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Data quality-aware genomic data integration

Anna Bernasconi

e The integration of data and metadata is very relevant in biomedical fields (including genomics), because critical deci-
sions in healthcare depend on it.

e Heterogeneity aspects affect many actors and stages of the genomic data life cycle; data quality dimensions can ade-
quately lead the analysis of problems and related solutions.

e The focus so far has been on quality of genomic signals extracted from raw data, while more efforts are needed on
processed data and metadata issues.

e Data quality dimensions should be addressed systematically during data integration of diverse sources, to enable further
integrative studies.

e Future data integration approaches will include more and more a data quality-aware modus operandi with currency,
conciseness, consistency, reliability-driven approaches.
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ABSTRACT

Genomic data are growing at unprecedented pace, along with new protocols, update polices, formats
and guidelines, terminologies and ontologies, which are made available every day by data providers.
In this continuously evolving universe, enforcing quality on data and metadata is increasingly critical.
While many aspects of data quality are addressed at each individual source, we focus on the need for a
systematic approach when data from several sources are integrated, as such integration is an essential
aspect for modern genomic data analysis. Data quality must be assessed from many perspectives,
including accessibility, currency, representational consistency, specificity, and reliability.

In this article we review relevant literature and, based on the analysis of many datasets and platforms,
we report on methods used for guaranteeing data quality while integrating heterogeneous data sources.
We explore several real-world cases that are exemplary of more general underlying data quality prob-
lems and we illustrate how they can be resolved with a structured method, sensibly applicable also to
other biomedical domains. The overviewed methods are implemented in a large framework for the
integration of processed genomic data, which is made available to the research community for sup-
porting tertiary data analysis over Next Generation Sequencing datasets, continuously loaded from

many open data sources, bringing considerable added value to biological knowledge discovery.

1. Introduction

Genomics is going to generate the largest “big data”
problem for the mankind: between 100 million and 2
billion human genomes are expected to be sequenced by
2025 [114]. High-throughput technologies and, more re-
cently, Next Generation Sequencing [111] have brought in-
creasing amounts of genomic data of multiple types, real-
izing huge steps towards unravelling human genome mech-
anisms and applying them for unprecedented personalized
medicine outcomes. Prior to data analysis and biologi-
cal knowledge discovery, data and metadata integration is
considered an activity of irrefutable priority, with press-
ing demands for enhanced methodologies of data extraction,
matching, normalization, and enrichment, to allow build-
ing multiple perspectives over the genome; these can lead
to the identification of meaningful relationships, otherwise
not perceivable when using incompatible data representa-
tions [107].

Bioinformatics, including genomics in particular, op-
erates traditionally by exploiting the considerable field-
work on data acquisition, wrangling and analysis from
its practitioners. Best practices are accumulated across
labs and different projects, shared on forums (e.g., https:
//www.biostars.org/, http://seqganswers.com/, https://www.
researchgate.net/) and collected in the documentation or
wiki-guides in code repositories of tools and software.
Within these processes, bioinformaticians are mostly con-
cerned with the quality of the experimental data produced
by sequencing platforms, for which consolidated pipelines —
often composed of many scripts — are available.

In comparison, quality actions that can be performed
when aggregating multiple experimental data in system-
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atized ways, have received less attention. However, with the
emergence of a culture of data FAIRness [122] and of open
and sharable science — promoted by initiatives such as FAIR-
sharing [109] — caring for data standards in both schemata
and values becomes increasingly important, in the same way
as implementing integration practices that foster data qual-
ity (focusing on accuracy, consistency, currency, and relia-
bility [64]). In its 2012 report on quality of data, IBM found
that 1 out of 3 business leaders do not trust the informa-
tion they use to make decisions (https://www.ibmbigdatahub.
com/infographic/four-vs-big-data); this ratio is unaccept-
able in fields like health-care and precision medicine, that are
strongly driven by genomic databases and decision methods.

Recently, we have observed a trend of initiatives that
gather tools and data structures to support interoperabil-
ity among highly heterogeneous systems, to help bioin-
formaticians perform a set of curation and annotation op-
erations. These include community-driven efforts such
as bio.tools [68] (anchored within ELIXIR, https://www.
elixir-europe.org/) service providers (EBI [98]), soft-
ware suites (Bioconductor [67]), or lists (http://msutils.
org/). Specific instances include APIs such as BioPy-
thon [34], tailored scripts, and field descriptions to be parsed
(Bioschemas.org [60]). By using, e.g., the EDAM ontol-
ogy [69], single initiatives can build bridges among re-
sources, while conforming to well-established operations,
types/formats of data and application domains.

In this fashion, most problems are handled within a sin-
gle database by means of on-the-fly data integration, driven
by a community-inspired guidance. On the other hand, a
more systematic approach of low-level integration — based
upon experience in building solid data warehouses — has
also been adopted, helping to reach stable interoperability
among imported sources. In these years we witnessed at-
tempts to this kind of approach at many international cen-
ters for genomics (including the Broad Institute — https:
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//www.broadinstitute.org/ —and Wellcome Sanger Institute
— https://www.sanger.ac.uk/ — that are so far unpublished)
as well as in companies (including SciDB, implemented by
Paradigm4, https://www.paradigm4.com/try_scidb/). In the
context of research applied to real problems of the domain,
the data-driven Genomic Computing project (GeCo [27])
has dedicated considerable efforts to integrate sources of
data that are open for secondary research use, hence down-
loadable to a common repository, continuously updated.
Such systems provide the advantage of offering to users prac-
tical work environments. Indeed, biologists and clinicians
appreciate ready-to-use repositories, while the know-how
of bioinformaticians/developers (on scripting and querying
technologies) may not be always at hand.

The emergence of the mentioned positive experiences in-
dicates how data quality can be generally addressed, within
thousands of cooperative studies that are jeopardized due to
the poor quality of genomic data integration. Poor quality
arises at very diverse levels: protocols, data units and dic-
tionaries, metadata models and terminologies. We propose
a step forward in the holistic understanding of genomic data
and metadata integration, describing a number of methods
that can be practically employed to resolve heterogeneity.
While most of the introduced issues and techniques have
commonalities with general data integration problems, we
instantiate them in the specific genomic data context, provid-
ing practitioners with easy-to-relate examples to guide their
procedures.

In Section 2 we discuss the state of the art since the
earliest works on quality-aware genomic databases manage-
ment [91, 16]. In Section 3 we focus on processed data (i.e.,
the signal extracted from raw genomic datasets) and on meta-
data (i.e., data description), which is the main driver for in-
teroperability and interconnectedness of different databases;
in this context, we present a taxonomy of data integration
procedures that can positively affect data quality issues. We
interpret integration as a set of steps [13], during which prac-
titioners encounter several heterogeneity loci, which are con-
texts that cause heterogeneity and that may be addressed dur-
ing the specific activities of integration.

In Section 4 we describe a collection of problems with
related practical examples and solutions proposed as com-
mon practices or specific of our experimented pipelines. In
this context, data integration involves: synchronizing the
content of a global repository with the data sources, organiz-
ing data and corresponding metadata with a unique orthog-
onal approach, considering interoperability of data descrip-
tions and, more in general, allowing heterogeneous datasets
to be used together seamlessly. More pragmatically, we ar-
gue that the problem of data quality cannot be addressed as
an independent issue. It is entangled with many other as-
pects regarding data modeling, management, integration and
usage. We do not consider quality deriving from original
sources as it is not a space where we can intervene a pos-
teriori. Instead, we propose a novel angle: addressing data
quality dimensions while diverse data sources are being in-
tegrated together to enable further applications. In conclu-

sion, in Section 5 we reaffirm the need for quality-aware so-
lutions to integration and mention our vision on upcoming
approaches dedicated to this matter.

2. Background

From DNA microarrays [70] to Next Generation Se-
quencing [111], “quality” in genomics has been usually em-
ployed to refer to “quality control” steps on sequences, typ-
ically a pre-processing activity aimed at removing adapter
sequences, low-quality reads, uncalled bases, contaminants.
Instead, in this review we refer to Data Quality (DQ) in the
broader sense defined by Wang and Strong [119], usually
captured by the expression “fitness for use”, i.e., the ability
of datasets to meet their users’ requirements. DQ is eval-
uated by means of different quality dimensions (i.e., single
aspects or components of a data quality concept [115]). State
of the art techniques to solve data quality issues in general
databases are summarized in [50], under the name of ‘data
cleaning’.

In Figure 1 we appreciate the chronological order of pub-
lication of relevant literature. In general, more foundational
works of data quality in genomics/biological database have
appeared in the early years between 2003 and 2008, building
the first baseline for this subject, while after 2014 we observe
more specific contributions. Miiller et al. [91] examine the
quality of molecular biological entities databases. Within
the production of data, the authors identify intrinsic prob-
lems that lead to incorrect data, concluding that traditional
data cleaning techniques, used successfully in many other
domains, do not fit the peculiarities of genomics. While giv-
ing a complete review of potentially very dangerous errors in
sequence and annotation genomic databases, the discussion
leaves aside processed data as well as aspects related to data
integration and integrated access to multiple heterogeneous
sources.

While in 2005 Martinez and Hammer propose the con-
ceptual integration of data quality measures inside a model
of data [80], the research group led by Berti-Equille is
more focused on the problems deriving from warehous-
ing genomic data [16, 63, 89]. Their overall experience
is summarized in [88], where they claim that metadata de-
scribing data preparation and data quality are not exploited
enough for ensuring valid results of downstream data analy-
sis. Along the same lines of the pioneer work of Wang and
Strong [119], some works propose measures and concep-
tual frameworks that take into account user-driven quality
requirements; see the work by Missier et al. [87], BioGu-
ideSRS [35], BioDQ [81] and the more recent paper by
Veiga et al. [118]).

A preliminary work by Ledn et al. [76] classifies the
data quality properties that are most relevant for genomics;
it was then applied concretely to a Crohn’s Disease clini-
cal diagnosis case study [97]. The general framework has
been described very recently in Pastor et al. [99]. Rajan et
al. [104] have recently proposed to build a knowledge base
for assessing quality and characterizing datasets in biomed-
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Figure 1: The timeline of publications targeting data quality issues in biological (and
more precisely genomic) databases. Red circles represent works describing approaches to
resolve duplication; green circles are works on data warehousing or conceptual modeling;
blue circles cover expert curation literature; grey circles are for user-driven data quality
approaches; black circles are uncategorized works.

ical repositories, thus including also genomics and other
translational research data. Other works address data quality
on specific kinds of genomic databases (e.g., by Hedeler and
Missier [64] for transcriptomics and proteomics, by Etchev-
erry et al.[49] for Genome Wide Association Studies, and
by Gongalves and Musen [59] for repositories of biological
samples).

As to specific addressed problems, duplicate detection in
biological data was dealt with association rule mining first
by Koh et al. [74], then by Apiletti et al. [2, 3] and by Miiller
et al. [90], with a focus on contradicting databases. Recent
works cover the prevention of redundancy in big data repos-
itories (UniProt KB in [23] and high throughput sequencing
in [52]), providing a comparison with other widely used bi-
ological large data repositories.

A number of approaches focus on primary data archives
quality (i.e., sequence databases such as GenBank [110]) to
automatically detect inconsistencies with respect to litera-
ture content (see [20, 21]) and to provide benchmarks [31],
general categorizations of duplicates [32], de-duplication
clustering methods [30], as well as insights on characteris-
tics, impacts and related solutions to the problem of dupli-
cation in biological databases [29].

Finally, data integration in a quality-aware perspec-
tive includes practices of data curation [108] and of ser-
vice/process curation [58]. Data curation is explored in

[117], where the Eagle-i system is developed to facilitate
collaborative curation, and in [102, 101], as a means to deal
with conflicting and erroneous data in UniProtKB.
Unfortunately, things have not changed much since the
first contributions in this area: data integration is still re-
sponsible for solving many data quality problems in this
overreaching big data challenge. While the focus until now
has been much on quality of original data, not much stress
has been dedicated to processed data and to metadata issues,
which are critical during the data curation process. We thus
consider the challenges reported in the mentioned works and
remodel them into data quality-driven methods that are al-
ready implemented in a working integration framework.

3. Genomics data quality dimensions

The preliminary generation of genomic data follows
guidelines and collections of best practices that are gathered
during years of practitioners’ experience; they are paired by
metadata, describing the produced datasets. These are sub-
mitted to repositories or collected by consortia that coordi-
nate big research projects and are appointed with the respon-
sibility of publishing it on their platforms. Unfortunately, the
integrated use of data coming from different data sources is
very challenging, as heterogeneity is met at multiple stages
of data extraction (e.g., download protocols, update poli-

Accepted to Computer Methods and Programs in Biomedicine Update (https://doi.org/10.1016/j.cmpbup.2021.100009)

Page 3 of 15



Data quality-aware genomic data integration

cies), integration (e.g., conceptual arrangement, values and
terminologies), and interlinking (e.g., references and anno-
tation).

While integrating genomic datasets, either for ad hoc
use in a research study, or for building long-lasting inte-
grated data warehouses, we deal with various complexities
that arise during three phases: i) download and retrieval of
data from the (potentially multiple) sources; ii) transforma-
tion and manipulation, providing fully or partially structured
data in machine-readable formats; iii) enrichment, improv-
ing the interoperability of datasets.

With heterogeneity locus we refer to an activity or phase
within the genomic data production/integration process that
exhibits heterogeneity issues, thus undermining the quality
of resulting resources. Dividing production from integra-
tion, the taxonomy in Figure 2 keeps track of all the phases
in which a genomic data user may need to resolve problems
related to non-standardized ways of producing data, making
it accessible, organizing it, or enhancing its interoperabil-
ity. Issues may derive from diverse data and process man-
agement habits across different groups that work within the
same institution; even more so across different ones. In Fig-
ure 2 the heterogeneity loci (listed in the central column) are
grouped by production and integration phases (on the left)
and are related to data quality dimensions (on the right) that
are critical in the represented heterogeneity aspects and are
described in the following subsections. In the figure, as in
the remainder of the paper, we refer to widely used state-of-
the-art definitions of data quality dimensions [119, 105] as
well as to more recent ones [5, 9].

From the broader landscape of processed data sources
presented in [14], in this review we focus on exam-
ple applications that refer to a number of open general-
purpose resources (Encyclopedia of DNA elements, EN-
CODE [48]; Roadmap Epigenomics Project [75]; 1000
Genomes Project [33]; Genotype-Tissue Expression Con-
sortium, GTEx [77]; Genome Wide Association Study
GWAS Catalog [22]), cancer genomics resources (The Can-
cer Genome Atlas, TCGA [121]; Genomic Data Com-
mons, GDC [62]; International Cancer Genome Consor-
tium, ICGC [126]), primary archives (Gene Expression Om-
nibus, GEO [8]), and annotation resources (GENCODE [51]
and NCBI RefSeq [95]).

3.1. Accuracy and validity of generated content
Within production, datasets are generated and then pub-
lished. Generation includes complex practices and chal-
lenges, involving quality issues related to accuracy, i.e.,
the degree to which produced experimental data correctly
and reliably describe real-world represented events [119].
Such aspects have been thoroughly reviewed in previous
works [91, 64, 76]. Much less investigated, instead, are the
issues related to metadata authoring (i.e., preliminary com-
pilation of information) [93]. Until very recently, practition-
ers and investigators from the biomedical community have
not recognized metadata creation as a first class activity in
their work. As a consequence, accuracy of metadata values

is negatively affected and it becomes very hard for many fi-
nal users to work with it.

As publication paves the way to downstream opportuni-
ties for integration and analysis, a growing number of scien-
tific journals require, upon submission, that genomic experi-
mental data are contextually submitted to public data repos-
itories [1] (such as GEO, SRA [73] or ArrayExpress [6]).
Unfortunately, metadata instances in GEO repository suffer
from redundancy, inconsistency, and incompleteness [124],
especially due to a lightly regulated submission process.
Users are allowed to create arbitrary fields that are not prede-
fined by set dictionaries, many requested information are un-
structured, and validity of the fields’ values (i.e., the degree
of their compliance with syntax — format, type, range — of the
corresponding definitions [5]) is not checked. Information
for submitting high-throughput sequencing data is listed at
https://www.ncbi.nlm.nih.gov/geo/info/seq.html. A wide
literature has been produced to capture structured informa-
tion from GEO a posteriori (e.g., [100, 120]). The scenario
of alternative repositories, i.e., NCBI BioSample [7] and
EBI BioSamples [44], is witnessed in [59].!

Once published on public repositories, data become
available for a much wider community, they are potentially
re-utilized in secondary analysis or integrated in other plat-
forms; disorganization in the conveyance of provenance in-
formation and descriptions of generation procedures nega-
tively affects ‘data lineage’ [45].

3.2. Accessibility of open genomic data

Sources display diverse download options including pro-
grammatic interfaces (APIs), file transfer protocol (FTP)
servers, and simple web interface links (HTTP or HTTPS).
According to our analysis of important consortia housing
open genomic data: i) ENCODE, GDC, and ICGC provide
HTTPS API GET/POST services to retrieve lists of files cor-
responding to chosen filters and additional services to down-
load the corresponding files one by one; ii) Roadmap Epige-
nomics, GENCODE, RefSeq, 1000 Genomes, and GWAS
Catalog store all files on FTP servers, that can be navigated
programmatically; iii) GEO provides a variety of methods
(both through its own portal and from alternative interfaces),
each concentrated on selected partitions of the entire reposi-
tory content; iv) GTEx can only be accessed from its HTML
website.

Only in some cases metadata information is structured
and programmatically available. Sometimes metadata files
are associated 1:1 to data files (i.e., each data file has a cor-
responding metadata file); in these cases they can be down-
loaded in similar ways as the corresponding data file (e.g., by
just adding a parameter in an API call, as in ENCODE, or by
calling a similar API endpoint using the same file identifier,
as in GDC). In other cases, a single metadata file describes
a collection of experiments (e.g., Roadmap Epigenomics) or

IThis revealing analysis shows many insights, such as: i) in the descrip-
tion field the concept ‘age’ appears in 33 different ways (e.g., AGE, Age,
age (yr-old), Age of patient, age_years); ii) 73% of Boolean metadata val-
ues are not actually true or false; iii) 26% of integer metadata values cannot
be parsed into integers.

Accepted to Computer Methods and Programs in Biomedicine Update (https://doi.org/10.1016/j.cmpbup.2021.100009)

Page 4 of 15


https://www.ncbi.nlm.nih.gov/geo/info/seq.html

Data quality-aware genomic data integration

Data Quality Dimensions

Accuracy (Sec. 3.1)

Validity (Sec. 3.1)

__________________________________

| T Concion renrecomtation Goo. 3.0 !

Concise representation (Sec. 3.4)

iRepresentationaI consistency (Sec. 3.4)!
i Ease of operation (Sec. 3.4)

__________________________________

Consistency (Sec. 3.5) |
Specificity (Sec. 3.5) !

1
1
1
i
T H
1
1
1
1

| . Uniqueness (Sec. 3.5)

5
|
|
|
1

|

Reliability (Sec. 3.6)

Phases Heterogeneity loci
— 1l
[ o]
©
8 % | Data generation and Metadata authoring
S5 | O
3 =
& |g]
0o .. o -
E:-J | Submission on Repositories ]
’_—: 1l
_cé l Data retrieval protocols
E
o Update policies
__DJ lobal synchronization |
Il
— Genomic Data Metadata
—
[0) S A
= e Organization ] [ Organization
= o
g |2 —
= S Conceptualization
£ |E
L I Value normalization I l Value normalization |
] :
5 External referencing
£
H _ A-posteriori annotation
L =

Figure 2: Taxonomy of heterogeneity loci and affected data quality dimensions during
genomic data integration; dimensions are equipped with the references where they are
primarily defined; they are further discussed in dedicated subsections. Pink rectangles are
explained in Sections 4.1-4.4.

metadata information need to be retrieved in a number of
different summary text files, where correspondence between
a row and a genomic data file may be obtained using sam-
ple IDs (e.g., ICGC or 1000 Genomes). Other times sources
have dedicated no effort in systematizing metadata or bring-
ing metadata to a single place; these can only be gathered
from descriptions scattered across Web pages.

Accessibility measures the ability of genomic data con-
sumers to easily and quickly retrieve datasets [119]; it is a
critical aspect in this phase, as very specific modules need
to be created for each source, often upon analysis of cum-
bersome online documentation and understanding of spe-
cific parameters of each portal. Moreover, many well-known
open-data databases (such as Cistrome [127], Broad Insti-
tute’s CCLE [56], and COSMIC [116]) require authentica-
tion to access their data; these can only be downloaded and
not re-distributed, creating a barrier to integration.

3.3. Currency of retrieved information

Measuring the extent to which data are up to date (the so-
called currency [105]) is not trivial, as file version synchro-
nization between integrative solutions and original sources
strictly depends on the information about the data update

state made available in the specific scenarios. The analyzed
sources provide such kind of information in different ways: 1)
ENCODE, GDC and ICGC store information about last data
update and checksums within their metadata; ii) Roadmap
Epigenomics is a once-for-all project: it will not be updated
(at least in the same distribution), therefore does not give
such information; iii) 1000 Genomes organizes copies of its
data, sequenced in different phases of the project, in dif-
ferent folders of the FTP—update information can be in-
ferred from the paths of the files; iv) GENCODE and Ref-
Seq produce different versions regularly; they are associ-
ated to release dates, available in the folders names used
on the FTP server; v) GTEx and GWAS Catalog embed the
source data version (and subversion) within the file names
(e.g., “GTEx_v7_Annotations _SampleAttributesDS.txt” or
“gwas_catalog_v1.0-studies_r2019-12-16").

On the contrary, metadata update information are avail-
able only in specific cases. For example let us consider the
case of ENCODE and GDC, which have complex hierarchi-
cal metadata structures in JSON. ENCODE centers its model
on the Experiment entity, including Biosamples with many
Replicates, to which Files belong. GDC is centered on the
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Patient entity, providing multiple Samples; data are also di-
vided by Project of a certain Tumor Type, for which many
Data Types are given. These sources associate an update
date to each JSON element representing an entity, such as
“Experiment”, “Treatment”, “Donor”. The update date auto-
matically pertains also to the elements contained in the entity
(e.g., Experiment.assay, Donor.age, Treatment.pipeline...),
allowing a fine-grained definition of last update of each sin-
gle metadata unit. For all sources where files are down-
loaded from an FTP server, the upload date of files can be
used as reference metadata update date.

3.4. Representational conciseness and consistency

Transformation is necessary to organize genomic data
and the related descriptions into formats that allow con-
ciseness and consistency in the representation of informa-
tion. These dimensions respectively measure the ability to
compactly, yet completely, represent data and the ability to
present data in a same format, allowing backward compati-
bility [119]. When targeting further data manipulation and
analysis, these requirements consequently translate into ease
of operation, i.e. the extent to which data are easily used and
customized [119].

Genomic data organization is a hard task because files
have many formats with different semantics (e.g., expression
matrices, sets of annotations, sets of peaks measured during
an experiment or instead corresponding to a specific refer-
ence epigenome...). There does not exist any collectively ac-
cepted standard for a general yet basic data unit, that is able
to concisely represent very heterogeneous input data types
(given that rows and columns can express different concep-
tual entities and with different levels of detail).

Also metadata formats are various: hierarchical ones
(such as JSON, XML, or equally expressive) adhere to in-
house conceptual models; tab-delimited formats (TSV, CSV
or Excel/Google Spreadsheets) present different semantics
for rows and columns; completely unstructured metadata for-
mats, collected from Web pages or other documentation pro-
vided by sources, need to be understood case by case.

3.5. Value consistency, uniqueness and specificity

Heterogeneity is present not only in representation for-
mats, but also evident in values. Normalization activi-
ties may involve adding/standardizing genomic coordinates
(e.g., from O-based coordinates to 1-based or vice-versa)
and other positional information, adding associated known
genomic regions (e.g., genes, transcripts, miRNA) from
standard nomenclatures, or formatting into general/source-
specific formats, such as narrowPeak or broadPeak EN-
CODE’s standards. A non-exhaustive list of commonly used
genomic formats is found at https://genome.ucsc.edu/FAQ/
FAQformat.html.

Also metadata that describe datasets in different sources
are often incompatible or incomplete, using various refer-
ence ontologies or no terminology at all. The lack of con-
sistency between value domains (i.e., no compliance with
semantic rules defined over sets of values [9]) certainly hin-
ders interoperability among sources.

Moreover, as the identity of genomic records is real-
ized using descriptive fields in metadata — usually in addi-
tion to internal identifiers — metadata are in charge of han-
dling uniqueness with respect to instances within a same
source, ensuring that no exact duplicates exist for the same
experimental data record [105]. Uniqueness is certainly a
goal within single sources, while in the genomics domain
(and biomedical more in general), it is accepted that entries
representing same real-world entities are repeated in differ-
ent sources, provided that linking references are present and
records are aligned (as debated in [113]). This activity, im-
proving lineage and interoperability of the database content,
is very critical especially in an application field where re-
sources are typically not well interlinked and information is
only present in some databases and with different degrees of
value specificity (referred to as level of detail in [105]).

3.6. Reliability of annotations

Annotation, i.e. structural and functional classification
of (sub)sequences, is an across-the-board activity of the ge-
nomic data life cycle. Typically, annotating means associat-
ing genomic regions with labels from Gene Ontology [41]
(explaining the related molecular function, biological pro-
cess, cellular component) or with medical concepts related
to the sequence (e.g., from UMLS [17]). The process is de-
scribed in many works [47, 63, 64], hinting at the related data
quality aspects. Annotations are either done by human ex-
perts, accurately based on literature evidence and certainly
time consuming, or predicted automatically by algorithms
that try to infer structural and functional information from
similar genes/proteins (worst in terms of accuracy but much
less time consuming).

Semantic annotation is instead a typical practice on
metadata. As surveyed in Bodenreider [18], ontologies have
been widely used in biomedical data management and inte-
gration for many years, with the main purpose of improving
data interoperability [112]. Many tools are already avail-
able to allow semantic annotation with biomedical onto-
logical concepts (see Annotator [71], EBI Zooma (https:
//www.ebi.ac.uk/spot/zooma/), NIH UMLS MetaMap [4],
HeTop [61]). Techniques of text-mining [66] have been put
into practice on many sources of biomedical text, including
abstracts and experiment description from Gene Expression
Omnibus [57, 28, 53], so far one of biggest yet least curated
and standardized sources, thus drawing more attention and
efforts. The problem of choosing the right ontologies for se-
mantic enrichment is addressed in [96].

However, guidelines to achieve more standard annota-
tion outcomes are still lacking. Reliability [119] of results
(i.e., the extent to which annotations can be confidently used
to connect and compare datasets) remains a critical aspect
of annotation, being dependent on both the algorithm and
the acceptance of the ontology in the biomedical commu-
nity (which itself results from many factors, sometimes hard
to measure).
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4. Quality-aware methods for data integration

During the research activity documented in [14] we ana-
lyzed about 30 data repository hosts, consortia databases,
platforms, and interfaces that integrate heterogeneous
datasets. We performed various genomic data excavation
sessions with the perspective goal of understanding the most
important open data sources to be included in a rich pro-
cessed data repository. Within this process, we experienced
several cases of heterogeneity located in the specific loci
depicted in Figure 2 (see pink rectangles of different sizes,
marked with labels that characterize Sections 4.1-4.4), nec-
essarily resulting into data quality problems. In the follow-
ing discussion, we focus on the loci related to integration
phases. For each, first we provide paradigmatic real-world
instances. Then, we formalize the problem into overarch-
ing questions, specifying the data quality dimensions that
are addressed at this stage (as listed in the previous section).
Finally, we outline methods that are employed to resolve the
issue, from literature and from integration efforts realized in
the GeCo project.

4.1. Global repository synchronization with data
sources

In the following we provide two example problems re-
garding data synchronization on the widely employed TCGA
and ENCODE sources. Two additional examples, based on
ICGC and 1000 Genomes, are available in the Section 1 of
Supplementary material.
Example 1. Until 2016, TCGA data was available through
a data portal that provided metadata only in XML for-
mat, using biospecimen supplements and clinical supple-
ments that described respectively the biological samples
analyzed in the experiments and the patient history, clin-
ical information, and treatments. TCGA has undergone
a transition towards the new GDC portal, where the data
has been, by now, almost completely transferred. How-
ever, there are significant inconsistencies related to meta-
data. All supplements have been maintained and are
still downloadable, but they nowhere fit in the new de-
scribed data model, available at https://gdc.cancer.gov/
developers/gdc-data-model-0. Instead, an entirely new col-
lection of metadata, available through programmatic in-
terface, has been defined, divided in four main endpoint
groups (Project, Case, File, Annotation). The documenta-
tion of available fields is at https://docs.gdc.cancer.gov/
API/Users_Guide/Appendix_A_Available_Fields/. GDC mi-
gration is still ongoing; nevertheless documentation is not
consistently updated and it is common to find fields that are
already visible in the interface facets (and APIs) but that in-
deed have null values for all instances in the database. More-
over, not all datasets that were available in the previous por-
tal are now available in the new portal. For these reasons,
synchronizing the content of an integrated repository with
the one of GDC becomes very critical.

Example 2. ENCODE source elements in JSON schemata,
used for searching metadata through Elasticsearch (https:

//www.elastic.co/) are changed very often, as documented
in about 90 Changelogs, one for each JSON entity cor-
responding to a profile. A complete list of ENCODE’s
data model entities (i.e., profiles) is at https://www.
encodeproject.org/profiles/. However, metadata instances
change also their values. For example, to keep track of
the change of about 10 attribute-value pairs in the ex-
periment ENCSR6350SG (https://www.encodeproject.org/
experiments/ENCSR6350SG/), only a simple comment in the
metadata was added (i.e., Submitter comment: “IMPOR-
TANT! Bioreplicate 2 was previously annotated as liver
from a 4 year old female. It has now been corrected to be
liver from a 32 year old adult male.”).

Problem formulation. How can changes on genomic data
sources be taken into account to be reflected on integrated
repositories, guaranteeing ‘currency’? How can it be done
systematically, overcoming ‘accessibility issues?

Method 1 — Source partitioning. When targeting inte-
grated systems up to date, the main difficulty is to identify
data partitioning schemes specific for each source (as dis-
cussed in [13]); a partition can be repeatedly accessed and
source files that are modified within the partition (or added
to it) can be recognized, avoiding selectively the download
of the source files that are not changed. Suppose we are
interested in downloading a certain updated ENCODE
portion (e.g., transcriptomics experiments on human tissue,
aligned to reference genome hgl9). We produce an API
request to the endpoint https://www.encodeproject.org/matrix/,
specifying the parameters type =

replicates.library.biosample.donor.organism.

Experiment,
scientific_name
released, assembly = hgl9, and
assay_slims = In 1000 Genomes, as
there are no API available, we instead navigate the
FTP server directly and check the most updated re-
lease available on ftp.1000genomes.ebi.ac.uk/voll/ftp/data_
collections/1000_genomes_project/release; W€ consequently en-
ter the relative folder (e.g., 20190312_biallelic_SNV_and_INDEL)
and download all chromosomes files.

Method 2 — Event-based update. We periodically check
source websites and FTP servers for new data. We use
a relational database (called importer_db in the following)
to manage the synchronization process between the data
sources and our local repository. The Sources table has many
Datasets, each of which corresponds to Files (i.e., the ge-
nomic region data files). Each Run of the download process
checks unique properties of data Files such as URL, Origin-
LastUpdate, OriginSize and Hash, used to compare the local
copy of the file with the original one on the data source: new
files are stored and processed; missing files (i.e., deprecated
on the source) are copied to an archive; matching files that
have identifying values different from the corresponding lo-
cal values stored in the importer_db are re-downloaded.

For different sources ad hoc software modules can be de-
veloped to periodically check for changes in the Changelog,
schema definitions, documentation, in search for motiva-
tion to update our local copy of the source data. As an ex-

= Homo+sapiens, status =

Transcription.
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ample, GEO offers to registered users a mechanism to be
notified when new data is available, relevant for a search
saved previously (https://www.ncbi.nlm.nih.gov/geo/info/
faq.html#notifications). TCGA2BED [46] was realized to
handle data acquisition and transformation for TCGA source
and OpenGDC [26] provides an updated framework to ac-
quire synchronized data also from GDC portal.

4.2. Orthogonal data and metadata organization
Examples. While there is common agreement on the ter-
minology used to define genomic data types (e.g., muta-
tion, copy number variation, chromatin accessibility), data
types are typically not rendered using the same machine-
readable formats (e.g., there exist both VCF-like and ICGC-
like mutation formats (https://docs.icgc.org/submission/
guide/icgc-simple-somatic-mutation-format/), gene expres-
sion data may be presented as sample/gene matrices or
just as lists of genes with expression values per aliquot).
Sometimes formats are defined at “experiment time” to
suit particular needs of the data; they are documented
in plain text attachments. An example of format def-
inition of ENCODE tsv files representing gene expres-
sion matrix is https://www.encodeproject.org/documents/
c2bbcf04-9b9d-41aa-883f-bbbadbc45e68/. In this kind of doc-
uments, some specifications may further confuse data orga-
nization, as matrix cell values are allowed to contain ad hoc
formatting semantics (e.g., from an ENCODE format defini-
tion document: “The value in the cell contains two strings,
one for TPM values and another for FPKM values, separated
by underscore; each string contains values for each replicate,
separated by colon.”).

Many formats also fail at keeping representation levels
orthogonal; for example, properties that represent values
aggregated over a multitude of regions are sometimes dis-
played as part of single regions, repeated in each of them.
In 1000 Genomes variation data, each line expresses one
mutation and contains, as a property, the measure of allele
frequencies across entire geographic populations (i.e., thou-
sands of samples).

Additionally, data from specific projects are simultane-
ously provided by different portals, that however re-shape it
in several ways: ENCODE portal includes Roadmap Epige-
nomics data, re-processed using distinct pipelines and with
completely different data schemata and metadata; TCGA
data appears in both GDC and ICGC with very dissimilar
representation both for data (one textual file for each aliquot
from a patient, as opposed to one big spreadsheet contain-
ing independent lines, each connected to a patient) and for
metadata.

Problem formulation. There is no agreement towards a ba-
sic genomic data unit for tertiary analysis. A common choice
is to prepare one file for each experimental session; lines
are genomic regions associated to some properties. Other
times data units are huge matrices of patients or samples
crossed with genes, miRNA, or other encoded sequences.
Each source and each data type, thus, needs its own “ba-
sic unit”. Can genomic data be expressed using a unique

model that is general enough to represent all analyzed for-
mats ( ‘concise and consistent representation’), and that also
allows ‘ease of operation’?

Method — Genomic Data Model and sample identity. The
need for defining a genomic basic data unit is emerging: a
single piece of information that contains genomic regions
with their properties and is identifiable with an entity that
is interesting for downstream analysis (e.g., a patient, a bio-
logical sample, a reference epigenome...). Any set of down-
loaded files — with their input format — should be convertible
through a transformation relation into a set of genomic basic
data units. We define as transformation relation cardinality
the pair X : Y, where X is the cardinality of the set of files
from the input source and Y is the cardinality of the output
set of “basic units” into which the input is transformed for
downstream use in an integrative system; X : Y is a frac-
tion in lowest terms.

As a paradigm that more generally includes the interval-
based genomic data representations (see BEDTools [103]
and BEDOPS [94] for example), an interesting candidate for
expressing such basic unit is represented by the sample of
the Genomic Data Model (GDM, [84]). A sample can ex-
press heterogeneous DNA features, such as variations (e.g.,
amutation in a given DNA position), peaks of binding or ex-
pression (i.e., genomic regions with higher read density), or
structural properties of the DNA (e.g., break points, where
the DNA is damaged, or junctions, where the DNA creates
loops). GDM is based on the notion of dataset, i.e. a collec-
tion of samples. A sample, in turn, consists of two parts: the
region data, describing the characteristics and DNA location
of genomic features, and the metadata, describing general
properties of the sample, in the form of key-value pairs; in
GDM format there is one metadata file for each region data
file.

Some sources provide a data file for each experimental
event, for example ENCODE. In this case, the transforma-
tion has a 1:1 cardinality, i.e., to each ENCODE produced
file, it corresponds one GDM sample. Other sources include
more complex formats, such as MAF, VCF, and gene expres-
sion matrices. In these cases, the transformation phase takes
care of compiling one single data file for each patient or uni-
vocally identified sample in the origin data. The transforma-
tion cardinality is thus 1:N, N being the number of patients
or biological samples.

Metadata also feature diverse formats in the analyzed
sources: i) hierarchical formats (JSON, XML, or equally ex-
pressive) require applying a flattening procedure to create
key-value pairs—the key results from the concatenation of
all JSON/XML elements from the root to the element corre-
sponding to a value; ii) tab-delimited formats (TSV, CSV
or Excel/Google Spreadsheets) strictly depend on the se-
mantics of rows and columns (e.g., 1 row = 1 epigenome,
1 row = 1 biological sample)—they often require pivoting
tab-delimited columns into rows (which corresponds to cre-
ating key-value pairs); iii) two-columns tab-delimited for-
mats (such as GEO’s SOFT files) are translated into GDM
straightforwardly; iv) completely unstructured metadata for-
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Census of 13 important data sources reporting for each: the processed data types that can
be downloaded (along with metadata), their physical formats, and the semantic cardinality
of the transformation relation with respect to the GDM output format [84].

Source Data type Data format, cardinality® Metadata format, cardinality!
ENCODE peaks BED, 1:1 JSON, 1(experiment):#samples
transcription TSV, 1:1 JSON, 1(experiment):#tsamples
transcription GTF, 1:1 JSON, 1(experiment):#£samples
GDC mutations MAF, 4:1 JSON, 4:1
gene expression TXT, 3:1 JSON, 3:1
methylation, cnv, TXT, 1:1 JSON, 1:1
quantifications
ICGC mutation, methylation, TSV, 1:#tdonors TSV, 1:#donors

miRNA /gene expression

Roadmap Epigenomics

peaks
transcription

BED, 1:1
TSV, 2:4#tepigenomes

Spreadsheet, 1:(#£samplesx#epigenomes)?
Spreadsheet, 1:(#£samplesx#epigenomes)?

GENCODE annotations GTF, 1:#annotation_types region data file + webpage, X:13
RefSeq annotations GFF, 1:#annotation _types region data file + webpage, X:13
1000 Genomes variation VCF, 23:#individuals TSV, 4:#tindividuals

GEO expression BED, 1:1 HTML/SOFT, 1:#tfiles from sample
GTEx expression GCT, 1:#donors TXT, 1:#donors

GWAS Catalog associations TSV, 1:1 -

CISTROME peaks BED, 1:1 TSV, 1:1

CCLE various GCT/TXT, 1:#tcell lines TXT, 1:#cell lines

COSMIC various TSV, 1:#tindividuals TSV, X:13

1 Expressed as X : Y; this ratio represents the number X of data (resp. metadata) units used in the origin source to compose Y data (resp.

metadata) file(s) in GDM format.
related metadata is replicated into many samples.

2 Each reference epigenome is used for many data types, thus many GDM samples. The same epigenome-
3In these cases it is difficult to build a numerical relation—many meta are retrieved

from the data files themselves, in addition to manually curated information.

mats, collected from Web pages or other documentation pro-
vided by sources, need case-specific manual processing.
Table 1 shows transformation relation cardinalities re-
garding both data and metadata input formats, targeting the
GDM output format. We analyzed different data types in a
number of important data sources, that possibly include files
with different formats. Note that, while for descriptive pur-
poses we indicate physical formats (e.g., TSV, TXT, JSON),
the indication of cardinalities also embeds a semantic infor-
mation: how many data units are represented in one file. Fol-
lowing the mapping from input sources into GDM format we
can solve systematically the heterogeneity of data formats
and prepare the GDM datasets as sets of GDM samples that
are uniform in their schema. The Supplementary material
(Section 2) provides additional details on this method.

4.3. Metadata interoperability

Examples. Metadata heterogeneity can also be analyzed
from other perspectives. From a schema point of view
(i.e., how each piece of information is identified and in-
terrelated with others), when searching for disease-related
attributes, we find diverse possibilities: “Disease type” in
GDC, “Characteristics—tissue” in GEO, “Health status” in
ENCODE. From the values point of view, when searching
for breast cancer-related information, we find multiple ex-
pressions, pointing to comparable samples, e.g., “Breast In-
vasive Carcinoma” (GDC), “breast cancer ductal carcinoma”
(GEOQ), “Breast cancer (adenocarcinoma)” (ENCODE).

Roadmap Epigenomics expresses ages of samples using
aunique column “AGE (Post Birth in YEARS/Fetal in GES-
TATIONAL WEEKS/CELL LINE CL)” together for three
different kind of classes and, consequently, with three dif-
ferent measure units. Example values for single instances
are “Fetus (GW unknown)”, “CL”, “Unknown, Unknown,
45Y”, or “49Y, 59Y, 41Y, 25Y, 81Y”, where 5 values are
put together to express that the related epigenome is derived
from 5 individuals. Also the information about donors and
its interrelation with other attributes is confusing. The col-
umn “Single Donor (SD) / Composite (C)” discriminates be-
tween epigenomes deriving from one or more donors. Yet,
in the column “DONOR / SAMPLE ALIAS” (containing
identifiers), it happens that an epigenome labeled as de-
riving from a single donor, contains instead multiple IDs.
No further explanation is available to clarify the semantics;
other dependent columns such as “sex” and “ethnicity” be-
come also unclear. Paradoxically, one donor, identified by
the string H-22772, turns out to be present in two differ-
ent epigenomes, one derived from lung and one from heart
tissue. This problem is easily propagated to other sources,
as Roadmap Epigenomics experiments are replicated in EN-
CODE repository. Here, different experiments present the
same external tags (e.g., roadmap-epigenomics:UW H22772).

Problem formulation. How can metadata be employed
to provide a global and integrated view of data sources
( ‘representational consistency’)? Does such representation
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Figure 3: GeCo integration process, from the download of a source partition (based on the
prior definition of a GDM dataset), to its transformation and all following phases. Cleaning,
mapping, enriching and checking are only performed on the metadata, while data are left
unchanged. Metadata are flattened from the GCM relational implementation back to the
file-based GeCo repository. Data and corresponding metadata of each dataset are loaded
into a cloud-based data engine for queries on genomic region and metadata [83].

help users in querying data straightforwardly ( ‘ease of op-
eration’)?

Method — Genomic Conceptual Model for metadata nor-
malization. In literature there are works that use conceptual
modeling to better explain relations between biological enti-
ties [63, 106, 97]. However, conceptual modeling can serve
brilliantly also the purpose of organizing metadata from het-
erogeneous sources into one global view. The Genomic
Conceptual Model (GCM, [15]) is an Entity-Relationship
model used to describe metadata of genomic data sources.
The main objective of GCM is to recognize a common set
of concepts (about 40) that are semantically supported by
most genomic data sources, although with very different syn-
tax and forms. GCM is a star-schema — inspired to classic
data marts [19] — centered around the ITEM entity, repre-
senting a genomic basic data unit, such as the GDM elemen-
tary sample. The four dimensions of the star describe the
biology of the experiment, the used fechnology, its manage-
ment aspects, and the extraction parameters for internal or-
ganization of items. A complete integration framework (de-
scribed in [13]) can be employed to download, transform,
clean and integrate metadata at the schema level, importing
them into the relational database gcm_db that implements the
GCM physically. Data constraints checks (name existence
and value dependencies in [15]) are performed based on a
set of manually introduced rules, but also on automatically
generated ones, inspired by the works on data cleaning using
association rules mining [3] and much in the fashion of [82],
who uses rules as a means to generate recommendations for
suitable metadata additions to datasets. The conceptual rep-
resentation of GCM widely helped domain users in finding
data more easily from a unique query interface, without hav-
ing to deal with heterogeneous access points, metadata for-
mats and models, as demonstrated in [10].

4.4. Large-scale dataset interoperability

Example on data. Within ICGC gene annotation is not
consistent among different datatypes (e.g., sequence-based
gene expression datasets use Ensembl Gene IDs [125], like
ENCODE gene quantification data and TCGA gene ex-
pression quantification, while array-based gene expression
datasets use the gene name convention of HGNC [123]).
Within annotation databases themselves, data may be in-
complete. For example in GENCODE’s comprehensive
gene annotation files (ftp://ftp.ebi.ac.uk/pub/databases/
gencode/Gencode_human/) not all exons and transcripts regions
have a corresponding gene region that includes them. While
searching for correct coordinates of a gene, users may alter-
natively calculate the start as the one of its left-most tran-
script/exon and the sfop as the one of its right-most tran-
script/exon, but this procedure could be not always accurate.
Such shortcomings are consequently propagated in all pro-
cessed data sources where the reference gene annotation is
used to codify signals data (e.g., ENCODE). Furthermore,
secondary sources use different releases versions to anno-
tate different files (to date, GENCODE has 34 releases, out
of which only 6 are still maintained for the new GRCh38
assembly). This makes it hard to consistently compare files
from a same source that have been annotated using different
reference sets.

Example on metadata. Metadata are affected by the even
more complicated issue of ontology misalignment. Ontol-
ogy CL [86] and EFO [79] reference same concepts: the spe-
cific instances in the two ontologies have differences in the
values and schema. NCIT [42] and UBERON [92], both in-
cluding parts of the human body, also show inconsistencies:
while “hypothalamus” is considered a synonym of “BRAIN”
in NCIT, it is a sub-concept of “brain” in UBERON (five-
levels more specific, traversing both relationships of sub-
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sumption is_a and containment part_of).

Using ontologies as a base for further semantic anno-
tation, many algorithms still produce a relevant number of
inaccurate annotations (see [54, 28]), which result in harder
work for the downstream integration process.

Problem formulation. How can datasets understand each
other? Can we normalize data with respect to com-
monly adopted terminologies (‘consistency’, ‘specificity’
and ‘uniqueness’) and confidently exploit the currently
available external resources ( ‘reliability’)?

Method 1 - Data enrichment. A fruitful approach with
annotation is the inclusive one: integrators may add as
many information as possible, considering the most ac-
cepted resources in the field. For structural and func-
tional annotation of genomic regions and sequences, includ-
ing adding for example gene/transcript/exon identifiers or
biological process related to a protein, multiple reference
databases may be queried (RefSeq, GENCODE, Ensembl,
Entrez [78], HGNC), as documented in TCGA2BED [46]
and OpenGDC [26], or performed during the integration
process of several datasets from Roadmap Epigenomics and
transcriptomics data from ENCODE. Large-scale data inte-
gration in genomics can be achieved using cross-references
(see [55]); its success strictly depends on a correct use of
persistent identifiers [85]. See the Supplementary material
Section 3 for more details on this method.

Method 2 — Metadata enrichment. The process of anno-
tating existing structured metadata with ontological terms,
their definitions, synonyms, ancestors, and descendants can
be done in an iterative way, automated with respect to the
querying of online annotation systems and semantic match
computation, but also assisted by an expert manually check-
ing the obtained links [12]. This enhancement of meta-
data (using specialized biomedical ontologies) can be seen
as the construction of a knowledge graph of the content
of the repository [11]; it is useful to instrument the search
of datasets described by such metadata in a semantically
enriched fashion (see GenoSurf interface [25]). See the
Supplementary material Section 4 for more details on this
method.

5. Discussion and outlook

The integration of data and metadata is of growing rel-
evance in biomedical fields (including genomics), because
critical decisions in the domains of health-care — such as
precision medicine — depend on it. As individualized pre-
dictions become more difficult, they require approaches that
combine multiple sources and multiple data types (from ge-
nomics, transcriptomics, epigenomics, etc.), possibly com-
pleted with clinical data. Heterogeneity aspects affect many
actors and stages of the data life cycle. In such situations,
data quality dimensions can adequately lead the analysis of
problems and related solutions. We have reviewed works
that have contributed to data quality-driven approaches in
genomics; even with community-driven approaches that pro-

pose on-the-fly data integration, the focus has so far been on
quality of origin data sources and not so much on the overall
process that channels data together for subsequent use. Thus,
we have introduced a novel perspective: we have shown a
taxonomy of integration phases that directly impact quality
of genomic databases and interfaces during data integration;
we have detailed the issues related to such phases, provid-
ing examples, questions to be addressed, and methods that
we experimented during the creation of a repository of high
quality, which inspired the discussions of this review paper.

The repository, currently with more than 250k pro-
cessed items, results from the GeCo project effort. Figure 3
shows the sequential software modules (https://github.com/
DEIB-GECO/Metadata-Manager/) to integrate genomic sources,
by solving all the analyzed heterogeneity aspects. Phases
are recorded in the importer_db: a given dataset is down-
loaded and periodically synchronized with the origin source,
transformed into the GDM format (achieving orthogonal
data/metadata organization); metadata are cleaned, simpli-
fying redundant attribute names, mapped into the gem_db
(unique conceptual representation, towards interoperability
of metadata), semantically enriched and checked with re-
spected to constraints. The relational representation is flat-
tened to load datasets into a file-based engine for further bi-
ological querying [83].

While the described approaches have been successfully
implemented in practical contexts [13], future challenges in-
clude applying the proposed solutions to complex contexts
such as the one of clinical data and translational medicine,
that ultimately will need to be also iterated with genomic
data. We are aware of important work that is being con-
ducted in parallel on health data [40, 72, 24, 65, 38], also
employing the data warehouse paradigm as a guarantor of
up-to-date de-duplicated data within a public network of
research centers [37], usually oriented to support analyt-
ics [39]. Several works already address data quality for pre-
cision medicine [36, 43, 97], revieweing the use of genomic
data in the medical context, whereas my review is focused
primrily on issues of quality in genomic data integration
(data comparability, metadata definitions, data standards, ...)
encompassing all possible uses of genomic data.

In this review, we have shown how resolving quality
while building a data repository can effectively create us-
able integrated environments for researchers. Since many of
the described approaches may be useful for other researchers
— even in dynamic data integration assets — these will be
provided through convenient external programmatic access.
Starting from this baseline, we envision a data integration
process that includes seamlessly evaluation of quality pa-
rameters, towards data and information that are more directly
employable in genomic analysis and biological discovery.
Predictably, future data integration approaches will include
more and more a data quality-aware modus operandi with the
following characteristics: 1) currency-driven synchroniza-
tion of sources, ii) concise/orthogonal/common data repre-
sentations, iii) light and interoperable data descriptions, iv)
reliability-tailored dataset linkage. All in all, this review
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highlights trends in genomic data and information integra-
tion, which will ideally guide and improve future efforts and
activities.
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