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A B S T R A C T
The human genome complexity is captured by many signals, representing for instance DNA
variations, the expression of gene activity, or DNA’s structural rearrangements; a rich set of data
types and formats is used to record these signals. Conceptual models can support the description
and explanation of the genome’s elaborate structure and behavior. Among others, the Conceptual
Schema of the Human Genome (CSG) provides a concept-oriented, top-down representation of
the genome behavior, which is independent of data formats. The Genomic Conceptual Model
(GCM) provides instead a data-oriented, bottom-up representation, targeting a well-organized,
unified description of these formats. In this research, we join the two approaches to achieve
PoliViews, a comprehensive model that links (1) a concepts layer, describing genome elements
and their conceptual connections, with (2) a data layer, describing datasets derived from genome
sequencing with specific technologies. Their dynamic connection is established when specific
genomic data types are chosen in the data layer, thereby triggering the selection of a view in
the concepts layer. The benefit is mutual: data records can be semantically described by high-
level concepts exploiting their links and, in turn, the continuously evolving abstract model can be
extended thanks to the input provided by real datasets. PoliViews enables expressing queries that
employ a holistic conceptual perspective on the genome, directly translated onto data-oriented
terms and organization. Here, we demonstrate the approach by linking two major genomic data
types, namely DNA variation and gene expression. For each type, we consider different eminent
data sources; we describe their mapping with the corresponding view in the concepts layer,
enabling an intra-data-type integration. Then, leveraging on the connections available in the
concepts layer, we show how the distinct data types can be interoperated, enabling an inter-
data-type integration. The PoliViews approach is shown through several examples of biological
interest and can be further extended to any kind of genomic information.

1. Introduction
Representing the human genome DNA as a three billion base pairs’ sequence is just a first attempt to capture the

complex mechanisms of the life engine that is underlying our characteristics and behaviors. Many other aspects, such as
DNA mutations, the expression of gene activity, DNA’s structural rearrangements, and long-distance contacts between
DNA regions, are now used to extract complex signals from the DNA, exploiting Next Generation Sequencing [59]
technologies; a rich set of data formats is used to represent such signals. The study of genomic information has practical
implications in a number of fields such as cancer genomics, population genomics, and precision medicine. More
importantly, being able to interoperate different signals in the context of the same analysis can provide insights and
compute properties of the genome that remain otherwise hidden. Genomic data integration has so far been addressed
mainly with operational approaches [46, 15, 3], whereas a holistic view – that incorporates the semantics of different
genomic regions – has not been embraced yet. Important conceptual models (CMs) have supported the effort of
explaining the elaborate structure of genomic information since 2000 [54, 11]. However, there remains a gap between
CMs about genome data (i.e., that represent “genome data as it is” – usually generated in labs without a conceptual
characterization) and CMs that are purely about the genome (that model “data as it should be”). In this work, we
defend that elements obtained from the first kind of CMs must be connected with their corresponding elements in the
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CMs that represent higher-level conceptual genome knowledge. We characterize the process of connecting concepts
with their associated data as “top-down”, whereas we use the term “bottom-up” when connecting data to concepts.

A number of works, summarized by the Conceptual Schema of the human Genome (CSG, [53]) produced by the
PROS research center, provide a concept-oriented, top-down representation of the genome that is independent of the
data formats, aiming to give a template of how the genome is supposed to behave, thereby building a general under-
standing of the language of life [28]. A parallel initiative, represented by the Genomic Conceptual Model (GCM, [9])
produced by the GeCo project [16], provides a data-oriented, bottom-up representation, targeting a high-level, abstract
description of genomic data formats, focusing on what they capture and how, contributing to favor the joint use of the
represented signals [8, 13].

The two existing approaches are different from two perspectives: 1) how they deal with the concepts representing
the knowledge of genomics and 2) how they manage their instantiation in the form of data. Traditionally, PROS has
adopted a top-down perspective, starting from modeling biological entities and only after checking if underlying data
sources exist that represent such concepts, possibly unveiling problems in the quality of data structures’ definitions and
values. GeCo, instead, has adopted a bottom-up approach, starting from the observation of available data sources and
only later building models to systematize, organize and interoperate such existing data, with the purpose of building
easy-to-use systems that facilitate domain experts’ work.

The two approaches are not incompatible. On the contrary, they can be interoperated. Genomic information can be
interpreted as a dual system that is approached in two opposite directions: on one side, the possibility to connect data
to existing concepts that have been modeled in an abstract way (top-down approach), on the other side the possibility
to build concepts based on already available data (bottom-up approach). In a preliminary conference paper [10], we
first presented our intention of connecting these two perspectives. Here, we reinforce our proposal, by describing the
comprehensive PoliViews approach to facilitate genome data management with sound CM support.

The manuscript is organized as follows. Section 2 introduces the existing approaches that employ conceptual
modeling in genomics, how they individually deal with concepts and data, and motivates the need for the PoliViews
effort. Section 3 presents the PoliViews approach, describing its unified conceptual model with a concepts layer, a data
layer, and a protocol for establishing links. Section 4 instantiates the approach on two relevant genomic data types, i.e.,
DNA variation and gene expression. We describe how the relevant parts of the model are built, how data are mapped
to concepts, and pose the basis for its joined use. Section 5 provides a wide collection of examples queries that are
enabled by PoliViews, working intra-data-type (targeting concepts either of the DNA Variation view or of the gene
expression view, across different data sources) and inter-data-type (targeting concepts also across views). Section 6
discusses the benefits of the PoliViews approach, which is applicable to other genomic data types; it will be possible
to develop additional views and use them together, towards a more general conceptual modeling-based perspective on
the human genome.

2. Background
Conceptual models have been used to describe the elaborate structure and behavior of the genome. The first

models representing DNA genomic sequences date back to the late nineties [51, 47], whereas – in the 2000s – Paton et
al. proposed a set of data models for describing transcription/translation processes [54], as well as genomic sequences
and protein structures [11]. Additional works exploited conceptual models’ expressive power for explaining biological
entities and their interactions as conceptual data structures [19, 38, 36, 56]. Many of these conceptual approaches have
been followed by the proposal of working prototypes of information systems or databases, based on the initial schemas.
These include several classic works as the GEDAW UML Conceptual schema [35] (gene-centric data warehouse),
the Genome Information Management System [20] (genome-centric data warehouse), the GeneMapper Warehouse
[22] (integrating expression data from genomic sources), BioStar [65] (data warehouse capturing biomedical data
semantics), BioMart [61] (conceptual modeling-based data warehouse), and GPKB [44] (warehouse for integrating
genomic and proteomic information).

This research background has created a set of Conceptual Modeling-based approaches that focus either on the
conceptual characterization of the genome structure or on its data-driven application as used in practice. The charac-
terization of the correct connection between the conceptual and the data-driven perspectives emerges as an attractive,
relevant problem that we tackle in the paper. To explore these different but complementary dimensions, in this work
we have considered two important approaches that have tackled genomics from a conceptual modeling perspective;
both of them lead to solid threads of research, as briefly described next.
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The Research Center on Software Production Methods (PROS) at the Universitat Politecnica de Valencia has in-
vested many efforts in studying the genome from a conceptual modeling perspective, introducing the first Conceptual
Schema of the Human Genome in 2011 [53] and producing several extensions since then [57, 28]. The schema now
results in a rich map of concepts and relationships that support the holistic understanding of different knowledge mod-
ules. The most recent version, i.e., the Conceptual Schema of the Genome v3 (CSG) is reported in [29]. The main
objective of CSG stands in identifying relevant concepts and their connections, independent of how datasets are really
represented in available databases and sources. According to its nature, the CSG model changes constantly, following
evolving requirements, whereas the GCM model evolves when new heterogeneous datasets are produced.

The approach devised within the data-driven Genomic Computing (GeCo) group, funded by the ERC AdG 693174
(2016-2021), has developed models for representing existing data, with the purpose of making data more interop-
erable and ready for large-scale computations. Open data sources are analyzed and evaluated, understanding their
underlying models; selected interesting datasets are imported within an integrative repository [8]. Information is di-
vided between: region data (representing actual genomic elements, measured by experiments – using the Genomic
Data Model, GDM [46]) and metadata (descriptions of genomic experiments – captured by the Genomic Concep-
tual Model, GCM [9]), which make data searchable [13]. Finally, the modeled datasets attempt to resolve data-level
interoperability, thereby enabling powerful queries using, e.g., the GenoMetric Query Language (GMQL system [45]).

In this work, we propose to join these two independent directions within an innovative approach, named PoliViews,
aiming to provide a more complete vision of the steps that go from the collection of genomic data to the understanding
of life mechanisms. On the one hand, we employ the CSG as the model that describes concepts (concepts layer),
i.e., the template of the genome, where concepts are genome elements. On the other hand, we employ the GCM
as the model that describes data (data layer), where classes are real instances of datasets derived from tissues, cell
lines, or individual cells that have undergone a sequencing process. The data layer is organized in DATASETS, each
containing multiple SAMPLES, with possibly multiple SAMPLEREGIONS, i.e., records representing fragments of the
genome with specific measured properties. Genomic regions are those typically produced within the scope of large
cooperative efforts, open for public use, and made available for secondary research use [7], including for example the
Encyclopedia of DNA Elements (ENCODE, [21]), Genomic Data Commons (GDC, [33]), Gene Expression Omnibus
(GEO, [5]), Roadmap Epigenomics [39], and the 1000 Genomes Project [1]. Each of SAMPLEREGION instance can
be linked to its corresponding concept in the concepts layer; new links are established when specific data types are
chosen (in the data layer) triggering the selection of specific views (of the concepts layer).

The benefit is mutual: 1) the GCM is extended by the power of concepts, which enable high-level semantic-
aware querying; 2) the CSG is empowered by the links to real-world data, which allow for building computations on
experimental instances and obtaining biologically-relevant results.

3. The PoliViews Approach
The general two-layer PoliViews schema contains:
• a concepts layer capturing the knowledge available about the human genome mechanisms (inspired by the

CSG [29]);
• a data layer representing genomic data, with its types and experiments, captured by information structures and

formats (inspired by the original GCM [9] for metadata and by the Genomic Data Model [46] for region data).
Data layer. It is centered on the SAMPLE concept, as schematized in Figure 1, and holds two metadata perspectives.
The biological perspective contains the REPLICATE to which a sample belongs; this is part of a BIOSAMPLE, extracted
from a DONOR. The organizational perspective has the CASESTUDY under which the sample was produced, which is
contained in a greater PROJECT. Samples are built when an EXPERIMENTTYPE (e.g., DNA-Seq, RNA-Seq, or ChIP-
Seq) is run, expressing information about the sequencing technology and representing a specific genomic data type
(e.g., DNA variation, gene expression quantification, or binding sites of DNA-associated proteins). Many samples are
grouped into a DATASET, which is homogeneous in the schema and in the experiment type. Samples contain multiple
SAMPLEREGIONS, corresponding to rows in a file, representing a fragment of the genome on a specific chromosome
strand, with start and stop coordinates. All the regions in a sample follow the same SCHEMA. The last two mentioned
classes are additions to the PoliViews data layer (with respect to the original GCM): they are necessary to manage the
linking between the two layers.
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Concepts layer. The concepts layer is based on the last version of the CSG [29], which includes five modules,
respectively describing i) the structure of the human genome; ii) protein synthesis; iii) changes in the sequence w.r.t.
to a reference sequence (the “Variation module”); iv) information and sources related to the elements of the conceptual
schema; and v) human metabolic pathways. The schema is generated manually by the conceptual modelers of the
PROS group. It is also incrementally enriched as new mechanisms are understood or when new research findings
are published. Genome knowledge is under continuous progress and understanding the human genome is an open
big scientific challenge. For this reason, completeness is obviously not guaranteed and a mechanism to periodically
handle needed extensions is employed. We consider this a “work-in-progress” model, where knowledge representation
evolves, based on incoming requirements. While building the link with the data layer, it is likely that extensions to the
CSG will be required, reinforcing the relevance of accomplishing the essential data-concepts genomic connection that
this paper develops.
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Figure 1: Link the concepts layer and the data layer by means of connections between sample regions and concepts.

Data type-driven linking of the two layers. Connections are built between the data and the concepts layers. By se-
lecting specific genomic data types (based on the represented sequencing experiment type) we trigger a mechanism that
invokes a specific portion of the concepts schema, as described by Figure 1. In their previous description (GCM [9]),
data types were forced into containers (i.e., SAMPLES) that flattened their semantics for facilitating integration and
processing; instead, here each data type is “freed” from its container, separately handled, analyzed, and mapped onto
its explanation in conceptual terms.

The concepts layer and the data layer are connected by means of relations between concepts (i.e., a variation of
DNA or the expression of a gene) and instances of data layer classes (i.e., the specific data record). For instance, a
SAMPLEREGION measured through a DNA-Seq experiment, can be represented by its related concept, i.e., a variation
at position 43,044,295–43,170,245 of the negative strand of chromosome 17. Similarly, a SAMPLEREGION measured
through a transcriptome profiling experiment, can be represented by its related concept, i.e., the expression levels of
the gene BRCA1 detected in a specific tissue in given experimental settings.

Much in the spirit of Ontology-Based Data Access (OBDA [12]) approaches we envision the primary use mecha-
nism of our two-layer schema as an Identification-Selection-GEneration process [30]:

1. Identification of a genomic data type (EXPERIMENTTYPE in the data layer);
2. Selection of the related – possibly multiple – DATASETS, which have a corresponding SCHEMA that is followed

by the SAMPLEREGIONS of the dataset (again, in the data layer);
3. GEneration of a view (in the concepts layer) built around a central concept that represents the SAMPLEREGION

of the identified data type.
Intuitively, the identification of a genomic data type (within an experiment type) triggers the generation of a specific
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view of interrelated concepts, comprising only entities and relationships that contribute to explaining the content of
that data type.

4. Application of the PoliViews Approach
Many datasets are used in the daily practice of geneticists and computational biologists. These represent various

types of information captured from the genome and the study of cohorts of patients, including information on the
variation in DNA (frequency of variations among populations, their association with phenotypes, somatic mutations,
copy number variation, or structural rearrangements); the behavior of RNA (gene, miRNA, or isoform expression);
epigenetic signals (such as DNA methylation, DNA binding, or DNase I Hypersensitive sites); single cell signals and
3D contact matrices—more and more studied in the last years.

In the following, we discuss the case of two of these signals, thus building the DNA Variation view (Section 4.1)
and the Gene Expression view (Section 4.2). For each view, many different data representations may be used to
indicate the same concepts. Their semantic integration can be achieved by using the conceptual layer as a pivot of data
representations. To practically discuss how concepts can be instantiated into data records in real-world scenarios, each
of the two next sections first describes the construction of the view in the concepts layer, then shows its mapping to
datasets as collected from crucial research projects.
4.1. Modeling DNA Variation

As a first instantiation of our approach, we focus on one specific type of data, i.e., DNA variation, which includes
both population variation and cancer-derived somatic mutations. We carefully considered the DNA variation module
of the CSG, as guidance to design the related concepts layer view.

The result of the modeling effort is shown in pink in the upper box of Figure 2. The obtained schema is composed
of 21 entity classes, six generalizations, one composition, and two aggregations. The central class of this schema is
the VARIATION, with a date, name, description, type (deletion, insertion or substitution), reference allele, alternative
allele, and ancestral attribute (representing the allele of the last common ancestor of primates). A variation is located
on a named CHROMOSOME. Chromosomes are related to a SPECIES (with a taxonomy definition and scientific/common
names). Optionally, VARIATIONS are connected to a specific location, named POSITION on the DNA (with start/end
coordinates on a specific strand). For instance, human DNA is made of two strands that are interconnected. In some
cases, the position of a variation is located within a confidence interval, recorded in the VARIATIONPOSITION class.

The INDIVIDUAL is another relevant class, representing a specific living being, with several related information
(e.g., birth date, blood group, or ethnicity). An individual represents an instance of a given SPECIES; its body has a
number of LOCATIONS of interest. A LOCATION is characterized by a name, a description, and a set of descriptors to
provide additional information. A specific type of location, particularly useful in genomic sequencing, is the TISSUE
(from which a biological sample is derived). VARIATIONS can be identified in a given INDIVIDUAL by means of
the READING process, which expresses the particularities of a variation in the individual (such as the origin or the
genotype).

Within a CHROMOSOME, several CHROMOSOMEELEMENTS are hosted (with their name and description). These
include TRANSCRIPTABLEELEMENTS, such as GENES (with a biotype, status, percentage of G and C nucleotides and
their alternative gene_synonyms), and REGULATORYELEMENTS that regulate genes, such as ENHANCERS. Elements
present possibly multiple ELEMENTPOSITIONS (a specialization of the POSITION class); these are always measured
with respect to an ASSEMBLY, i.e., a reference system based on a community-defined sequence (with a name and
date). Each observed chromosome has a CHROMOSOMESEQUENCE, which is also based on the assembly.

The schema allows for three types of VARIATIONS, depending on how their position is considered:
• Variations whose position is known precisely: they are associated with at least one instance of the VARIATION-

POSITION class without confidence interval (i.e., ci_start and ci_end values are zero).
• Variations whose position is not known precisely: they are associated with at least one instance of the VARIA-

TIONPOSITION class with a specific confidence interval (i.e., ci_start and ci_end values are not zero).
• Variations whose position is not known: these are not associated with any instance of the VARIATIONPOSITION

class.
In the context of a GROUPOFINDIVIDUALS (with name, description, geographic_region, and size), a VARIATION

presents an ALLELEFREQUENCY, where the frequency reports the percentage of the allele within the considered pop-
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Figure 2: Representation of the DNA variation view (concepts layer, in pink) and the related datasets (data layer, in blue).

ulation. VARIATIONS can alter the functionality of genes; this possibility is represented within ANNOTATION class,
with an impact, effect, and allele.

When a full correspondence between the DNA Variation view in the concepts layer and the data layer is estab-
lished, the complete schema is obtained as in Figure 2, where the top layer (described above) is the concepts layer
and the bottom layer is the data layer. Here, the INDIVISUAL (concepts layer) is connected to the DONOR (data layer);
the TISSUE (concepts layer) to the BIOSAMPLE (data layer); a READING (concepts layer) corresponds to recording a
genomic feature into a SAMPLEREGION (data layer); the VARIATION (concepts layer) is the observed feature, captured
in the SAMPLEREGION (data layer). Finally, the ASSEMBLY (concepts layer) becomes a property of DATASETS (data
layer).
4.1.1. Mapping with Real DNA Variation Datasets

The Cancer Genome Atlas (TCGA,[68]) is a landmark cancer genomics program that sequenced and characterized
over 11,000 patients of primary cancer samples, analyzing them with different experiments, including two dedicated
to somatic mutations and transcriptome profiling (capturing the expression of genes, as elaborated in the next section).
The 1000 Genomes Project (1KGP, [1]) is an international research effort established to create a catalog of common
human germline variations, using samples from healthy people. In the GMQL data repository [8], the GeCo group has
analyzed all the data fields contained in the datasets’ schemas that refer to this data type. Here, we considered 1000
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Table 1
Excerpt of the relational schema of the data layer, detailing the 1000 Genomes Project population variation sample regions
and the TCGA masked somatic mutations sample regions.

Data.Donor(source_id,species,age,gender,ethnicity)
Data.BioSample(source_id,type,tissue,cell_line,is_healthy,disease)
...
Data.Sample(source_id,size,date,checksum,content_type,platform,pipeline,url)
Data.SampleRegion1KGP(chr,start,stop,strand,AL1,AL2,ref,alt,mut_type,length,id,quality,filter,DP,AF,AC,

AFR_AF,AMR_AF,EUR_AF,EAS_AF,SAS_AF,AA,IMPRECISE,CIEND,CIPOS,“germline")
Data.SampleRegionTCGA(chrom,start,end,strand,gene_symbol,entrez_gene_id,variant_classification,

variant_type, reference_allele, tumor_seq_allele1, tumor_seq_allele2, dbsnp_rs,“somatic")

Table 2
Mapping rules for building the relational schema of the DNA Variation view in the concepts layer. For ease of reference,
lines divide rules related to different classes. Notice that the last five rules do not depend on the choice of the data source
(TCGA or 1KGP).

Concept.Variation(𝑔𝑒𝑛(),name,𝑔𝑒𝑛(),type,reference,alternative,ancestral)
⊇ Data.SampleRegion1KGP(_,_,_,_,_,_,ref.,alt., type,_,name,_,_,_,_,_,_,_,_,_,_,anc.,_,_,_,_)

Concept.Variation(𝑔𝑒𝑛(),name,𝑔𝑒𝑛(),type,reference,𝑓(reference,allele1,allele2),null)
⊇ Data.SampleRegionTCGA(_,_,_,_,_,_,_,type,reference,allele1,allele2,name,_)

Concept.VariationPosition(ci_start,ci_end)
⊇ Data.SampleRegion1KGP(_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,ci_end,ci_start,_)

Concept.VariationPosition([0,0],[0,0])
⊇ Data.SampleRegionTCGA(_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_)

Concept.Position(start,end,strand)
⊇ Data.SampleRegion1KGP(_,start,end,strand,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_)

Concept.Position(start,end,strand)
⊇ Data.SampleRegionTCGA(_,start,end,strand,_,_,_,_,_,_,_,_,_)

Concept.AlleleFrequency(allele,frequency)
⊇ Data.SampleRegion1KGP(_,_,_,_,_,_,_,allele,_,_,_,_,_,_,_,_,frequency,_,_,_,_,_,_,_,_,_)

Concept.Reading(“germline”,𝑓(AL1,AL2))
⊇ Data.SampleRegion1KGP(_,_,_,_,AL1,AL2,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,“germline”)

Concept.Reading(“somatic”,𝑓(allele1,allele2))
⊇ Data.SampleRegionTCGA(_,_,_,_,_,_,_,_,allele1,_,allele2,_,“somatic”)

Concept.Chromosome(name)
⊇ Data.SampleRegion1KGP(name,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_)

Concept.Chromosome(name)
⊇ Data.SampleRegionTCGA(name,_,_,_,_,_,_,_,_,_,_,_,_)

Concept.ChromosomeElement(name,𝑔𝑒𝑛())
⊇ Data.SampleRegionTCGA(_,_,_,_,name,_,_,_,_,_,_,_,_)

Concept.Gene(𝑓(geneSynonym),𝑓(geneSynonym),𝑓(geneSynonym),geneSynonym)
⊇ Data.SampleRegionTCGA(_,_,_,_,_,geneSynonym,_,_,_,_,_,_,_)

Concept.Annotation(effect,𝑓(effect),𝑓(allele1,allele2))
⊇ Data.SampleRegionTCGA(_,_,_,_,_,_,effect,_,_,allele1,allele2,_,_)

Concept.Assembly(name,𝑓(name)) ⊇ Data.Dataset(_,_,_,name,_)
Concept.Species(𝑓(scientificName),scientificName,𝑓(scientificName)) ⊇ Data.Donor(_,scientificName,_,_,_)
Concept.Individual(𝑓(age),gender,null,null,null,ethnicity) ⊇ Data.Donor(_,_,age,gender,ethnicity)
Concept.Tissue(name, 𝑔𝑒𝑛(), 𝑓(is_healthy,disease)) ⊇ Data.Biosample(_,“tissue”,name,_,is_healthy,disease)
Concept.GroupOfIndividuals(ethnicity,𝑔𝑒𝑛(),𝑓(ethnicity),𝑔𝑒𝑛()) ⊇ Data.Donor(_,_,_,_,ethnicity)

Genomes Project datasets [2] and TCGA datasets related to masked somatic mutations [14].
For demonstrating one possible implementation of the PoliViews approach, we employ a relational database rep-

resentation. Table 1 describes the schemas of the tables designed starting from the presented model. Note that most
tables are directly derived from a translation from the class diagram into an RDBMS logical schema. The central
SAMPLE class (a file in the repository) has one-to-many SAMPLEREGIONS, which correspond to a specific SCHEMA
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(an auxiliary table with a row for each dataset, in the example two rows for TCGA and two rows for 1KGP). For sample
regions, we employ one table for each different dataset. For simplicity, we refer to SAMPLEREGIONTCGA (with 26
attributes) and SAMPLEREGION1KGP (13 attributes).

Mapping rules are used to describe how datasets information can be mapped into the concepts schema, considering
the view that is specific to DNA variation. Table 2 provides the mappings for the TCGA and 1KGP datasets. Each
mapping rule is a logic formula (in Datalog-like syntax [17]) with variables in its left end side (LHS) that are computed
from the variables in its right end side (RHS). The order of the variables follows the one indicated in Table 1. As an
example, the entity VARIATION of the concepts schema is filled using data from the SAMPLEREGION1KGP table, using
the attributes in its 9th and 11th position (originally called mut_type and id) that map to the type and name attributes
of the output VARIATION table. Similarly, the same VARIATION entity is filled using also data from the SAMPLERE-
GIONTCGA table, using the attributes in its 8th and 12th position (originally called variant_type and dbsnp_rs) that
map to the type and name attributes of the output VARIATION table. Note that, when the mapping was meaningful, we
wrote a different rule for each pair of the output table (in the concepts layer) and input table (1KGP or TCGA in the
data layer).

All classes contain an identifier attribute, omitted here for brevity. In some cases, we need to derive new attributes
in the concepts layer schema as functions of original attributes. One such example is in the VARIATION table: here,
the second attribute alt requires combining the values of three attributes in the input table SAMPLEREGIONTCGA.
For this, we use the notation f(...). Moreover, dates or descriptions are generated from the system admin (with gen()).
Here we do not report concepts layer’s tables that could not be directly mapped to any attribute of the two data sources
considered in this example; this is the case of CHROMOSOMESEQUENCE, for instance, whose attribute sequence can
be filled by inspecting authoritative sources such as RefSeq [52].
4.2. Modeling Gene Expression

As a second instantiation of the PoliViews approach, we focus on another popular genomic study, i.e., transcription
profiling (or expression profiling). This involves the quantification of gene expression of many genes in cells or tissue
samples at the transcription level (i.e., in the RNA). This experiment is frequently used in clinical practice to encode
the levels of gene expression in patients. Altered levels of gene expression have been associated with a wide range of
disorders, such as neurodegenerative diseases [34, 63]. We carefully considered the module of the CSG describing the
structure of the human genome; this was employed as guidance to design the concepts layer’s view on Gene Expression.
The result of the modeling effort is shown in green in the upper box of Figure 3.

The obtained schema is composed of 15 classes, four generalizations, and one aggregation. Most of the classes
are in common with the previously introduced DNA variation view, therefore are not described in the following. The
two central classes are the GENE (already presented) and EXPRESSIONRATE (new); the latter describes the expected
expression level of a GENE on a given LOCATION by means of the default_value attribute. INDIVIDUALS have their
own levels of expression, which can differ from the expected value. These changes are captured by the EXPRESSION
class, with a given value and identifier.

When a full correspondence between the Gene Expression view in the concepts layer and the data layer is estab-
lished, the complete schema is obtained as in Figure 3. As before, the INDIVIDUAL (concepts layer) corresponds to the
DONOR (data layer); the TISSUE (concepts layer) to the BIOSAMPLE (data layer), and the ASSEMBLY (concepts layer)
is specified in the DATASET (data layer). Differently, the GENE (concepts layer) now represents SAMPLEREGION (data
layer), where its EXPRESSION (concepts layer) is also recorded.
4.2.1. Mapping with Real Gene Expression Datasets

Gene expression datasets are produced and handled by different consortia and provided through different data
source platforms. To practically discuss how concepts can be instantiated into data records in real-world scenarios, we
consider the use of datasets quantifying gene expression as collected within three eminent research projects:

• TCGA [68], already described above, not only characterizes the DNA variation in cancer patients, but it also
presents a large dataset of transcriptome profiling for 33 distinct cancer types–now retrievable through the Ge-
nomic Data Commons platform [33]. In the GMQL data repository [8], the GeCo group has analyzed all the
data fields contained in the schema of the ‘gene expression quantification’ dataset [14].

• Gene Expression Omnibus (GEO) [5] is the most general and widely used among repositories. It started in
2002 as a versatile, international public repository for gene expression data [24]; it consequently adopted a
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more flexible and open design to allow also non-expression data since 2008. In genomics research, for authors
of publications, it is customary (or even required by journals upon submission [48]) to deposit their raw and
processed datasets in primary deposition archives. GEO is considered a primary deposition archive [7]; as such,
does not impose any fixed schema to the metadata or data formats of the submitted datasets.

• The GTEx Consortium [42] aims at establishing a resource database and associated tissue bank to study the
relationship between genetic variation and gene expression and other molecular phenotypes in multiple reference
tissues. RNA-Seq data is provided in files divided by tissue and kind of measurement.

Table 3 describes the schemas of the tables designed starting from the presented model. The SAMPLEREGIONTC-
GAGENEEXPR table (13 attributes) is directly derived from the OpenGDC [14] file schemas of gene expression quan-
tification datasets, translating them into an RDBMS logical schema. The SAMPLEREGIONGTEX (5 attributes) and
SAMPLEREGIONGEO (4 attributes) table schemata are extracted using a simple transformation. Indeed, the typical
file that can be downloaded from these two sources represents a matrix where rows are genes and columns are patients
(or – more in general – biological samples). Each cell stores the expression quantification of that gene in that patient.

RNA-seq data is analyzed using a pipeline that produces reads aligned to the latest version of the reference genome.

-taxon : string
-scientific_name : string
-common_name : string

Species

-name : string
-description : string
-descriptors : String[]

Location

-default_value : float
expressionRate

Tissue

-birth_date : date
-apparent_sex : string
-blood_group : string
-karyotipic_sex : string
-decease_date : string
-ethnicity : string

Individual
-count_type : string
-value : float

Expression

-name : string
-description : string

ChromosomeElement

-biotype : string
-status : string
- / gcPercentage : float
-geneSynonym : string

Gene

-name : string
Chromosome

TranscriptableElement

-source_id : string
-species : string
-age : int
-gender : string
-ethnicity : string

Donor
-source_id : string
-type : string
-tissue : string
-cell_line : string
-is_healthy : boolean
-disease : string

Biosample

-source_id : string
-bio_rep_num : int
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-source_id : string
-size : int
-date : Date
-checksum : string
-content_type : string
-platform : string
-pipeline : string
-url : string

Sample

-source_id : string
-source_site : string
-external_ref : strin

CaseStudy

-data_type : string
-technique : string
-feature : string
-target : string
-antibody : string

ExperimentType

-name : string
-format : string
-assembly : string
-is_annotation : boolean

Dataset

-name : string
-source : string

Project

SampleRegion Schema

Identification

ElementPosition

-sequence : string

ChromosomeSequence

-name : string
-date : Date
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Figure 3: Representation of the Gene Expression view (concepts layer, in green) and the related datasets (data layer, in
blue).
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Table 3
Excerpt of the relational schema of the data layer, detailing the sample regions for the TCGA gene expression dataset and
typical Gene Expression Omnibus and GTEx datasets.

Data.Donor(source_id,species,age,gender,ethnicity)
Data.BioSample(source_id,type,tissue,cell_line,is_healthy,disease)
...
Data.Sample(source_id,size,date,checksum,content_type,platform,pipeline,url)

Data.SampleRegionTCGAGeneExpr(chr,start,stop,strand,gene_id,gene_name,gene_type,unstranded,stranded_first,
stranded_second,tpm_unstranded,fpkm_unstranded,fpkm_uq_unstranded)

Data.SampleRegionGTEx(id,Name,Description,gene_reads,gene_tpm)
Data.SampleRegionGEO(geneID,rawCounts,genes.tpm)

The produced measurements are named ‘raw counts’ (i.e., the number of mapped reads summarized and aggregated
over each gene). More elaborate estimates of gene expression can be achieved by applying FPKM (fragments per
kilobase of exon model per million mapped reads) or TPM (transcripts per million) to the raw counts.

The GEO and GTEx data sources produce one matrix for each kind of employed count. For most experiments, they
provide both raw counts and TPMs. In order to standardize the representation of gene expression w.r.t. the previous
tables (e.g., prepared for the TCGA data source), we chose to flatten the matrix into several separate records. The
simple transformation process is illustrated in Figure 4, showing the two matrices (one for raw counts and one for
TPMs) provided for the measurements of thousands of individuals (called ‘GTEX-*’ in the columns) for the bladder
tissue. The output format of a typical sample region contains the gene id, name, and description, and two attributes
corresponding to raw counts and TPMs, merged from the two input matrices.

Note that, the INDIVIDUAL class introduced in the Gene Expression view (Figure 3) is fundamental for properly
capturing the semantics of this data type. This is a valuable addition that was not included in the models proposed
in [10].

Excerpt from the gene_reads_2017-06-05_v8_bladder.gct file

Excerpt from the gene_tpm_2017-06-05_v8_bladder.gct file

Output format used for the formalization of the SampleRegionGTEx table

Figure 4: Graphical representation of the transformation that is applied to original files extracted from the GTEx data
source, representing the gene expression quantification (using raw counts in the first excerpt and TPMs in the second
excerpt). The result is a set of rows with the schema of the SampleRegionGTEx table. The transformation is purely
syntactical, changing the data structure; values remain intact.
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Table 4
Mapping rules for building the relational schema of the Gene Expression view in the concepts layer. As above, lines divide
rules related to different classes. Notice that the last five rules do not depend on the choice of the data source (TCGA,
GTEx, or GEO).

Concept.Gene(gene_type,𝑓(gene_name),𝑓(gene_name),𝑓(gene_id,gene_name))
⊇ Data.SampleRegionTCGAGeneExpr (_,_,_,_,gene_id,gene_name,gene_type,_,_,_,_,_,_)

Concept.Gene(𝑓(Description),𝑓(Description),𝑓(Description),𝑓(Name,Description))
⊇ Data.SampleRegionGTEx(_,Name,Description,_,_)

Concept.Gene(𝑓(geneID),𝑓(geneID),𝑓(geneID),geneID)
⊇ Data.SampleRegionGEO(geneID,_,_)

Concept.ChromosomeElement(gene_name,𝑓(gene_name))
⊇ Data.SampleRegionTCGAGeneExpr(_,_,_,_,_,gene_name,_,_,_,_,_,_,_)

Concept.ChromosomeElement(Description,𝑓(Description))
⊇ Data.SampleRegionGTEx(_,_,Description,_,_)

Concept.ChromosomeElement(𝑓(geneID),𝑓(geneID))
⊇ Data.SampleRegionGEO(geneID,_,_)

Concept.Chromosome(chr)
⊇ Data.SampleRegionTCGAGeneExpr(chr,_,_,_,_,_,_,_,_,_,_,_,_)

Concept.Chromosome(𝑓(Description))
⊇ Data.SampleRegionGTEx(_,_,Description,_,_)

Concept.Chromosome(𝑓(geneID))
⊇ Data.SampleRegionGEO(geneID,_,_)

Concept.Position(start,end,strand)
⊇ Data.SampleRegionTCGAGeneExpr(_,start,end,strand,_,_,_,_,_,_,_,_,_)

Concept.Position(𝑓(Description),𝑓(Description),𝑓(Description))
⊇ Data.SampleRegionGTEx(_,_,Description,_,_)

Concept.Position(𝑓(geneID),𝑓(geneID),𝑓(geneID)
⊇ Data.SampleRegionGEO(geneID,_,_)

Concept.Expression(“unstranded”,unstranded)
⊇ Data.SampleRegionTCGAGeneExpr(_,_,_,_,_,_,_,unstranded,_,_,_,_,_)

Concept.Expression(“stranded_first”,stranded_first)
⊇ Data.SampleRegionTCGAGeneExpr(_,_,_,_,_,_,_,_,stranded_first,_,_,_,_)

Concept.Expression(“stranded_second”,stranded_second)
⊇ Data.SampleRegionTCGAGeneExpr(_,_,_,_,_,_,_,_,_,stranded_second,_,_,_)

Concept.Expression(“tpm_unstranded”,tpm_unstranded)
⊇ Data.SampleRegionTCGAGeneExpr(_,_,_,_,_,_,_,_,_,tpm_unstranded,_,_)

Concept.Expression(‘fpkm_unstranded”,fpkm_unstranded,)
⊇ Data.SampleRegionTCGAGeneExpr(_,_,_,_,_,_,_,_,_,_,fpkm_unstranded,_)

Concept.Expression(“fpkm_uq_unstranded”,fpkm_uq_unstranded)
⊇ Data.SampleRegionTCGAGeneExpr(_,_,_,_,_,_,_,_,_,_,_,fpkm_uq_unstranded)

Concept.Expression(“unstranded”,gene_reads)
⊇ Data.SampleRegionGTEx(_,_,_,gene_reads,_)

Concept.Expression(“tpm_unstranded”,value)
⊇ Data.SampleRegionGTEx(_,_,_,_,gene_tpm)

Concept.Expression(“unstranded”,rawCounts)
⊇ Data.SampleRegionGEO(_,rawCounts,_)

Concept.Expression(“tpm_unstranded”,gene.tpm)
⊇ Data.SampleRegionGEO(_,_,gene.tpm)

Concept.Assembly(name,𝑓(name)) ⊇ Data.Dataset(_,_,_,name,_)
Concept.Species(𝑓(scientificName),scientificName,𝑓(scientificName)) ⊇ Data.Donor(_,scientificName,_,_,_)
Concept.Individual(𝑓(age),gender,null,null,null,ethnicity) ⊇ Data.Donor(_,_,age,gender,ethnicity)
Concept.Tissue(name, 𝑔𝑒𝑛(), 𝑓(is_healthy,disease)) ⊇ Data.Biosample(_,“tissue”,name,_,is_healthy,disease)

As in the case of the DNA Variation view, Datalog-like mapping rules are used to describe how datasets information
can be mapped into the concepts schema, considering the view that is specific to Gene Expression. Table 4 provides
the mappings for the TCGA Gene Expression, GTEx, and GEO datasets. We wrote a different rule for each pair of the
output table (in the concepts layer) and input table (TCGA Gene Expression, GTEx, or GEO in the data layer). Again,
all classes contain an identifier attribute, omitted here for brevity. Also here we do not report concepts layer’s tables
that could not be directly mapped to any attribute of the two data sources considered in this example.
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5. Practical Examples
The value of the proposed PoliViews stands in its ability to prospectively enable several data integration processes

and guide the query processes aiming to gather and interoperate data that is heterogeneous in formats, provenance,
and represented semantics. To demonstrate its usefulness we next provide several examples. First, we focus on intra-
data-type exploitation of the model, using first its DNA Variation view (see Section 5.1) and then its Gene Expression
view (see Section 5.2); these applications allow the representation of datasets sourced from different consortia and
platforms. Finally, we propose an inter-data-type integration, i.e., a more advanced use of PoliViews, with a series of
examples that require the joint use of DNA variation and gene expression information.
5.1. Intra-Data-Type Integration: DNA Variation

The genomics community has produced vast, high-quality, publicly accessible databases of human variants for
both the germline and the somatic type. In addition to 1000 Genomes and TCGA, many other data sources exist.
Several studies employ these datasets together, mainly based on the location of the point-wise mutations and on the
co-occurrence of sets of them. This section reports examples of queries enabled by concept-to-data linking, showing
that data improves the representation of genome concepts related to DNA Variation and that, in turn, concepts and
their connections improve the knowledge-generation process allowing connections in the otherwise isolated datasets.
Example 1: Extract positions of chromosome elements provided by different sources. Intuitively, one would
expect that a specific gene was located in a uniquely defined range on a chromosome. However, its positions are
identified by means of complex measurements which depend on the used technology or employed bioinformatics algo-
rithm/parameters. Indeed, when such a query is posed to actual data sources, we find multiple distinct positions. For
instance, in the hg19 assembly, the PAQR6 gene is located in chromosome 1 at 156,213,111–156,217,908 according
to RefSeq [52], whereas it is located at 156,213,205–156,217,881 according to GENCODE [26]. The concepts layer
adequately captures these aspects and it allows for posing generic queries while extracting heterogeneous definitions
from the data.
Example 2: Extract mutations whose position is not precisely identified. The concepts layer includes the pos-
sibility to represent known imprecise variations: a VARIATION is located in a VARIATIONPOSITION, whose attributes
ci_start and ci_end – respectively representing confidence intervals initial and final position – can augment the typical
information (start, end) on a specific strand, provided in the POSITION class. This kind of variation is commonly found
in data sources of variation data, such as the 1000 Genomes Project. For instance, a 297 bases-long variation could
be located between position 14,477,084 (with a range of uncertainty that spans from 22 bases before, up to 18 bases
after) and position 14,477,381 (with uncertainty between 12 and 32 bases).
Example 3: Extract mutations located on enhancers associated with breast cancer. Let us consider the study
of a patient genome targeting the presence of mutations on BRCA1, i.e., a specific GENE associated with breast cancer
and located at the ELEMENTPOSITION 43,044,295–43,170,245 of the negative strand of CHROMOSOME 17. From the
data, mutations located in this range can certainly be retrieved. Note that mutation datasets (such as TCGA’s ones) may
sometimes report correspondence between variations and their enclosing genes; while this is quite standard informa-
tion, less studied elements are typically not considered. However, in terms of clinical significance, in addition to genes,
it is critical to consider also their regulatory elements. In this case, mutations may be tested also on the ENHANCERS of
BRCA1. Several data sources can provide this information. For example, the GH17J043124 ENHANCER is reported by
GeneCards [58] on the positive strand with an ElementPosition 43,123,800–43,127,201 and by ENCODE [25] with an
ElementPosition 43,124,247–43,126,961, being currently associated with breast cancer [6]. This connection, however,
can be made by employing the concepts layer representation. The schema allows making explicit a relation between
positions and elements (including genes and enhancers) that remains instead hidden in the data. Figure 5 shows the
described example as a UML instance diagram, where the Single Nucleotide Polymorphism (SNP) from guanine (G) to
Adenine (A) is a VARIATION with a VARIATIONPOSITION 43,124,064 that has been observed within the GH17J043124
enhancer when the GRCh38 ASSEMBLY is employed as a reference—in the context of the measurement (READING)
performed on the breast TISSUE of an INDIVIDUAL. The mutation is somatic (i.e., an alteration in DNA occurred after
conception).
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name = "chr17"

chr : Chromosome

start = 43,044,295
end = 43,170,245
strand = "negative"

g_pos : ElementPosition

name = "BRCA1"

g : Gene

name = GH17J043124

e : Enhancer start = 43,123,800
end = 43,127,201
strand = "positive"

gene_cards : ElementPosition

start = 43,124,247
end = 43,126,961
strand = "positive"

encode : ElementPosition

type = "SNP"
reference = "G"
alternative = "A"

v : Variation

start = 43,124,064
end = 43,124,064
strand = "positive"

v_pos : VariationPosition

patient : Individual

genotype = "1/1"
origin = "somatic"

r : Reading

name = "GRCh38"

a : Assembly

name = "Breast tissue"

t : Tissue

gender = "Female"
ethnicity = "Asian"
age = 39

patient : Donor
type = "Tissue"
tissue = "Breast"
is_healthy = false
disease = "Breast Invasive Carcinoma"

biosample : Biosample

replicate: Replicate
source_id = 01d3fddf-b447-4925-a5cb-c5fd70c97278-msm
size = "50Kb"
date = "2019-10-03"
platform = "Illumina"

sample : Sample

case_study : CaseStudy source = "TCGA"
name = "TCGA_BRCA"

project : Project

data_type = "masked somatic mutation"
technique = "DNAseq"
feature = "snp"

experiment_type : ExperimentType

sampleRegion : SampleRegion name = "dataset_1"
assembly = "GRCh38"
format = "MAF"

dataset : Dataset

schema : Schema
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Figure 5: UML instance diagram depicting the scenario described in Example 3.

Example 4: Extract orthologous genes for humans and other species. By exploiting the connection between
DONOR (data layer) and INDIVIDUAL of a specific SPECIES (concepts layer) it becomes possible to select genes of
Homo Sapiens and genes of, e.g., canine models, which are orthologous (i.e., genes in different species that evolved
from a common ancestral gene by speciation). Notably, over 58% of genetic diseases seen in dogs closely depict the
phenotype of human diseases caused by mutations in orthologous genes [32]. By exploiting the findings available for
canine genes, candidates for gene-driven therapies may be found, e.g., for Duchenne muscular dystrophy [50].
5.2. Intra-Data-Type Integration: Gene Expression

Measuring gene expression is an important part of genomic studies. The possibility to quantify at which level a
particular gene is expressed within a cell or tissue can provide valuable information. Notable uses include the iden-
tification of viral infections within a cell (viral protein expression), the characterization of individuals’ susceptibility
to cancer (oncogene expression), the understanding of bacterial anti-microbial resistance (e.g., beta-lactamase expres-
sion, when targeting penicillin), the identification of the molecular signature of a disease [4], or for correlating drug
repurposing candidates to a disease [69].

Data that represents the expression of genes is collected widely. GTEx is typically employed as a benchmark of
normal data (i.e., extracted from healthy/non-tumor patients), as opposed to diseased (i.e., tumoral in the case of cancer
genomics). TCGA is instead typically used for tumor samples. Often, these two sources are used together: there have
been efforts to homogenize their data into a common repository (see [66]). GEO, instead, is a very heterogeneous
source where researchers deposit datasets supporting their publications, no homogeneous schema is guaranteed by the
provided.
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Example 5: Extraction of tumor/healthy gene expression samples for colon adenocarcinoma prognosis.
Chen et al. [18] describe a data analysis workflow that exploits gene expression signals to identify a biomarker for
colon adenocarcinoma. The data acquisition workflow retrieves TCGA gene expression datasets whose primary site is
“colon” and whose analyzed histological type is “colon adenocarcinoma”. In parallel, gene expression data extracted
from normal tissue is sourced from the GTEx colon sigmoid dataset. The two datasets can be combined together by
means of a differential expression analysis conducted with off-the-shelf bioinformatics libraries. Figure 6 shows the
GTEx-related instance of the data layer in blue color. It is connected to the green classes, representing instances of the
concepts layer classes. The core subschema shows, as an example, the WASH7P GENE, located at ELEMENTPOSITION
14,362–29,570 on the negative strand; the gene has been measured in many different conditions in the data. A colon
tissue has been extracted in the context of the GTEx project, using a sample from a healthy DONOR (e.g., a cell line).
The EXPRESSION of the gene is calculated as 48 gene reads (unnormalized measure). In a similar way, a TCGA data
layer could be instantiated to represent the extraction of a patient affected by a similar cancer type. For each of her/his
genes, the count of reads would be retrieved. The information is stored in TSV files that hold the gene expression
quantification for many different genes and individuals (each represented as one SAMPLEREGIONGTEX or a SAM-
PLEREGIONTCGA, stored in two different DATASETS. The PoliViews approach accommodates all the heterogeneous
representations allowing for their mapping into homogenous concepts.

In [18], after the gene expression data retrieval is completed, A survival and clinical matrix is also sourced from
TCGA (we do not detail the integration process with this kind of data here). The complete workflow has the goal of
identifying a hub gene (DAPK3) that is significantly associated with the lymphatic invasion and thus can support the
colon adenocarcinoma prognosis.

name = "Colon tissue"

t : Tissue

name = "GRCh38"

a : Assembly

name = WASH7P

g : Geneer: ExpressionRate start = 14,362
end = 29,570
strand = "negative"

g_pos : ElementPosition

name = "dataset_2"
assembly = "GRCh38"
format = "TSV"

dataset_2 : Dataset

h_patient : Donor
type = "Tissue"
tissue = "Colon_sigmoid"
is_healthy = true
disease = "None"

h_biosample : Biosample

h_replicate: Replicate data_type = "Gene expression"
technique = "RNAseq"

experiment_type : ExperimentType

source = "GTEx"
name = "GTEx analysis v8"

project : Project

healthy_patient : Individual

source_id = "gene_expression_colon"
size = "60MB"
date = 2019-04-13
platform = "Illumina TruSeq"

h_sample : Sample

case_Study: CaseStudy

h_sample_region: SampleRegion

count_type = "gene_reads"
value = 48

h_e : Expression

schema: Schema

gene_expression_in_region gene_in_region assembly_of_dataset

has

instantiates_a

tissue_of_sampledonnor_individual
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Figure 6: UML instance diagram depicting the scenario described in Example 5.

Example 6: Joint use of tumor/healthy gene expression data for colorectal cancer treatment repurposing.
Colorectal cancer is a major cause of cancer deaths worldwide. Many patients are diagnosed at an advanced stage
and the 5-year survival rate is only around 30%. Yang et al. [70] employ TCGA and GTEx cohorts contributing to
471 tumor tissues and 349 normal tissues (using the FPKM measure for gene expression). A Weighted Correlation
Network Analysis is employed to select the genes that are significantly associated with the analyzed type of tumor.
Other statistical analysis steps are applied to build a five-gene prognostic signature (PGM2, PODXL, RHNO1, SCD,
and SEPHS1). The data retrieval phase can be mapped on PoliViews in a very similar way as we did with Example 5
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in Figure 6.
Note that the signature obtained after the first analysis is further validated using the GSE17536 dataset [27]. The

dataset was downloaded from the GEO database, containing 177 samples, to validate the obtained results further.
Thanks to the common schemata that these sources share in PoliViews any other GEO sample considered of interest
for the study could be added to the pool of collected data. Several studies use similar approaches on a wide plethora
of cancer types (e.g., [23] on Renal Cell Carcinoma).
5.3. Inter-Data-Type Integration: Interoperating DNA Variation with Gene Expression data

Figure 7 represents the overall model presented in the manuscript, where the concepts layer includes - for now
- the DNA Variation view and the Gene Expression view. Classes related only to DNA Variation are in pink (as in
Figure 2): classes related only to gene expression are in green (as in Figure 3), whereas those that are common to both
views are colored using a green/pink transition. A GENE is represented through its EXPRESSION that is recorded in the
SAMPLEREGION (of a particular data source). Similarly, a VARIATION is captured through a READING operation and
recorded into the corresponding SAMPLEREGION. The retrieved sample regions are physical genomic records that can
be used for integrated data analysis.
Example 7: Workflow for mapping DNA Variation on highly expressed genes. Settino et al. [60] describe a
simple workflow to use the DNA Variation data (and related information on their position on specific elements) together
with gene expression data. The first kind of data has been produced using the DMET platform. DMET (not discussed
in this manuscript) allows obtaining variation data in a format similar to that of TCGA. In particular, it produces SNPs:
each SNP represents a difference in a single DNA building block, called a nucleotide. These are the most common
type of genetic variation among people. It is enriched by information on the exon regions (extracted from GENCODE
annotation dataset). Only SNPs whose coordinates are included in those of at least one exon region are considered.
The second kind of data is extracted from TCGA: Breast Invasive Carcinoma (BRCA) is considered. Only genes with
an FPKM count above 3 (i.e., highly expressed) are retained. Finally, the workflow in [60] extracts only SNPs that
overlap at least one highly expressed gene in the BRCA dataset.

The same workflow could be applied using directly the TCGA masked somatic mutation dataset and the TGCA
gene expression dataset, as done in [45].
Example 8: Interdependence of gene expression and mutations on the same genomes. Several research threads
investigated the interdependence of these two signals or exploit them independently to understand pathogenesis mech-
anisms. The link between gene expression changes and mutation status/effects has been studied previously [64, 40, 49].
On the contrary, others have studied how the functional impacts of somatic mutations in cancer genomes change the
expression of genes [31, 37], improving the outcome prediction of certain tumors.

While all the mentioned applications act on tumor-related problems, the same data types have been interoperated
also for other research areas. For instance, Weinstein et al. [67] studied adaptive immune response. In this case, it
is critical that the link between genetic variability and gene expression at the single-cell level is maintained. This is
not trivial to be measured. Weinstein and colleagues proposed a method to simultaneously measure gene expression
profiles and genome mutations in single cells.

6. Discussion and Conclusion
The Human Genome is an extremely complex entity, whose enormous information is hard to capture, represent,

and operationalize. We have described the concept-driven and data-driven approaches to conceptual modeling for
genomics, that guided the development of CSG and GCM. Here, we joined two existing approaches to conceptual
modeling of the human genome and proposed PoliViews, a conceptual model that provides both the concept and data
viewpoints, linking (1) a concepts layer, describing genome elements and their conceptual connections, with (2) a data
layer, describing datasets derived from genome sequencing with specific technologies. Their dynamic connection is
established when specific genomic data types are chosen in the data layer, thereby triggering the selection of a view in
the concepts layer. Operationally, PoliViews allows us to i) visualize only concepts related to a specific view at a time;
ii) appreciate the common concepts and the interconnections between views; iii) when datasets of a specific genomic
data type are needed, select them by exploiting the link between concepts and the corresponding SAMPLEREGION;
iv) express complex queries that employ a holistic conceptual perspective on the genome, directly translated onto
data-oriented terms.
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Figure 7: PoliViews schema representing the DNA Variation and Gene Expression views in the concepts layer, connected
to their respective data representations in the bottom layer. The classes that only pertain to the DNA Variation view are
depicted in pink; those that only pertain to the gene expression view are in green; those that pertain to both views are in
green and pink.
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The approach is here exemplified using the DNA variation and gene expression data types, showing that the new
conceptual model can support interesting queries and applications, acting on a single dataset, on different integrated
datasets with the same view, or on different integrated datasets across views. New views can be created that correspond
to all genomic information and data types.

PoliViews extends with several novelties previous work published in the ER 2023 conference [10] where the first
idea of a modular view-based approach to genomic data management was presented. We applied several changes to
the conceptual layer, such as the introduction of the concept of “individual” (on which, e.g., the variation or the gene
expression is measured) and the generalization of the variation’s position handling strategy. We added the conceptual
and data view about the quantification of expressions of genes and introduced the idea of intra-data-type (e.g., using
together different data sources from one view) versus inter-data-type integration (i.e., using together data sources
coming from different views). Finally, we provided several new examples, especially regarding the Gene Expression
view and intra-data-type use cases. As immediate extensions, we plan on adding a concepts layer extension that
allows calculating expression rate levels based on the population considered in the data. We will next add a new view
dedicated to the methylation values of CpG sites (i.e., regions of DNA where a cytosine nucleotide is followed by a
guanine nucleotide in the linear sequence of bases on the positive strand) mapping to DNA Methylation signals (used
in [41, 45]).

Here, we discussed the conceptual challenge of generating views for all the most relevant genomic data types,
while carefully designing their links. We showed the variation-related and the gene expression-related information,
but we will next take data types one by one and generate extensions of the concepts layer view by view. The scope of
the presented effort is limited to data design and explanation, but it will be further exploited to achieve effective data
querying, pending an integration and implementation effort. In this direction, we envision a holistic system that, based
on accurate view-specific contents, is able to provide a synergic perspective on the genome. The system will enable
the combined use of multiple views, with selective mechanisms that activate one area or the other. To achieve this, the
PROS group will enrich the CSG entities by inspecting new datasets and the GeCo will understand how the datasets
are connected conceptually. Significant future joint activities are envisioned that will integrate other well-known open
genomic data sources [7] and, possibly, also population-specific or nation-scale sequencing initiatives [62], whose
datasets are not openly made available yet.

Users will then be allowed to ask questions that, for example, connect datasets on variation at the DNA level to
variation at the amino acid level (i.e., proteins). More complex queries could compare somatic and germline variations
(by means of “differential mutation analysis") to identify genes that are likely involved in a given disease [55] or
identify susceptibility to tumorigenesis by exploiting genome-wide association studies [43]. More broadly, queries
could span from mutations to their interaction with phenotype evidence, using their position within annotated genome
elements, possibly also connecting it to interactions with the epigenome or the tridimensional organization of the
genomic chain. All of these queries would benefit from the approach described in this work, facilitating in a natural
way the interoperability between different data types connecting their corresponding views.
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