.

In summary, this paper opens up a number of interesting
applications and research scenarios, that we intend to follow
up on in the future.

RESOURCES

A prototype Neo4j graph database, with scripts for data
creation and population and APOC triggers for the four
reactive rules presented in Section III.C, is provided on a
GitHub repository [35].

ACKNOWLEDGMENT

The authors would like to thank Andrea Colombo and
Francesco Invernici for their support in conducting the experi-
ments over large graphs. This paper is supported by PNRR-PE-
Al FAIR project funded by the NextGeneration EU program.

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

S. Chang, E. Pierson, P. W. Koh, J. Gerardin, B. Redbird, D. Grusky, and
J. Leskovec, “Mobility network models of covid-19 explain inequities
and inform reopening,” Nature, vol. 589, no. 7840, pp. 82-87, 2021.
G. Bonaccorsi, F. Pierri, F. Scotti, A. Flori, F. Manaresi, S. Ceri, and
F. Pammolli, “Socioeconomic differences and persistent segregation of
italian territories during covid-19 pandemic,” Scientific reports, vol. 11,
no. 1, p. 21174, 2021.

P. Gazzotti, J. Emmerling, G. Marangoni, A. Castelletti, K.-I. v. d. Wijst,
A. Hof, and M. Tavoni, “Persistent inequality in economically optimal
climate policies,” Nature Communications, vol. 12, p. 3421, 2021.

A. Carlino, M. Tavoni, and A. Castelletti, “Self-adaptive multi-objective
climate policies align mitigation and adaptation strategies,” Earth’s
Future, vol. 10, no. 10, p. €2022EF002767, 2022.

Think Tank FEuropean Parliament, “Artificial intelligence act,
2023, last accessed: Nov. 24th, 2023. [Online]. Avail-
able: https://www.europarl.europa.eu/thinktank/en/document/EPRS _
BRI(2021)698792

The White House, “FACT SHEET: President
Executive Order on Safe, Secure, and Trustworthy Artificial
Intelligence,” 2023, last accessed: Nov. 24th, 2023. [Online].
Available: https://www.whitehouse.gov/briefing-room/statements-
releases/2023/10/30/fact- sheet-president-biden-issues-executive-order-
on-safe-secure-and- trustworthy-artificial-intelligence/

A. Uyar and F. M. Aliyu, “Evaluating search features of Google
Knowledge Graph and Bing Satori: entity types, list searches and query
interfaces,” Online Information Review, vol. 39, no. 2, pp. 197-213,
2015.

X. L. Dong, “Challenges and innovations in building a product knowl-
edge graph,” in Proceedings of the 24th ACM SIGKDD International
conference on knowledge discovery & data mining, 2018, pp. 2869—
2869.

T. Heath and C. Bizer, Linked data: Evolving the web into a global data
space. Springer Nature, 2011.

K. P. Eswaran, “Aspects of a trigger subsystem in an integrated database
system,” in Proceedings of the 2nd International Conference on Software
Engineering, ser. ICSE °76. Washington, DC, USA: IEEE Computer
Society Press, 1976, p. 243-250.

J. Widom and S. Ceri, Eds., Active Database Systems: Triggers and
Rules For Advanced Database Processing. Morgan Kaufmann, 1996.
“ISO/IEC 39075. Information technology - Database languages - GQL.
Standard. International Organization for Standardization,” 2023, geneva,
CH.

A. Deutsch, N. Francis, A. Green, K. Hare, B. Li, L. Libkin, T. Lin-
daaker, V. Marsault, W. Martens, J. Michels et al., “Graph pattern
matching in gql and sql/pgq,” in Proceedings of the 2022 International
Conference on Management of Data, 2022, pp. 2246-2258.

T. Alfonsi, R. Al Khalaf, S. Ceri, and A. Bernasconi, “CoV2K model,
a comprehensive representation of SARS-CoV-2 knowledge and data
interplay,” Scientific Data, vol. 9, p. 260, 2022.

Y. Shu and J. McCauley, “GISAID: Global initiative on sharing all
influenza data—from vision to reality,” Eurosurveillance, vol. 22, no. 13,
2017.

E. W. Sayers, M. Cavanaugh, K. Clark, K. D. Pruitt, S. T. Sherry,
L. Yankie, and I. Karsch-Mizrachi, “GenBank 2023 update,” Nucleic
acids research, vol. 51, no. D1, pp. D141-D144, 2023.

>

Biden Issues

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

R. Vita, S. Mahajan, J. A. Overton, S. K. Dhanda, S. Martini, J. R.
Cantrell, D. K. Wheeler, A. Sette, and B. Peters, “The immune epitope
database (iedb): 2018 update,” Nucleic acids research, vol. 47, no. D1,
pp. D339-D343, 2019.

D. Vrandeci¢ and M. Krotzsch, “Wikidata: a free collaborative knowl-
edgebase,” Communications of the ACM, vol. 57, no. 10, pp. 78-85,
2014.

Wikidata Team, ‘“Wikidata:Statistics,” 2023, last accessed: Nov. 24th,
2023. [Online]. Available: |https://www.wikidata.org/wiki/Wikidata:
Statistics

D. Wilkinson and M. Thelwall, “Search markets and search results: The
case of Bing,” Library & Information Science Research, vol. 35, no. 4,
pp. 318-325, 2013.

S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles, W. Aref,
M. Arenas, M. Besta, P. A. Boncz et al., “The future is big graphs: a
community view on graph processing systems,” Communications of the
ACM, vol. 64, no. 9, pp. 62-71, 2021.

A. Green, P. Furniss, T. Lindaaker, P. Selmer, H. Voigt,
and S. Plantikow, “Iso, tech. rep: Gql scope and features,”
https://s3.amazonaws.com/artifacts.opencypher.org/website/materials/
sql-pg-2018-0046r3-GQL-Scope-and-Features.pdf, 2019, last accessed
online: Nov. 24th, 2023.

N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker,
V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor,
“Cypher: An evolving query language for property graphs,” in Proceed-
ings of the 2018 international conference on management of data, 2018,
pp. 1433-1445.

Neo4j, “Neo4j,” https://neodj.com/, 2023, last accessed online: Nov.
24th, 2023.

solid IT consulting, “Db-engines ranking of graph dbms,” https://db-
engines.com/en/ranking/graph+dbms, 2023.

A. Bonifati, G. Fletcher, H. Voigt, N. Yakovets, and H. V. Jagadish,
Querying Graphs. Morgan & Claypool Publishers, 2018.

R. Angles, A. Bonifati, S. Dumbrava, G. Fletcher, K. W. Hare, J. Hid-
ders, V. E. Lee, B. Li, L. Libkin, W. Martens, F. Murlak, J. Perryman,
0. Savkovié¢, M. Schmidt, J. Sequeda, S. Staworko, and D. Tomaszuk,
“PG-Keys: Keys for Property Graphs,” in Proceedings of the 2021
International Conference on Management of Data. New York, NY,
USA: Association for Computing Machinery, 2021, pp. 2423-2436.

R. Angles, A. Bonifati, S. Dumbrava, G. Fletcher, A. Green, J. Hidders,
B. Li, L. Libkin, V. Marsault, W. Martens, F. Murlak, S. Plantikow,
O. Savkovi¢ et al., “PG-Schema: Schemas for Property Graphs,” in
Proceedings of the 2023 International Conference on Management of
Data. New York, NY, USA: Association for Computing Machinery,
2023.

A. Gagliardi, A. Bernasconi, D. Martinenghi, and S. Ceri, “PG-Triggers:
Triggers for Property Graphs,” arXiv preprint arXiv:2307.07354, 2023.
J. Melton and A. R. Simon, SQL: 1999: understanding relational
language components. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2001.

T. Berners-Lee, “Linked Data,” 2006, last accessed: Nov. 24th, 2023.
[Online]. Available: https://www.w3.org/Designlssues/LinkedData.html
C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee, “Linked data on the
web (1dow2008),” in Proceedings of the 17th international conference
on World Wide Web, 2008, pp. 1265-1266.

J. gimko, M. Tvarozek, and M. Bielikovd, “Semantics discovery via
human computation games,” in Semantic Web: Ontology and Knowledge
Base Enabled Tools, Services, and Applications. 1GI Global, 2013, pp.
286-308.

E. Baralis, S. Ceri, and J. Widom, “Better termination analysis for
active databases,” in Rules in Database Systems: Proceedings of the
1st International Workshop on Rules in Database Systems, Edinburgh,
Scotland, 30 August—1 September 1993. Springer, 1994, pp. 163-179.
A. Gagliardi, “Reactive Knowledge Management,” https://github.com/
Alessia-G/Reactive_Knowledge_Management, 2023, last accessed on-
line: Nov. 24th, 2023.

https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)698792
https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)698792
https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/
https://www.wikidata.org/wiki/Wikidata:Statistics
https://www.wikidata.org/wiki/Wikidata:Statistics
https://s3.amazonaws.com/artifacts.opencypher.org/website/materials/sql-pg-2018-0046r3-GQL-Scope-and-Features.pdf
https://s3.amazonaws.com/artifacts.opencypher.org/website/materials/sql-pg-2018-0046r3-GQL-Scope-and-Features.pdf
https://neo4j.com/
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://www.w3.org/DesignIssues/LinkedData.html
https://github.com/Alessia-G/Reactive_Knowledge_Management
https://github.com/Alessia-G/Reactive_Knowledge_Management

	Introduction
	Related Work
	Reactive Knowledge Graphs
	Partitioned Knowledge Graphs
	Reactive Rules
	Rule Classification
	Alert nodes logging and its exploitation

	Mapping Reactive Knowledge Rules to Neo4j
	Partitioned Knowledge Graphs
	Rule Translation
	Management of Essential Summary
	Experiments over large graphs

	Discussion
	References

