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Abstract. Determining the role of a DNA variant in patients’ health
status – a process known as variant interpretation – is highly critical for
precision medicine applications. Variant interpretation involves a com-
plex process where, regrettably, there is still debate on how to combine
and weigh diverse available evidence to achieve proper and consistent
answers. Indeed, at the time of writing, 22 different variant interpreta-
tion guidelines are available to the scientific community, each of them
attempting to establish a framework for standardizing the interpretation
process. However, these guidelines are qualitative and vague by nature,
which hinders their streamlined application and potential automation.
Consequently, more precise definitions are needed. Conceptual modeling
provides the means to bring clarification within this domain. This paper
presents our efforts to define and use a UML meta-model that describes
the main concepts involved in the definition of variant interpretation
guidelines and the constructs they evaluate. The precise conceptual def-
inition of the guidelines allowed us to identify four common misinter-
pretation patterns that hamper the correct interpretation process and
that can consequently affect classification results. In several proposed
examples, the use of the meta-model provides support in identifying the
inconsistencies in the observed process; this result paves the way for fur-
ther proposing reconciliation strategies for the existing guidelines.

Keywords: Conceptual Modeling · Genomics · Variant Interpretation
Guidelines · Standards

1 Introduction

Precision medicine has emerged as a disruptive medical approach aiming to
transform historically reactive medicine into a proactive one. To do so, this
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new perspective prioritizes individualized clinical actions based on each patient’s
unique characteristics [71]. The most distinguishing characteristic of an individ-
ual is its DNA sequence, which slightly differs among individuals.

Individual DNA sequences are compared to a DNA reference sequence that
reflects an “ideal” individual, leading to the identification of differences. These
differences among individuals are known as DNA variants3, and they determine
our physical characteristics, predisposition to diseases, or a different response to
treatments.

Identifying variants in an individual’s DNA sequence has become easier and
faster thanks to Next-Generation Sequencing (NGS). This technique uses mas-
sive parallelization to obtain the entire DNA sequence of an individual; the
connected technological advancement has significantly improved our ability to
identify and analyze DNA variants [58]. However, the scientific community must
overcome numerous challenges before achieving the paradigm shift that precision
medicine proposes. One of the most difficult challenges is determining a DNA
variant’s role in our health status (i.e., whether it will cause a particular disease
or affect treatment response), a process known as variant interpretation.

Variant interpretation is a complex process that involves weighing various
factors, such as the variant’s frequency among the population, whether it has
previously been linked to a disease, etc. Geneticists and clinical experts are still
debating on how to correctly weigh this evidence in order to achieve proper
variant interpretation. To address this issue, several authors have developed
variant interpretation guidelines. A variant interpretation guideline is a set of
instructions designed to guide the interpretation process by assessing whether or
not a variant meets specific criteria. These guidelines have quickly been embraced
by geneticists [53] and they have been adapted to the peculiarities of several
disease-causing genes [46].

However, several issues have arisen due to the vague definition of these guide-
lines and their application, which depends on the subjective interpretations of
domain experts [68]. In this context, clinical experts argue that more concrete
definitions are needed to standardize the variant interpretation process and re-
duce inconsistencies [16]. A suitable approach to clarify this complex domain
is Conceptual Modeling. Conceptual Modeling techniques have proven to be ef-
fective to achieve high levels of concreteness and standardization in genomics
[59,55,63,21,31].

In this work, we report on our use of Conceptual Modeling to achieve a
systematized definition of the main concepts involved in the definition of variant
interpretation guidelines and the constructs they evaluate. For this purpose,
we created a meta-model using the Unified Modeling Language [24]. Twenty-
two well-known variant interpretation guidelines (see Table 1 in Section 2) were
carefully analyzed. Based on these analyses, we were able to characterize the
differences and similarities between these guidelines. This allowed us to identify
the common conceptual structure that underpins all of these guidelines and to
consolidate our findings via the meta-model.

3
https://www.cancer.gov/publications/dictionaries/genetics-dictionary/def/variant
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The contribution of our work is to show how using a conceptual meta-model
to represent the concepts and constructs behind variant interpretation guidelines
can provide the following benefits: (a) Definition of the underlying structure that
different interpretation guidelines share, resulting in the development of a com-
mon framework for representing various types of guidelines; (b) Identification
of patterns of misinterpretation of variants due to inconsistencies or conflicts
within or between existing guidelines; (c) Disentanglement of the intricate de-
tails of existing clinical guidelines by resolving aspects whose definitions are left
implicit or ambiguous, requiring clarification.

Prospectively, our contribution can support a shared effort to define clini-
cal guidelines more consistently and objectively, reducing variant interpretation
inconsistencies. In parallel, it offers the possibility to improve variant interpreta-
tion automation because tools will be based on a precise and concrete definition
to guide their implementation rather than relying on personal interpretations.

The remainder of the paper is organized as follows. Section 2 provides the
background that has motivated our work. Section 3 overviews related work.
Section 4 describes the proposed conceptual meta-model, instantiating it on a
simple example of use (contributing to benefit (a)). Section 5 proposes to use
the above-mentioned conceptual meta-model to define a set of misinterpretation
patterns (contributing to benefit (b)). Section 6 discusses lessons learned (re-
garding benefit (c)) and, finally, Section 7 concludes the paper with a future
outlook.

2 Background

At the time of writing, 22 DNA variant interpretation guidelines have been
proposed. Table 1 lists them chronologically and reports their applicability, rep-
resenting either the type of variant or disease under the guideline’s scope. The
current guidelines support Mendelian diseases (diseases caused by variants in a
single gene), Rare diseases (diseases affecting a small percentage of the popula-
tion), X-linked diseases (diseases caused by variants in the X chromosome), and
Recessive or Autosomal dominant diseases (diseases with a specific inheritance
pattern). Some guidelines are only applicable to somatic variants (variants that
occur after conception in specific body tissues), mitochondrial variants (variants
affecting the mitochondrial DNA), or Copy Number variants (variants that af-
fect the number of copies of a specific gene). Finally, some guidelines present
generic applicability, i.e., they are theoretically applicable to any kind of variant
or disease.

Even though these guidelines attempted to improve and standardize the vari-
ant interpretation process, they are far from being a shared and widely-adopted
solution.
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Name Applicability

Praxis für Humangenetik Tübingen [14] Mendelian disorders

A systematic approach to assessing the clin-
ical significance of genetic variants (2013)
[27]

Mendelian disorders

ACMG/AMP (2015) [60] Mendelian disorders

Ambry Genetics (2015) [13] Autosomal dominant and X-
linked Mendelian disorders

EGL (2015) [6] Mendelian disorders

DNA Variant Scoring System (2016) [37] Mendelian disorders

Illumina Clinical Services (2016) [8] Mendelian disorders

ARUP(2017) [3] Mendelian disorders and others

Interpretation and Reporting of Sequence
Variants in Cancer (2017) [44]

Somatic variants

Mendelics ClinVar (2017) [11] Mendelian disorders

Sherloc [54] Mendelian disorders

Counsyl Autosomal Recessive and X-Linked
Classification Criteria (2018) [5]

Recessive and X-linked disor-
ders

Illumina Clinical Services (2019) [9] Mendelian disorders

LabCorp (2019) [10] Mendelian disorders

Mendelics ClinVar (2019) [12] Mendelian disorders

ACGS for Rare Disease (2020) [38] Rare disorders

ACMG/AMP for mitochondrial DNA vari-
ants (2020) [49]

Mitochondrial variants

A joint consensus ACMG and ClinGen
(2020) [62]

Copy number variants

ARUP (2021) [4] Mendelian disorders and others

Assertion Criteria Gen Dx (2021) [7] Mendelian disorders and CNV
variants

ACMG with Sema4 Rules (2022) [1] Mendelian disorders

Ambry General Scheme (2022) [2] Generic

Table 1: Collection of 22 DNA variant interpretation guidelines.

Indeed, distinct works [28,35] have highlighted a number of issues that arise
when using variant interpretation guidelines. The most frequently expressed con-
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cern is that the guidelines are qualitative in nature without providing the needed
specificity [43,39]; as a consequence, their practical application is left open to
expert interpretation [36]. In this context, inconsistent interpretations among
experts become common, leading to serious consequences in healthcare applica-
tions.

Consider for instance a case where an initial assessment in prenatal care re-
veals that an unborn child is at high risk of developing Muscular Dystrophy
disorder. The assessment was later revised by a different team of experts, fi-
nally determining that it was incorrect [57]. Because often these families have
to make decisions on pregnancy management within a limited timeframe, the
improperly classified variant could have had irreversible consequences. Further-
more, the more complex the disease (e.g., cancer), the more inconsistencies in
variant classification usually emerge [29].

In an effort to provide more exact definitions and streamline the process
by lowering the complexity and time needed to complete the interpretation,
several tools have been created to automate the variant interpretation process
[41,45,51,64,70,67]. Among these, VarSome [41], InterVar [45], and CharGer [64]
aim to operate within a broad scope, i.e., with variations associated with any
kind of disease. Instead, CardioVAI [51] and CardioClassifier [70] focuse on in-
herited cardiac conditions. All of them assign a label representing the disorder-
causing potential of the variants based on a set of applied ACMG/AMP criteria.
Following a different approach, Tavtigian et al. [67] modeled the ACMG/AMP
guidelines as a Bayesian framework, which allowed the authors to provide a
probabilistic score of pathogenicity associated with each variation.

These tools are meant to provide automated support for the variant inter-
pretation process; this is supposed to be more effective than human application
and reduce reproducibility issues. However, the qualitative nature and insuffi-
cient specificity of variant interpretation guidelines cause different tools to make
assumptions and interpret the data in discordant ways. Furthermore, some guide-
line criteria are frequently omitted by these tools because of the heterogeneous
information required for their application [52]. Overall, the inconsistencies that
naturally rise in a “manual” variant interpretation process are inevitably reiter-
ated. Automation of the interpretation process does not provide additional value
when it is not based on precise and concrete definitions. This further motivates
the effort described next.

3 Related Works

In the last years, several works have targeted specific domains all united by the
lack of a solid and well-founded conceptual characterization of their characteris-
tics. This was accomplished by proposing conceptual meta-models that provide
general clarification and guidance on the understanding of the said domain. For
instance, we report recent work in the context of fake news [69,20], Virtual Net-
work Function Marketplaces [34], FAIR scientific datasets [22], or FAIR Digital
Objects [65].
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In the field of genomics, the use of conceptual models for specifying genomics-
related processes has been explored. More specifically, conceptual modeling tech-
niques have proven to be an effective tool to achieve high levels of concreteness
and standardization. A recent work [21], has considered general genomic data
types represented in datasets for analysis and connected them to an abstract
conceptual representation, with the purpose to resolve their heterogeneity. Other
modeling efforts have targeted the inherent temporal dimension associated with
genomics data by mapping their evolution over time [31]; such an approach is
particularly sensitive in cases of changes in variant interpretation due to gene-
related data being updated [66]. Conceptual models have also been proposed to
target other specific aspects in the use of multi-omics data for precision medicine
[63] and for the identification of relevant and high-quality data records [55].

Aside from simple conceptual models, also ontological approaches have been
attempted. Ferrandis et al. [48] promoted the use of foundational ontologies to
avoid errors while creating and curating genomic domain models for personalized
medicine. The approach of ontological clarification has been employed to support
the explanation of complex domains such as human metabolic pathways [30] and
the viral genome with the related events of infection, sampling, sequencing, and
annotation for SARS-CoV-2 sequences [23]. Similarly, OntoRepliCov [42] showed
an initial conceptual framework targeting the translation event during SARS-
CoV-2 replication.

Despite the recent interest in conceptual models in the area of genomics and
some technological efforts to gather and integrate different human variation data
[47,26,72], to the best of our knowledge, the proposal presented here is the first
explicit, reusable reference meta-model that targets the Variant Interpretation
process.

4 A Meta-model for Variant Interpretation Guidelines

Let us begin by recalling that, as previously stated, variants can be classified
according to a variety of interpretation guidelines. In the model proposed here,
each Guideline is defined by its title, authors, and its applicability, i.e., the spe-
cific context in which the guideline is applicable, such as for instance “Mendelian
disorders” –a specific type of disorder–, or “copy number variants” –a specific
type of variant. For instance, some guidelines might be appropriate for evalu-
ating functional studies, whereas others may focus on analyzing computational
algorithms’ results. In addition, guidelines have a corresponding URL, where
they can be examined.

For the purpose of this model, we assume that the only interesting feature of
a Variant is its unique identifier (e.g., “rs556540177”). A ClassificationRe-
sult (e.g., “benign”, “pathogenic”) is the classification obtained for a certain
Variant using a specific Guideline.

Each Guideline defines a number of criteria (i.e., a set of Criterion) to
be evaluated in order to obtain the most adequate ClassificationResult for a
Variant. This classification is calculated based on the classificationRules de-
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-title : string
-author(s) : string
-applicability : string
-url : string
-classificationRules : string[]

Guideline

-name : string
-description : string
-passRule : string

Criterion

-name : string
-description : string

Metric

-name : string
-description : string

Dimension

-identifier : string
Variant

-pass : boolean
MetricResult

- / classification : string
-date : string

ClassificationResult

- / pass : boolean
BooleanCriterionResult

-suggested_score : float
-score_range : range

ScoreCriterion

- / given_score : float
ScoreCriterionResult

-strength : string
BooleanCriterion

{ covering, disjoint }

*

*

1..*

1..* 1..*

1..*

*

*

*1..* 1..*

*

*

*

1..* 1..*

evaluates

definesdefines
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evaluates evaluates

considers groups

Fig. 1. Meta-model for variant interpretation guidelines. Concepts associated with the
definition of clinical guidelines are depicted in green, the DNA-associated concepts (i.e.,
the variant that is interpreted by the clinical guideline) are depicted in red, and the
concepts used to describe the results of interpreting a variant via a clinical guideline
are depicted in lilac.

fined in a Guideline, which state the combination of criteria that must be met
to achieve a specific ClassificationResult. An example of a classification rule is
“pathogenic: PS1, benign: BP1”, which specifies that a variant would be classi-
fied as “pathogenic” if the PS1 criterion was met, and as “benign” if the BP1
criterion was met.

A Criterion is decomposed into more specific aspects, called metrics. Each
Metric evaluates to either a true or a false value for a particular Variant
(i.e., representing a MetricResult). Similarly to Guidelines, each Crite-
rion defines a specific rule, named passRule, which performs logical operations
over the set of MetricResults to determine whether the Criterion is met.
It is worth noting here that the same Metric can be used to calculate mul-
tiple criteria (as represented by the cardinalities between the Metric and the
Criterion classes).

We recognize two different kinds of Criterion: the BooleanCriterion
and the ScoreCriterion. The BooleanCriterion returns a true or false
value (i.e., BooleanCriterionResult) and is defined by a strength that rep-
resents the extent to which the criterion supports a specific classification. For
instance, a “strong” value indicates that the fulfillment of the criteria provides
strong support for a certain classification, whereas a “moderate” value indicates
that the criteria only offers moderate support. The ScoreCriterion returns a
numeric value (i.e., ScoreCriterionResult) and has a float suggested score
(e.g., “0.25”) within a score range (e.g., “[0, 0.45]”).
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Lastly, the Dimension groups distinct criteria that share given aspects. For
instance, some criteria focus on evaluating specific characteristics of a Variant
position in our DNA sequence, in which case we have a Dimension with the
name “Variant position”, and the description “Criteria that evaluate aspects
of the variant location in the DNA”. Making this common background explicit
among various criteria improves interoperability among different Guidelines.

4.1 Example: PM1 criterion of the ACMG-AMP 2015 guidelines

Here, we provide an illustration of the use of the meta-model by instantiating
the PM1 criterion of the ACMG-AMP 2015 variant interpretation guidelines
(see Figure 2 for a textual description). This is one of 16 criteria that support
the analysis of a variant’s pathogenicity according to these guidelines. More
specifically, it evaluates whether a variant is found in a region of our DNA
known as a “mutational hotspot” (i.e., a DNA region that has a high frequency
of pathogenic variants) and/or in a “protein domain” (i.e., a stable, independent
part of a protein that can perform vital protein functions) that is critical for its
correct functioning with no previously reported benign variations.

PM1 Located in a mutational hot spot and/or critical and well-established functional 

domain (e.g., active site of an enzyme) without benign variation 

Certain protein domains are known to be critical to protein function, and all missense 

variants in these domains identified to date have been shown to be pathogenic. These 

domains must also lack benign variants. In addition, mutational hotspots in less well-

characterized regions of genes are reported, in which pathogenic variants in one or 

several nearby residues have been observed with greater frequency. Either evidence 

can be considered moderate evidence of pathogenicity.  

 

 
Fig. 2. The two criteria identified in the textual description of PM1 are highlighted in
blue and brown frames. The four metrics identified in the textual description of PM1
are highlighted in green, pink, purple, and yellow frames. The blue-framed criterion
comprises three metrics, whereas the brown-framed criterion only comprises one.

During the instantiation process of the PM1 criterion, two major issues
emerged. The first one arises from the actual definition of the criterion, which
appears to describe two distinct criteria rather than just one. Indeed, a variant
meets the PM1 criterion if it is discovered in a mutational hotspot, a functional
domain without any known benign variations, or both of them. These scenar-
ios provide different characteristics to be met and different requirements to be
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PM1.2: BooleanCriterion
name: PM1.2
description: Variant located
in a mutational hotspot
passRule: M1

ACMG-AMP: Guideline
tittle: ACMG-AMP
Guidelines 2015
 authors(s) = Richards et. al.
applicability: Mendelian
disorders
 url: 10.1038/gim.2015.30

PM1.2-M1: Metric
name: PM1.2-M1
description: Variant
located in a mutational
hotspot

PM1.1: BooleanCriterion
name: PM1.1
description: Variant located
in a critical well-established
domain without benign
variations
passRule: PM1.1-M1 AND
PM1.1-M2 AND PM1.1-M3

PM1.1-M1: Metric
name: PM1.1-M1
description: Domain
without benign variants

PM1.1-M2: Metric
name: PM1.1-M2
description: Variant
located in a well esta-
blished protein domain

PM1.1-M3: Metric
name: PM1.1-M3
description: Missense
variant

location: Dimension
name: Variant location
description: Analysis of variant location in genome, transcriptome, and proteome

Fig. 3. The classes are depicted in the same colors used to highlight criteria and metrics
in the textual description of PM1 in Fig. 2.

evaluated. Regardless of the fact that both hotspots and functional domains are
genomic regions, they are of different types: hotspots are found in our DNA
sequence, whereas domains are found in proteins. Furthermore, the absence of
benign variation is only important for assessing the condition associated with
protein domains. Therefore, the PM1 criterion descriptions collapse two different
criteria. When they are considered separately, as promoted by our model, the
evaluation of the criterion becomes clearer and simpler.

The second issue concerns the imprecise definition provided in PM1. Accord-
ing to this criterion, the variant must be “located in a mutational hot spot and/or
critical and well-established functional domain without benign variations”. How-
ever, a careful reading of the complete description of the criterion reveals that
the part of PM1 regarding protein domains is only valid for missense variants
(i.e., a variant that leads to an amino acid change in the protein sequence).

Figure 3 shows the resulting instantiation of the PM1 criterion. The criterion
has been instantiated as two different Boolean criteria (PM1.1 and PM1.2) that
evaluate to either true or false. On the one hand, if a missense variant (PM1.1-
M3 metric) is located in a well-established functional domain (PM1.1-M2 metric)
with no benign variants (PM1.1-M1 metric), the PM1.1 criterion evaluates to
true –the passRule of the criterion is composed by the conjunction of these
three metrics. On the other hand, if a variant is found in a DNA region known
to be a mutational hotspot (PM1.2-M1 metric), the PM1.2 evaluates to true.
Here, the BooleanCriterion has a much simpler passRule, only including the
measurement of M1.
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The meta-model has allowed us to unpack and make explicit the constructs
underlying the ACMG-AMP PM1 criterion, which were previously hidden in
the convoluted nature of its textual description. This unpacking process was
supported by the part-hood relationships defined between the Guideline and
Criterion classes, and between the Criterion and Metric classes. These
part-hood relationships are made explicit via the formulas defined in the passRule
and ClassificationRules attributes. A Criterion’s classification result is based
on the evaluation of its metrics. Similarly, a Guideline’s classification result is
based on the evaluation of its criteria. Our metamodel enables the decomposition
of variant interpretation guidelines into more precise constructs, which can serve
as a solid foundation for clinical guidelines operationalization.

5 Variant Misinterpretation Patterns

The meta-model characterizes the constructs and underlying structure of in-
terpretation guidelines. This characterization has led us to the identification of
four patterns that hinder the variant (mis)interpretation process. These patterns
highlight the main inconsistencies in the interpretation processes when used by
different experts; they also elucidate the disparities in the variant classification
results. We have identified four different patterns: 1) the use of a single Metric
leading to differentMetricResults; 2) the use of a single Criterionmeasured
according to different Metrics; 3) the use of a Guideline with diverse Cri-
teria; and 4) the use of one Criteria with different purposes within diverse
Guidelines. All such patterns are allowed in the meta-model and represented
by several real-world examples; however, they are at the basis of situations un-
clear/incoherent interpretations of variants. Details and examples are provided
in the next sections.

5.1 Same metric – different metric results

The lack of data sharing is a significant issue in genomics [56]. Indeed, differential
access to privately stored data is one of the most common causes of discrepancies
in variant interpretation [28,35]. Because of this, different experts may evaluate
the same criterion’s metric differently depending on the data they have access
to.

Let us consider the following example. Determining whether a variant co-
occurs with a pathogenic variant is frequently regarded as proof of the benignity
of the variant under investigation [60]. It is common for laboratories that per-
form genetic testing to have their own variant repository that they do not share
publicly [50]. As a result, one laboratory may have identified cases in which
the variant co-occurs with a pathogenic variant while another laboratory may
not hold this information [28]. Consequently, when the metric “The variant co-
occurs with a pathogenic variant(s)” is evaluated, different metric results may
be obtained, depending on the data that the laboratory uses.
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BP2: BooleanCriterion
name: BP2
passRule: M1
description: Variant
co-occurence

M1: Metric
name: M1
description: Variant
cooccurs with patho-
genic variant(s)

variant: Variant
identifier: rs1234A>T

bcr: BooleanCriterionResult
pass: True

mr1: MetricResult

pass: True

BP2: BooleanCriterion
name: BP2
passRule: M1
description: Variant
co-occurence

M1: Metric
name: M1
description: Variant
cooccurs with patho-
genic variant(s)

variant: Variant
identifier: rs1234A>T

bcr: BooleanCriterionResult
pass: False

mr1: MetricResult

pass: False

Fig. 4. Example model of pattern “Same metric – different metric result”

Different metric results will influence whether or not a particular criterion
is met. A practical example of this situation is depicted in Figure 4. The vari-
ant rs1234A>T has met the criterion that evaluates variant co-occurrence (BP2
criterion) in the first scenario because the metric “The variant co-occurs with
pathogenic variant(s)” (metric M1) has been met. However, in the second sce-
nario, the variant fails the BP2 criterion because the metric M1 is not met,
thereby impacting also the BooleanCriterionResult pass value. Our meta-
model has allowed us to identify that the misinterpretation of the BP2 criterion
is due to different metric evaluation results.

5.2 Same criterion – different metrics

Interpretation guidelines have contributed to the standardization of the variant
interpretation process. However, due to the lack of specificity in these guidelines,
different experts may apply the same criterion differently [36]. This indicates,
according to our meta-model, that different metrics have been employed to eval-
uate the same guideline’s criterion.

This is especially common when determining a variant’s allele frequency
[28]. Variant interpretation guidelines frequently recommend using the allele
frequency of the variant as a benignity criterion if it is greater than expected
for that specific disorder. Such a definition makes the frequency’s cutoff entirely
dependent on the knowledge and experience of the expert performing the inter-
pretation [40]. As a result, given the criterion for evaluating allele frequency, one
expert could define a metric that states, for instance, that “the variant should
have an allele frequency greater than 0.5%”, whereas an alternative expert –
with a stricter approach – could define a different metric stating that “the vari-
ant should have an allele frequency greater than 1%”. This difference in metrics
may obviously result in different assessments of whether or not the same criterion
is met.
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BS1: BooleanCriterion
name: BS1
passRule: M1
description: Alelle
frequency greater than
expected

M1: Metric
name: M1

description: Allele
frequency > 0.5%

variant: Variant
identifier: rs1234A>T

bcr: BooleanCriterionResult
pass: True

mr1: MetricResult
pass: True

BS1: BooleanCriterion
name: BS1
passRule: M1
description: Alelle
frequency greater than
expected

M1: Metric
name: M1

description: Allele
frequency > 1%

variant: Variant
identifier: rs1234A>T

bcr: BooleanCriterionResult
pass: False

mr1: MetricResult
pass: False

NOTE: Reported Allele Frequency for this variant is 0.82%

Fig. 5. Example model of pattern “Same criterion – different metrics”

Figure 5 depicts an actual instance model of this situation. When the crite-
rion BS1 (evaluating whether “the allele frequency of the variant is greater than
expected for the disorder”) is applied to the rs1234A>T variation, it produces
different results, depending on the different definitions of the (only) metric which
this criterion depends on. Again, our meta-model is able to pinpoint clearly the
origin of criterion assessment differences.

5.3 Same guideline – different criteria

Most common misinterpretations occur when merging results from different
sources that follow different guidelines. One would expect that this could not
happen within the context of a specific guideline, as these intend to create a
well-defined framework for selecting the most appropriate interpretation for a
variation. Surprisingly, differences in interpretation results are common even
when using the same interpretation guideline [17,18]. This is related to the fact
that laboratories that perform the “interpretation” activity may be unable (for
diverse reasons–economic, time-related, or motivational) to apply all of the cri-
teria specified in the guidelines.

This is frequently the case in functional studies. Many variant interpreta-
tion guidelines recommend using well-conducted functional studies to assess the
potential impact of a variation in a gene or gene product [60,25]. This type of re-
search, however, is extremely difficult to pursue due to the significant monetary
and time investment required. As a result, only 36% of clinical experts apply
this criterion during the variant interpretation process [73].

Because functional studies provide strong evidence of the pathogenicity of the
variant, the choice of the expert to use this type of evidence will have a significant
impact on the interpretation of the variation. This is especially important for
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ACMG-AMP: Guideline
tittle: ACMG-AMP Guidelines 2015

classificationRules = {pathogenic: "PS1 AND PS3",
VUS: "PS1"}
applicability: Mendelian disorders

PS1: BooleanCriterion
name: PS1
description: Same amino
acid change as a previ-
ously established patho-
genic variant

variant: Variant
identifier: rs1234A>T

cr: ClassificationResult

classification: VUS

bcr: BooleanCriterionResult
pass: True

ACMG-AMP: Guideline
tittle: ACMG-AMP Guidelines 2015

classificationRules = {pathogenic: "PS1 AND PS3",
VUS: "PS1"}
applicability: Mendelian disorders

PS1: BooleanCriterion
name: PS1
description: Same amino
acid change as a previ-
ously established patho-
genic variant

variant: Variant
identifier: rs1234A>T

cr: ClassificationResult

classification: Pathogenic

bcr: BooleanCriterionResult
pass: True

PS3: BooleanCriterion
name: PS3
description: In vitro/in vivo
functional studies sup-
porting damaging effects

bcr: BooleanCriterionResult
pass: True

Fig. 6. Example model of pattern “Same guideline – different criteria”

variants whose significance is unclear, and a functional study can determine
whether the variant should be discarded as benign or further investigated for its
potential to cause disease [32,19].

The impact that the used criteria can have on the interpretation of a variation
is demonstrated practically in Figure 6. The expert in the top scenario only
considered criterion PS1, thus concluding that the variant has an Uncertain
Significance (VUS) based on that information. However, the expert in the bottom
scenario considered both PS1 and PS3; according to the classification rule that
assigns the “pathogenic” value when both PS1 and PS3 hold, or the “VUS”
value when only PS1 holds, this expert concluded that the variant should be
classified as pathogenic. The additional evidence provided by functional studies
(criterion PS3) was fundamental in this case. The meta-model provides a clear
representation of each expert’s interpretation process and pinpoints the source
of inconsistencies in the interpretation of variant rs1234A>T.
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5.4 Same criterion – different guidelines

Different variant interpretation guidelines establish different criteria and metrics
depending on their applicability. Nevertheless, there are well-established criteria
that usually appear in multiple guidelines.

In clinical guidelines, each criterion is defined using two alternative ap-
proaches: Boolean-based or score-based. When a Boolean criterion is used, the
criterion is either met or not. When a score criterion is used, instead, a criterion
is accepted if its associated value falls within a predefined range. Consequently,
even when guidelines include the same criterion, its assessment may be different
depending on the approach adopted by the guideline.

PS4: BooleanCriterion
name: PS4
description: Prevalence in cases is significantly
increased compared to controls
 strength: Strong
passRule: M1

4L: ScoreCriterion
name: 4L
description: Prevalence in cases is significantly
increased compared to controls
 score_range = [0, 0.45]
 suggested_score = 0.45
passRule: M1

ACMG-AMP: Guideline
tittle: ACMG-AMP
Guidelines 2015
applicability: Mendelian
disorders

variant: Variant
identifier: rs1234A>T mr: MetricResult

pass: True

bcr: BooleanCriterionResult

pass: True

M1: Metric
name: M1
description: Increased
frequency

ACMG-ClinGen: Guideline
tittle: ACMG-ClinGen
applicability: CNV

variant: Variant
identifier: rs1234A>T mr: MetricResult

pass: True

scr: ScoreCriterionResult

given_score = 0.45

M1: Metric
name: M1
description: Increased
frequency

Fig. 7. Example model of pattern “Same criterion – different guidelines”

A typical case when this difference emerges involves the criterion that evalu-
ates whether a variant is more frequent in cases than in controls. The criterion is
evaluated by the ACMG-AMP 2015 guidelines as a Boolean criterion [60], and in
the ACMG-ClinGen as a score criterion [61]. Figure 7 illustrates the example. In
the ACMG-AMP Guideline, the criterion PS4 analyzes whether the frequency
of the variant rs1234A>T is increased in affected individuals – by means of the
metric M1. The M1 result evaluates as true and, consequently, the PS4 criterion
results are also evaluated as true. In the ACMG-ClinGen Guideline, the equiv-
alent criterion 4L evaluates the same metric for the same variant. In this case,
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the criterion result is a particular score (0.45), whose value is obtained based on
the score range and the suggested score stated in the criterion definition.

Our meta-model clearly illustrates the differences between both guidelines
and - in general - allows experts to identify variant interpretation differences
that arise from the use of different approaches for variant interpretation.

6 Discussion

Variant interpretation is a critical step in achieving better diagnoses and treat-
ments based on each individual’s genomic information. However, the imprecise
and vague nature of the variant interpretation guidelines poses difficulties in
its application in a real clinical setting. We have used a conceptual modeling
approach to define a meta-model that allows us to identify the structure and
constructs behind interpretation guidelines.

With the proposed meta-model, we have defined and explained the common
framework for representing various types of guidelines (Section 4); we then iden-
tified patterns of misinterpretation of variants (Section 5); finally, the previous
results enabled us to disentangle intricate details of existing clinical guidelines,
as we analyzed in the examples of the previous section. Below, we summarize
the lessons learned during this process.

Unpacking variant classification results: Differences in variant interpretation
can have important consequences on a patient’s health. The reason behind these
differences sometimes is not the use of a different guideline or criterion but
a conflicting evaluation of the same criterion. Thanks to the description of a
criterion as an aggregation of metrics, we are not only able to identify a different
evaluation of a criterion but the specific metric that has caused such a difference.
Section 5.1 illustrates this case. This allows for a precise unpacking of the variant
classification results.

Disambiguating criterion definitions: Because the interpretation guidelines
are often not clear enough for their unambiguous application, various experts
will use different measurements to determine whether a criterion is met. As seen
in Section 5.2, the metric definition has allowed us to identify the collection
of constructs an expert uses to assess a certain criterion. This enables us to
provide a standard framework for comparing various interpretations of the same
criterion.

Clarifying interpretation guidelines application: A precise set of criteria are
specified in the interpretation guidelines to direct the classification outcome. As
Section 5.3 shows, not all experts employ all criteria, which makes it difficult to
derive the precise procedure that was used. The meta-model enables a precise
characterization of the particular criteria applied for variant interpretation as
well as the components assessed in each criterion, enabling full traceability of
the outcomes.

Making connections explicit : The 22 interpretation guidelines currently avail-
able have important differences in their applicability, the criteria considered most
important to assess the role of a variant in the disease process, or even in their
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approach for evaluating such criteria (boolean or score). Precisely identifying the
differences and commonalities among the guidelines is key to comparing the in-
terpretation approach followed by different experts and the possible implications
for the classification results. Section 5.4 reflects how the meta-model has allowed
us to make explicit connections among different interpretation guidelines.

Operationalization of guidelines: Clinical guidelines were originally defined
in an abstract manner thus hampering their direct operationalization. The gen-
erated conceptual schema poses the basis for building workflows that systemati-
cally: 1) explain the complex interpretation domain (on the lines of [33]) and the
related process in place (a sort of process explainability [15]); 2) highlight cur-
rent differences, inconsistencies, and misinterpretations; 3) propose refinements
to current criteria and metrics; and 4) derive a complete operationalization of
the guidelines’ application process.

7 Conclusion and Future Outlook

In this paper, we proposed a novel meta-model for the representation of the
DNA Variant Interpretation Guidelines. Variant interpretation is a very common
process in the working routine of clinicians and geneticists and it is of critical
importance that it is managed in a correct way to ensure patients well-being.
Unfortunately, current practice still presents many shortcomings; the presence of
several guidelines with diverse criteria and metrics – possibly based on different
approaches or with apparent discrepancies – is hampering the reliability of the
interpretation results.

Paving the way to a complete standardization and systematization of this
process, here we proposed a meta-model that aims to explain and clarify the
morphology of interpretation guidelines and their internal elements. Addition-
ally, we proposed a set of patterns in which these guidelines led to the potential
misinterpretation of variants. These patterns reveal common challenges encoun-
tered when interpreting variants and each of them is associated with a practical
use case where the pattern arose. Finally, we discussed lessons learned during
the modeling effort and how these reflect on the presented problematic use cases.

In the future, we plan to thoroughly expand the patterns catalog, propos-
ing operational rules to avoid such incorrect situations to occur. As previously
discussed, this preliminary meta-model effort will be applied to practical frame-
works for two main purposes. First, we aim to explain the complex variant
interpretation process, reporting differences, inconsistencies, and misinterpreta-
tions. Second, we aim to propose refinements to current criteria and metrics and
completely operationalize the guidelines’ application process.
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