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Abstract 
Motivation: We previously proposed a paradigm shift in ge-
nomic data management, based on the Genomic Data Model 
(GDM) for mediating existing data formats and on the Ge-
noMetric Query Language (GMQL) for supporting, at a high 
level of abstraction, data extraction and the most common 
data-driven computations required by tertiary data analysis of 
Next Generation Sequencing datasets. Here, we present a 
new GMQL-based system with enhanced accessibility, porta-
bility, scalability and performance. 
Results: The new system has a well-designed modular archi-
tecture featuring: i) an intermediate representation supporting 
many different implementations (including Spark, Flink, and 
SciDB); ii) a high-level technology-independent repository ab-
straction, supporting different repository technologies (e.g., lo-
cal file system, Hadoop File System, database, or others); iii) 
several system interfaces, including a user-friendly Web-
based interface, a Web Service interface, and a programmatic 
interface for Python language. Biological use case examples, 
using public ENCODE, Roadmap Epigenomics and TCGA da-
tasets, demonstrate the relevance of our work. 
Availability: The GMQL system is freely available for non-
commercial use as open source project at: 
http://www.bioinformatics.deib.polimi.it/GMQLsystem/  
Contact: marco.masseroli@polimi.it  

1 Introduction  
Next Generation Sequencing (NGS) allows the production of multiple high-
throughput datasets regarding, among others, genome sequencing (DNA-
seq), transcriptome profiling (RNA-seq), DNA-protein interaction assess-
ment (ChIP-seq) and epigenome characterization (ChIP-seq, BS-seq, 
DNase-seq and FAIRE-seq) (Goodwin et al., 2016).  The size of datasets and 
the complexity of computations motivate the use of parallel and distributed 
computing to achieve scalability and performance (Eric et al., 2010; Schmidt 
and Hildebrandt, 2017). Multiple international sequencing projects are pro-
ducing (epi)genomic feature data, extracted through standardized primary 
and secondary analysis pipelines (i.e., genome alignment and feature calling 
of NGS raw data) and available at public repositories (Del Chierico et al., 
2015); among them: 
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• The Encyclopedia of DNA elements (ENCODE) (ENCODE Project 
Consortium, 2012). 

• The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research 
Network et al., 2013). 

• The 100,000 Genomes Project (Siva, 2015). 

• Roadmap Epigenomics (Bernstein et al., 2010) 
Availability of advanced NGS technologies and of open repositories of 

primary and secondary data brings about a new need of tools for NGS tertiary 
analysis, i.e., multi-sample integration of genome-wide, heterogeneous fea-
tures and known annotations. Tertiary data analysis is still mostly performed 
through ad hoc scripts, typically invoking multiple software tools for specific 
operations; these tools are not usually designed for large amounts of data and 
require converting the outputs of one tool into the inputs of another (an over-
view of existing methods and systems is in the next Section Comparison with 
other systems). Thus, there is an increasing need of powerful, user-friendly 
and versatile environments for tertiary data analysis, that can enable scien-
tists and bioinformaticians to focus on the biological questions and on the 
design of computational experiments, rather than on how to implement their 
computational steps across multiple systems and data formats.  

For addressing these challenges, we introduced GenoMetric Query Lan-
guage (GMQL) (Masseroli et al., 2015), a high-level declarative language 
allowing the expression of queries over genomic regions and their metadata, 
in a way similar to what can be done with the well-known Relational Algebra 
and Structured Query Language (SQL) over a relational database. GMQL 
uses the Genomic Data Model (GDM) (Masseroli et al., 2016) which is based 
on the notion of genomic region, mediates existing data formats, and covers 
also metadata of arbitrary structure; thanks to these features, GDM is capable 
to support data interoperability, by describing semantically heterogeneous 
data. As a proof of concept to demonstrate GDM and GMQL features, we 
originally implemented the translation of GMQL queries to Pig Latin (Olston 
et al., 2008), a high-level data-flow language for batch processing of large 
data sets; we used Apache Pig (http://pig.apache.org/), an open source plat-
form for analyzing large data sets, to manage and execute Pig Latin scripts. 
However, the link between GMQL and the implementation language was too 
tight, and Pig Latin limited the potential of GMQL, with unsatisfactory re-
sults for the increasing requirements of genomic big data evaluations. 

Here, we illustrate and discuss a novel GMQL system that meets effi-
ciency, flexibility, and usability requirements. The new system supports que-
ries (i.e., scripts) comparing billions of genomic regions, mainly on the basis 
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of metric properties but also of arbitrary region attributes and of metadata 
content. Besides extending and enhancing GMQL operators and functional-
ities, we abstracted GMQL from the implementation layer and developed a 
novel system with a language independent modular architecture: a GMQL 
compiler generates Directed Acyclic Graphs (DAGs) as intermediate repre-
sentation of GMQL scripts, where DAG nodes are implemented using cloud 
computing technologies. With this approach, we support multiple usage sce-
narios for GMQL, including Web based interfaces or language embeddings, 
and multiple implementations using different cloud computing engines.  

Additionally, we defined and implemented new data binning strategies 
(described in details elsewhere (Kaitoua et al., 2017; Cattani et al., 2017a)) 
which enhance scalability and parallelism, by adapting genomic data pro-
cessing to the nature of the cloud architecture. This allows GMQL executions 
either on a cloud environment, or on a single Java virtual machine (JVM) 
(i.e., local execution mode); the latter one avoids the complexity of allocating 
resources and running on a cluster, but it is adequate only for limited data 
size and not suitable for big data processing. For easy access to the new 
GMQL system, we developed REST Web Services and a comprehensive 
Web interface; they allow easy use of the system and versatile processing of 
different genomic features to extract candidate targets for knowledge discov-
ery. The new GMQL system is available as open source project in the GitHub 
platform and can be tested through the REST and Web interfaces (see: 
http://www.bioinformatics.deib.polimi.it/GMQLsystem/, where also exam-
ples of use and full documentation are available).   

2 The new GMQL and its processing  
GMQL relevantly evolved and enhanced since its previous version 
(Masseroli et al., 2015). All its operators were redesigned, with a unified 
syntax, and now all of them operate both on regions and on metadata; origi-
nally they were specialized to work either on regions or on metadata, with 
the exception of the JOIN, DIFFERENCE and MAP operators. Previously, 
the language did not support attribute projection (as the PROJECT operator 
was used for selecting regions) and grouping (groups were implicitly created 
by the AGGREGATE operator); now, PROJECT, GROUP and EXTEND 
operators provide orthogonal functionalities. SUMMIT, originally an inde-
pendent operator, is now an extension of the COVER operator, which also 
includes FLAT as another extension; for what concerns the JOIN operator, 
now genometric predicates are more orthogonal and the possibility of joining 
arbitrary region attributes was added. For a full account of the differences, 
compare the documentations of the two GMQL releases (the earlier release 
is still documented at: http://www.bioinformatics.deib.polimi.it/GMQL/). 
   In the new GMQL system, the translation of a GMQL query to an execu-
tion plan is achieved through a two-step procedure. First, the GMQL query 
is compiled to an intermediate representation (IR); next, the IR is interpreted 
by the GMQL execution engine and an actual execution plan is produced and 
run. To clearly present these elements, throughout this Section we discuss 
the following exemplary GMQL query (videos showing  a step-by-step exe-
cution of this query, using either the GMQL public Web interface or Python 
library next described, are available at: http://www.bioinformatics.deib.po-
limi.it/geco/?video): 
 
myExperiment = SELECT() UPLOADED; 
myData = COVER(2, ANY) myExperiment; 
genes = SELECT(annotation_type == "gene" AND  
          provider == "RefSeq") HG19_BED_ANNOTATIONS; 
onGenes = JOIN(distance < 0; output: right)  
          genes myData; 
mutations = SELECT(type == "SNP") ICGC_REPOSITORY; 

geneMutationCount = MAP() onGenes mutations; 
MATERIALIZE geneMutationCount INTO result; 
 
The query uses COVER, JOIN and MAP, the most interesting domain-spe-
cific operations of GMQL (Masseroli et al., 2015). Given three replicate 
samples of a ChIP-seq experiment (selected by the user), the specified 
COVER operation extracts high-confidence regions (confirmed in at least 
two of the input samples), the JOIN operation identifies which of these re-
gions overlap with genes in the NCBI Reference Sequence Database (Ref-
Seq) (https://www.ncbi.nlm.nih.gov/refseq/), and the MAP operation counts 
the SNP mutations (from the International Cancer Genome Consortium – 
ICGC (http://icgc.org/)) present in each of such regions. The query combines 
experimental data uploaded by the user, gene annotations for human genome 
assembly hg19 from RefSeq, and public mutation data from the ICGC repos-
itory; the datasets are described using the GDM integrative data model 
(Masseroli et al., 2016). 

2.1 GMQL compiler 
The compiler reads a GMQL query, validates its syntax, and – if the query is 
syntactically correct – builds its syntactic tree and performs its semantic val-
idation. In this latter phase, the compiler checks that all GMQL variables 
(i.e., datasets) defined in the query are manipulated in coherent and con-
sistent way (e.g., no undefined variable is referenced, only those features that 
are present in the region dataset are mentioned by the query). If any of such 
tests fails, the compiler notifies the user with an error message reporting the 
type and position in the query of the encountered problem; otherwise, it pro-
duces the intermediate representation of the query. The compiler is built by 
leveraging on functional features of the Scala programming language 
(https://www.scala-lang.org/). 

2.2 Intermediate representation 
The IR is an encoding of a GMQL query that omits all its syntactic details 

and does not encapsulate any of the execution engine peculiarities. Thus, the 
IR acts as an interface between the GMQL language and the engine; thanks 
to such abstraction, we can reuse the very same engine to execute any GMQL 
dialect (aside of GMQL we developed Scala, Python and R/Bioconductor 
application programming interfaces (APIs). Conversely, the IR allows im-
plementing alternative execution engines; after testing alternative implemen-
tations based on Apache Spark (https://spark.apache.org/), Apache Flink 
(https://flink.apache.org/) and SciDB (http://scidb.sourceforge.net/), our pre-
ferred one uses Apache Spark. Such vast set of combinations of GMQL in-
terfaces and execution engines would not have been possible without the IR. 
Figure 1 shows the IR of our exemplary GMQL query.  

Technically, an IR is a directed acyclic graph, where nodes represent ele-
mentary parametric operations (e.g., a filter on region data or a filter on 
metadata) and edges represent the flow of the execution. Nodes can be clus-
tered in two categories: nodes manipulating metadata (in red in Figure 1) and 
nodes manipulating region data (in blue in Figure 1). Their synchroniza-
tion is granted by a wise graph construction. 

The use of an intermediate representation gives several optimization op-
portunities: semantically equivalent permutations of the operators can be au-
tomatically discovered, different implementations of the same operation can 
be used depending on input or system characteristics, and advanced optimi-
zations that rely on the differences between nodes can be applied. The latter 
one is the case of the powerful meta-first execution strategy, in which all 
metadata nodes are evaluated before all region nodes to determine the only 
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samples that contribute to the result due to all the metadata predicates com-
puted by the query; such information is provided to the data loaders for se-
lective data access, and in many cases it drastically reduces the amount of 
(big size) region samples loaded to the execution engine and then processed, 
with corresponding high decrease of execution time. This run-time optimi-
zation is not supported by any other genomic data management system. 

Fig. 1: Intermediate representation of the exemplary GMQL query; metadata 
nodes are in red, region data nodes in blue. 

3 GMQL system architecture 
The GMQL system is organized according to a four-layer architecture: 

i) The Access layer supports a user-friendly Web interface, a shell com-
mand line interface, and several Web Services / APIs for supporting access 
to GMQL system resources. The Scala API (https://github.com/DEIB-
GECO/GMQL/wiki/GMQL-APIs) provides the main functionalities for con-
necting to the GMQL system, as all the other APIs are built from it. 

ii) The Engine layer includes the Compiler, the DAG Manager (for sup-
porting the creation and dispatch of DAG operations to other system compo-
nents), the Server Manager (for multi-user execution over heterogeneous im-
plementations and environments, such as local vs. distributed), the Reposi-
tory Manager (for accessing a data repository on heterogeneous file sys-
tems), and the Launcher Manager (for launching the executions for different 
implementations; currently, we have three launchers: Local Launcher, Clus-
ter Launcher, and SciDB Launcher.) 

iii) The DAG Implementation layer includes the implementations (abstract 
classes) of the DAG operations for the Spark, Flink and SciDB engines. The 
Spark Implementation is the default one.  

iv) The Repository Implementation layer includes the Local File System 
(LFS) repository, used on a single local machine architecture; the Hadoop 
Distributed File System (HDFS), used on a server-based architecture; and 
the Remote File System (RFS), used in a cluster-based architecture.  

An implementation of the GMQL system open for public use at 
http://www.gmql.eu/ is installed on a cluster at CINECA (a not-for-profit 
Consortium including 70 Italian Universities, 6 Research Consortia, and the 
Ministry of Education, University and Research of Italy (MIUR)). We opted 
for a deployment strategy based on an application server and a cluster of 
machines for execution over Spark engine and HDFS. The application server 
receives a GMQL script from the Web Service / Web interface and compiles 

the script producing a DAG with the intermediate representation of the op-
erations. The DAG is then serialized and sent from the application server to 
the cluster for processing; the cluster consists of three nodes, each using 40 
virtual CPUs, 125 GB of RAM and 3 TB of disk. Thus, the distributed com-
puting environment consists of a total of 120 cores, 375 GB of RAM and 9 
TB of disk. 

3.1 Web interface 
The GMQL Web interface has been designed with the goal of providing a 
user-friendly intuitive environment for bioinformaticians and biologists. It 
supports multiple functionalities, including: management and browsing of 
public and private datasets uploaded in the associated repository, building 
GMQL queries upon them, visualizing the GMQL processing output by di-
rect connection to the UCSC Genome Browser (Karolchik et al., 2012) or to 
integrated heat map viewers, and downloading the data locally for further 
data analysis and use of client-side applications such as offline genome 
browsers (e.g., IGB (Freese et al., 2016), or IGV (Robinson et al., 2011)).  

The Web interface uses the Web Service interface, a REST API (specified 
using XML or JSON) which also supports libraries for integrating GMQL 
with the programming environments of Python and R/Bioconductor, and for 
supporting interactions from Galaxy workflows. In this way, GMQL queries 
are integrated within the most typical contexts of use in bioinformatics.  The 
Web interface supports both registered users (authenticated through a pass-
word) and guest users who are provided with limited resources. After login, 
the user is presented with an interface described in Figure 2. The screen is 
divided into different sections to support different functionalities. 

In the Datasets section (upper left corner), users browse private and public 
datasets. Private datasets are those created by the specific user as results of 
upload operations or previously executed GMQL queries. Public datasets in-
clude predefined, read-only datasets from public repositories – currently we 
support datasets from ENCODE, Roadmap Epigenomics and TCGA, as well 
as annotations from UCSC (partially), RefSeq and GENCODE. Our TCGA 
curation is described in (Cumbo et al. 2017); our work on the standardization 
of a minimal set of well-defined metadata for public repositories is presented 
in (Bernasconi et al., 2017). Users can select samples from both private and 
public datasets; in Figure 2, the user has selected the RefSeqGenes sample 
in the HG19_BED_ANNOTATION dataset; note that GDM provides the 
same representation for both annotation and genomic feature data. 

The two Sample metadata and Schema sections (lower center and right 
corner) respectively show the metadata attribute-value pairs and the schema 
(i.e., the attribute order and type) of the genomic regions in the selected sam-
ple. We recall that in GDM each sample combines metadata and genomic 
regions, both for the initial datasets loaded from the repository and for the 
datasets computed as result of a GMQL query.  

Below the Dataset section, the Metadata browser section helps browsing 
metadata and filtering samples of the selected dataset; at the same time, it 
composes the correspondent SELECT statement based on sample metadata, 
ready to be used in a GMQL query. Metadata of the selected samples are 
shown in a pop-up window; Figure 3 shows the case of two samples from 
the HG19_BED_ANNOTATION dataset. 

In the Query editor section (upper right corner) the user can compose a 
GMQL query, compile it and then execute it. User-friendly dialog boxes sup-
port the user in detecting and correcting errors in the composed GMQL 
query, and inform about the progression of a GMQL execution over the used 
engine and implementation. The user can compile queries without executing 
them, to check their correctness. When execution is launched, the log viewer 
of the query execution job becomes visible, showing the execution status; 
more information can be extracted from each query log. 
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3.2 PyGMQL Python library 
GMQL supports also PyGMQL, a Python interface which enables the user 
to perform GMQL queries in an interactive and exploration-driven fashion. 
PyGMQL is simply installed through the classical package installer system 
pip, just by typing: pip install gmql.  

PyGMQL embeds a GMQL API which supports both a local query execu-
tion, using the API as local back-end, or a remote execution, by sending the 
query (as a serialized graph structure) to a remote server where the GMQL 
engine is installed. An excerpt of the example query, which performs the join 
operation, is expressed in a Python program as follows, where annotations 
are taken from a remote server and peak data are loaded from the local disk: 
 
import gmql as gl  
gl.set_remote_address("http://www.gmql.eu/gmql-rest/") 
gl.login() 
gl.set_mode("remote") 
d_remote = gl.load_from_remote("HG19_BED_ANNOTATION", 

owner="public") 
d_genes = d_remote [d_remote ["annotation_type"] == "gene"] 
d_local = gl.load_from_path("./path/to/local/narrowpeak_dataset/") 
d_join = d_genes.join(d_local, [gl.DL(0)], "right") 
result = d_join.materialize() 

                   Fig. 3: Metadata browsing for selected samples.  

The result dataset of a PyGMQL script (in this case the variable result) is 
automatically loaded in memory as a Python structure called GDataFrame, 
which extends a DataFrame (i.e., a table which has a row index and a set of 
columns) of pandas (https://pandas.pydata.org/), a well-known data analysis 
library for Python, thus supporting interoperability with other Python code. 
A GDataFrame is composed of two pandas DataFrames, shown in Figure 4: 
• A region table, where each row is a genomic region and every column 

represents a region genomic coordinate or feature; the index of the 
DataFrame is the list of sample identifiers, which can be repeated; 

• A metadata table, where each row represents a dataset sample and 
every column represents a metadata attribute; the index of the 
DataFrame is the list of sample identifiers, without repetitions. 

Fig. 4: Visual representation of a GDataFrame. Note that coherency between re-
gion and metadata tables is kept by the common id_sample column, and that each 
sample has one row in the metadata table, whose attributes can have multiple val-
ues. Note as well that GMQL results carry metadata both of the initial datasets 
and generated during query processing. 
 
It is also possible to convert an arbitrary pandas DataFrame to a GMQL var-
iable and use it in a GMQL query. Thanks to its underlying pandas imple-
mentation, the GDataFrame can be used as a starting point for complex data 
manipulation using specific Python libraries for data analysis (like NumPy 

 Fig. 2: GMQL Web interface. 
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(http://www.numpy.org/) or SciPy (https://www.scipy.org/)), or for machine 
learning / deep learning (like scikit-learn (http://scikit-learn.org/), Tensor-
Flow (https://www.tensorflow.org/) or Keras (https://keras.io/)).  The user is 
encouraged to use the PyGMQL library with the support of a Jupyter Note-
book (http://jupyter.org/), a programming environment for data exploration; 
its usage improves reproducibility of results, their sharing and visualization. 

4 Example use case  
In this section, we show a typical GMQL query over multiple heterogeneous 
genomic features; more examples of biological interest are in the Documen-
tation section at http://www.bioinformatics.deib.polimi.it/GMQLsystem/ 
and in the Supplementary material, where GMQL is compared to STQL (Zhu 
et al., 2017).  In the following use case, genomic features from TCGA patient 
data are combined with their clinical and biospecimen metadata, thanks to 
their availability in BED format (as provided by TCGA2BED (Cumbo et al. 
2017)), which is compatible with GDM. The example focuses on Breast In-
vasive Carcinoma (BRCA) patients (the ones with the highest amount of data 
in TCGA) and extracts expressed genes, DNA methylations (which generally 
repress gene expression) and somatic mutations close to methylated ex-
pressed genes. Comprehensively considering genomic, epigenomic and tran-
scriptomic data of cancer patients provides a view of the patients’ complex 
biomolecular system, which may lead to interesting findings.  

The use case and its GMQL query are formulated as follows: “In TCGA 
data of BRCA patients, find the DNA somatic mutations within the first 2000 
bp outside of the genes that are both expressed with FPKM > 3 and have at 
least a methylation in the same patient biospecimen, and extract these muta-
tions of the top 5% patients with the highest number of such mutations.” 
 
EXPRESSED_GENE = SELECT(manually_curated__cases__disease_type 

== "Breast Invasive Carcinoma"; region: fpkm > 3.0) 
GRCh38_TCGA_gene_expression; 

METHYLATION = SELECT(manually_curated__cases__disease_type == 
"Breast Invasive Carcinoma") GRCh38_TCGA_methylation; 

MUTATION = SELECT(manually_curated__cases__disease_type == 
"Breast Invasive Carcinoma") 
GRCh38_TCGA_somatic_mutation_masked; 

 
GENE_METHYL = JOIN(distance < 0; output: left_distinct; joinby: bio-

specimen__bio__bcr_sample_barcode) EXPRESSED_GENE 
METHYLATION; 

MUTATION_GENE = JOIN(distance <= 2000, distance >= 0; output: 
left_distinct; joinby: biospecimen__bio__bcr_sample_barcode) 
MUTATION GENE_METHYL;  

 
MUTATION_GENE_count = EXTEND(mutation_count AS COUNT()) 

MUTATION_GENE; 
MUTATION_GENE_top = ORDER(mutation_count DESC; meta_topp: 5) 

MUTATION_GENE_count; 
MATERIALIZE MUTATION_GENE_top INTO MUTATION_GENE_top; 
 
The query is divided into three sections. Using the SELECT operator, the 
first one extracts relevant samples from three TCGA datasets (gene expres-
sions, DNA methylations, somatic mutations); the second one combines the 
extracted samples and metrically evaluates the localization of their genomic 
regions, by means of two JOIN operations, to produce the relevant mutations 
searched; the third one counts them and selects those of the most mutated 
patients.  

Specifically, the first JOIN operator applies on expressed gene and DNA-
methylation datasets. It first combines samples based on the equivalence of 
their metadata biospecimen__bio__bcr_sample_barcode attribute (the 
TCGA biospecimen identifier); then, from every pair of samples of each bi-
ospecimen, it extracts the expressed gene regions that overlap at least a meth-
ylation site in the paired DNA methylation sample. Similarly, the second 
JOIN operator applies on the extracted expressed and methylated genes in 
each sample and on the entire BRCA mutation dataset of TCGA; in each 
sample of the latter one, it finds the DNA somatic mutations occurring within 
the first 2,000 bp upstream or downstream of any of the expressed methyl-
ated genes extracted in the paired sample of the same biospecimen. Then, the 
EXTEND operator uses the COUNT() aggregate function to determine the 
number of these mutations in each sample, the ORDER operator ranks the 
samples according to such number and extracts the top 5% samples with the 
highest number of these somatic mutations, and finally the MATERIALIZE 
operator returns the result. Note that this complex query is simply expressed 
through a few GMQL statements, also thanks to the GMQL implicit iteration 
over all the samples even matched through their metadata.  

At the time of writing (March 2018), the query was executed over all 
11,091 gene expression, 12,218 DNA methylation and 10,188 somatic mu-
tation samples publicly available in TCGA, for a total of 56.5 GB, 1.3 TB 
and 2.3 GB of data, respectively. The query initially selected 1,222 samples 
of expressed gene data, 1,234 samples of DNA methylation data, and 985 
samples of DNA somatic mutation data of TCGA BRCA patients, containing 
a total of 11,847,376 expressed gene regions, 358,803,211 methylation sites, 
and 363,521 DNA mutations, respectively.  

The combination of each biospecimen’s gene expression and DNA meth-
ylation data identified 1,207 breast cancer patient samples presenting meth-
ylated expressed genes, with an average of 7,822 of such genes for each iden-
tified biospecimen. Thanks to the TCGA patients’ clinical data reported in 
the available sample metadata, which GDM seamlessly manages and GMQL 
carries on during the processing, these patients can be clinically character-
ized. In particular, they have an average age at diagnosis of 58.27 years; 551 
of them received radiation therapy, whereas 453 did not, and for 203 of them 
it is unknown; 820 patients are estrogen receptor positives and 236 nega-
tives; 712 are progesterone receptor positives and 349 negatives.  

Then, the query extracts 612 biospecimens having somatic mutations oc-
curring within the first 2000 bp outside of the same biospecimen’s expressed 
and methylated genes. Finally, these mutations in each biospecimen are 
counted (their average number per biospecimen is 2.9), and the mutations of 
the top 5% patient biospecimens with the highest number of such somatic 
mutations are selected (their average number per biospecimens is 20.87). Ta-
ble S2 in the Supplementary material reports an excerpt of the metadata at-
tributes and of their values associated with the selected patients. Notably, the 
top patient biospecimen has 120 mutations, about three times of the ones of 
the second top patient, who was first diagnosed with BRCA when was about 
30 years younger; all patients but 8 are positives to progesterone and/or es-
trogen receptor, and 9 of them received radiation therapy whereas 11 did not.  

The whole execution of this example query on the public GMQL system 
installation, where the entire public TCGA datasets are available, lasted only 
57 minutes; execution time is low when compared to the big amount of sam-
ples and genomic regions processed, and to the complexity of the processing.  

The same GMQL query can be directly applied on other types of patients 
or datasets, just by changing the SELECT operator parameters. Note that the 
result dataset includes both genomic somatic mutations and clinical metadata 
of the finally selected patients. The former ones indicate interesting somatic 
mutations that could be associated with breast cancer (which can be further 
inspected, e.g., using genome browsers); the latter ones allow tracking the 
provenance of resulting samples and ease the biomedical interpretation of 
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the results, facilitating also result sample stratification and further evalua-
tions. This association between processed genomic data and their biologi-
cal/clinical metadata is not supported by other system currently available, 
and represents one of the relevant aspects of GDM and GMQL. We previ-
ously developed an analytic tool that takes specific advantage of such asso-
ciation (Jalili et al., 2017). 

5 Comparison with other systems 
In the Introduction Section, we observed that tertiary data analysis is still 
mostly performed through ad hoc scripts, typically invoking multiple soft-
ware tools for specific operations. BEDTools (Quinlan and Hall, 2010) and 
BEDOPS (Neph et al., 2012) gained relevance in the bioinformatics com-
munity; they efficiently process region data in BED format of individual or 
paired samples, but require verbose scripts for multiple sample processing, 
with lower performance. In Supplementary material of (Masseroli et al., 
2015) we thoroughly compared them with GMQL. Also packages of R/Bio-
conductor (https://www.bioconductor.org/) have been proposed for tertiary 
analysis (Huber et al., 2015); they facilitate typical specific operations, but 
require to perform them through scripts and are not suitable for big data pro-
cessing. Recently, the Genomic Region Operation Kit (GROK) (Ovaska et 
al., 2013) has been proposed; it adopts a genomic region abstraction (able to 
represent reads, variants, mutations, and other genomic features) and pro-
vides a set of region operations, based on a mathematical formalism founded 
on set algebra, delivered as a library. GORpipe (Guðbjartsson et al., 2016) 
embeds relational operations within scripts, thereby injecting some declara-
tive aspects (such as selects, joins and merges).  

In the last years, high performance parallel and cloud computing ap-
proaches, mainly founded on Hadoop (Shvachko et al., 2010) and MapRe-
duce (Dean and Ghemawat, 2010) frameworks, have been adopted also in 
bioinformatics (O'Driscoll et al., 2013; Mrozek et al., 2014; Mrozek et al., 
2016), with a focus on primary and secondary analysis of NGS raw data. 
Among them, SparkSeq (Weiwiorka et al., 2014) has been proposed as gen-
eral purpose tool to process DNA and RNA sequencing data using the 
Apache Spark engine. Notably, the Genome Analysis Toolkit (GATK) 
(McKenna et al., 2010) has gained a leading role for variant and SNP calling 
secondary analysis; its new version 4 (GATK4) has recently been released 
as open source on the GitHub platform 
(https://www.broadinstitute.org/news/broad-institute-release-
genome-analysis-toolkit-4-gatk4-open-source-resource-accelerate). 

Few informatics systems support tertiary data analysis; among them, 
DeepBlue (Albrecht et al., 2016) provides integrated access to genomic da-
tasets (ENCODE, Roadmap Epigenomics, and datasets produced within the 
BluePrint Consortium), annotated by a small collection of curated metadata; 
it also provides some programmatic data retrieval for selecting and aggregat-
ing processed datasets. SciDB (Brown, 2010) is a computational multi-di-
mensional, array-based database engine optimized for fast data selection and 
aggregation, required by most scientific applications; it recently developed 
extensions for genomics (https://www.paradigm4.com/).  

Some query languages compare more closely to GMQL as they introduce 
a relational paradigm into genomic computing; all of them use relational op-
erations over regions, none of them applies such operations to metadata – 
thereby lacking the ability to constructively assign metadata to query results, 
a distinguishing feature of GMQL. Among them, systems based on the Struc-
tured Query Language and its extensions (Kozanitis et al., 2014; Zhu et al., 
2017) have been recently proposed. The Genomic Query Language (GQL), 
presented in (Kozanitis et al., 2014), applies to raw data and includes ge-
nomic feature calling; this approach creates reproducibility issues when 
compared to more conventional pipelines. Other recent systems, including 

BigDataScript (Cingolani et al., 2015) and GESALL (Roy et al., 2017), fo-
cus on scripting languages and systems for implementing and enhancing data 
pipelines; in particular, GESALL is a system, adopted at The New York Ge-
nome Center (NYGC), capable of wrapping existing systems and autono-
mously determining the best parallelism, spotting superlinear speed-ups, but 
also sublinear steps with loss of performance. 

The Signal Track Query Language (STQL), lately proposed in (Zhu et al., 
2017), is instead focused on tertiary analysis and closer in design to GMQL: 
STQL tracks correspond to GMQL samples. STQL uses the classic Select-
From-Where SQL nesting rather than sequences of distinct operations. The 
main difference is that GMQL queries produce multi-sample results, each 
loaded to the file system as a separate file and carrying sample metadata that 
describe both query input and processing, whereas STQL produces a single 
track. Another difference is that STQL is implemented directly on Apache 
Hive (https://hive.apache.org/) warehousing (optimized for supporting some 
STQL primitives) and hence depends on a specific cloud engine, with higher 
upkeep cost, while our approach maps DAG operations to engines, with an 
engine-independent execution workflow (we implemented GMQL on Spark, 
Flink and SciDB). A thorough comparison between STQL and GMQL is 
presented in the Supplementary material, where we compare STQL queries 
provided in supplemental material of (Zhu et al., 2017) to equivalent GMQL 
queries, serving as well to describe biological examples of GMQL use.  

Noteworthy, FireCloud (https://software.broadinstitute.org/firecloud) is a 
cloud-based platform developed at the Broad Institute for supporting cancer 
genome analysis, primarily focused on secondary analysis. FireCloud pipe-
lines are specified in Workflow Specification Language (WSL), a simple 
workflow language supporting calls to a variety of tools, and operate also on 
pre-loaded TCGA curated data. We also deployed the GMQL execution en-
gine as a docker file, available on Docker Hub (https://hub.docker.com/) as 
gecopolimi/gmql; doing so, we could integrate GMQL also in the FireCloud 
cloud-based analysis service offered by the Broad Institute. There, we pro-
vide a set of example methods and configurations which add a GMQL task 
as the last step of a FireCloud pipeline including mutation calling imple-
mented in GATK, and a simpler task which performs the query of Section 2. 
These examples are documented and designed to facilitate the use of GMQL 
by the FireCloud users.  

6 Discussion  
Being a declarative language, GMQL enables users to specify and run oper-
ations, even complex, on genomic data, even big and heterogeneous, using a 
few high-level constructs, thereby allowing users to focus on the analytical 
goals rather than on their technical details. Although the GMQL syntax is 
similar to the Structured Query Language one, the compact and nested form 
of SQL is found to be less easy to use and to learn when compared with the 
progressive style of building results using sequences of operations, each fo-
cused on a specific data transformation. We agree with (Olston et al., 2008) 
that to programmers the latter “method is much more appealing than encod-
ing their task as an SQL query”. 

The innovations that we introduced in developing the new GMQL system 
are summarized as follow, together with the achieved advantages: 

• Well-designed system architecture with modular organization; system 
modules are easily tested, maintained or replaced; 

• Intermediate, language-independent representation (in form of DAG), 
whose nodes are mapped to any target implementation technology, for 
supporting different implementations (e.g., using Spark, Flink, or 
SciDB engines) for several target systems (local or remote); 

https://www.bioconductor.org/
https://www.broadinstitute.org/news/broad-institute-release-genome-analysis-toolkit-4-gatk4-open-source-resource-accelerate
https://www.broadinstitute.org/news/broad-institute-release-genome-analysis-toolkit-4-gatk4-open-source-resource-accelerate
https://www.paradigm4.com/
https://hive.apache.org/
https://software.broadinstitute.org/firecloud
https://hub.docker.com/
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• High-level, technology-independent data repository abstraction for 
supporting different repository technologies (e.g., local file system, 
Hadoop File System, database, or others) by simply implementing the 
repository interface; 

• Web and API interfaces to the language, enabling both its friendly use 
and the embedding of high-level data extraction and processing opera-
tions within classical languages for data science, allowing the seamless 
integration of data exploration and data analysis. 

Several aspects of the new GMQL system architecture have been designed 
for fast execution on big datasets. The use of cloud computing technologies 
brings parallelism efficiency through data distribution (using Hadoop Dis-
tributed File System) and processing distribution (using Apache Spark or 
other engines). In order to better support parallelism w.r.t. native parallelism 
of cloud engines, we proposed and adopted new binning algorithms suitable 
for genomic data (Kaitoua et al., 2017; Cattani et al., 2017a); we compared 
GMQL prototypical operations on different engines (Spark vs. Flink and 
Spark vs. SciDB), as detailed elsewhere (Bertoni et al., 2015, Cattani et.al. 
2017b), and thereby we also learnt about optimal parameter setting for ge-
nomic query processing. 

The new GMQL system design is inspired by dominant cloud computing 
paradigms, which are supported by a variety of next-generation cloud-based 
data engines. GMQL scripts are translated into such paradigms and then ex-
ecuted; thus, the evolution of GMQL (in terms of portability, performance, 
scalability) will be well-supported by the key actors of cloud computing. 

In conclusion, the new GMQL system is an easy-to-use, versatile and in-
teroperable resource for processing big heterogeneous genomic datasets in 
order to extract candidate targets for biomedical knowledge discovery, as 
demonstrated by many provided examples. 
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