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A B S T R A C T
The inflation of SARS-CoV-2 lineages with a high number of accumulated mutations (such as the
recent case of Omicron) has risen concerns about the evolutionary capacity of this virus. Here, we
propose a computational study to examine non-synonymous mutations gathered within genomes of
SARS-CoV-2 from the beginning of the pandemic until February 2022. We provide both qualitative
and quantitative descriptions of such corpus, focusing on statistically significant co-occurring and
mutually exclusive mutations within single genomes. Then, we examine in depth the distributions of
mutations over defined lineages and compare those of frequently co-occurring mutation pairs. Based
on this comparison, we study mutations’ convergence/divergence on the phylogenetic tree. As a re-
sult, we identify 1,818 co-occurring pairs of non-synonymous mutations showing at least one event
of convergent evolution and 6,625 co-occurring pairs with at least one event of divergent evolution.
Notable examples of both types are shown by means of a tree-based representation of lineages, visu-
ally capturing mutations’ behaviors. Our method confirms several well-known cases; moreover, the
provided evidence suggests that our workflow can explain aspects of the future mutational evolution
of SARS-CoV-2.

1. Introduction
All viruses, including SARS-CoV-2, change over time.

Many organizations, such as the Global Initiative on Sharing
all Influenza Data (GISAID) [42], Nextstrain [18] and Pan-
golin [40], are studying the phylodynamics of SARS-CoV-2
genomes to track and define new variants. At the end of May
2021, the World Health Organization (WHO) announced the
usage of a novel nomenclature system for naming and track-
ing SARS-CoV-2 genetic lineages using letters of the Greek
alphabet, now offering a reference to refer to viral variants
across the world. In the same announcement, the WHO also
introduced a multi-level categorization of variants based on
the levels of attention they should raise; namely, variants un-
der monitoring (VUM), variants of interest (VOI), and vari-
ants of concern (VOCs). Such levels were defined by eval-
uating specific measures that define the virus properties and
virulence. On a different level, several initiatives such as
CoVariants [20] and outbreak.info [15] are working on deter-
mining the defining (i.e., characterizing) mutations for each
variant.

The evolutionary dynamics of the virus were predomi-
nantly characterized by a mutational pattern of slow and se-
lectively neutral random genetic drift. Past pandemics and
long-term evolutionary dynamics of RNA viruses attest to
the fact that such an evolutionary “lull” rarely lasts [28]. In-
deed, in late 2020, three relatively divergent SARS-CoV-
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2 lineages emerged in rapid succession: B.1.1.7 (Alpha),
B.1.351 (Beta), and P.1 (Gamma). Those three lineages were
considered as VOCs according to the WHO. Due to the con-
tinuation of the pandemic, other lineages emerged and, at the
beginning of 2022 we faced the emergence of BA.1 (Omi-
cron) and of its descendant lineages. From the point of view
of single mutations accumulated since the beginning of the
pandemic, most of them had little to no impact on the virus’
properties (i.e., not epidemiologically significant). How-
ever, some changes have arisen that affect the virus to gain
specific advances, such as a spread advantage [7], the associ-
ated disease severity [16], or the resistance to vaccines [17],
antiviral medicines [44], diagnostic tools, and other public
health / social measures [34] (as we analyzed in [1, 2]).

Thanks to the continuous spreading of SARS-CoV-2 and
the contextual deposition of its viral sequences to public
repositories (even considering possible delays [24]), the vi-
ral evolution can be monitored and studied to understand
SARS-CoV-2 variants and the risks that they pose. Methods
that study the virus characteristics have been developed in-
dependently from the phylogenetic techniques traditionally
employed in this field. For instance, considerable efforts
have been dedicated to building surveillance systems that
employ temporal analysis of SARS-CoV-2 mutations to as-
sist in the identification of candidate variants of clinical im-
portance. A number of studies have described typical SARS-
CoV-2 mutational profiles across different countries and re-
gions [31], proposing statistical indicators for location-based
mutation evolution [45] and observing changes that become
recurrently prevalent in different locations, thus suggesting
selective advantages [26]. Time-series analyses have been
considered for clustering of prevalent SARS-CoV-2 muta-
tions over time [50, 8, 5, 22, 11, 21], trend detection in
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SARS-CoV-2 short nucleotide sequences [46], and single
amino acid changes [41]. Such works consider functions
that describe the prevalence of different mutations and, when
a number of these are behaving similarly, they recognize
a possible distinct variant. These approaches usually have
an epidemiological angle and are focused on highly present
forms of the virus. A different work [12] focuses on patterns
of mutations located in relevant domains of the virus that are
found in variants of concern but also in emerging variants,
suggesting they can be used as a guidance for next evolution
moves. At the same time, several studies have analyzed the
evolution of mutational patterns that are typical of a specific
geographical area [9, 10, 47, 6]. Our approach does not focus
on the most spread variants or on groups of numerous mu-
tations, nor it restricts to specific locations. We take an in-
terest in a more micro-level phenomenon, i.e., involving the
relationship between single mutations that appear together
or separated in different fragments of the phylogenetic story
of SARS-CoV-2.

Co-occurrences are analysed in a number of works [39,
52, 43]. Specifically, Qin et al. [39] used small groups of co-
occurring mutations as drivers to define groups of sequences
(some of which are location-specific) that are then validated
on the phylogenetic tree. This analysis is conducted on less
then a million genomes up to the beginning of 2021. For
co-occurrences we next use a definition that is close to the
co-mutations of Zhang et al. [52], which is however focused
only on B.1.1.7, digging deep in the evolution and transmis-
sion chains of this variant. For this purpose, they have stud-
ied the co-occurrence of SARS-CoV-2 mutations by using
only high frequency mutations. Mutation rates are compared
with the spatial information: mutations found in places with
highly similar mutation rates are considered as potential co-
mutation patterns. Finally, Singh et al. [43] proposed an
original approach to analyse occurrence/co-occurrence of
genomic mutations with NLP techniques by exploiting their
conceptual equivalence to the occurrence of words in a tex-
tual document – mutational signatures could be understood
as topics of a document; the approach is still preliminary.

In this research, we employ a previously unexplored per-
spective: we consider 8 million sequences and we perform
a systematic co-occurrence and mutual exclusion analysis of
non-synonymous mutations’ pairs. These become our en-
try point to the SARS-CoV-2 evolution aspects. In the fol-
lowing, we provide a workflow to determine 1) co-occurring
pairs of mutations (as preliminarily tested in [1]) and 2) mu-
tually exclusive pairs of mutations (as inspired by research
on mutually exclusive human gene pairs [38]). Then, we em-
ploy the results from the first phase (co-occurring pairs) to
study convergent and divergent evolution events of mutation
pairs, also analyzing them from the point of view of single
mutations participating to the event. An intuitive visual rep-
resentation is employed to explain such events and point the
attention to a number of interesting cases, which have been
validated in the literature. As future work, our workflow en-
courages the design of a light-weight prediction procedure
for the mutational evolution of SARS-CoV-2.

2. Methods
The framework of our study is divided into four parts,

discussed in the remainder of this section and overviewed
(as dotted-framed areas) in Figure 1:
1) Data preparation (described in Section 2.1), where we

analyze the initial dataset of viral sequences and prepare
aggregated intermediate tables.

2) Data analysis (Section 2.2), composed of three parts that
use specific statistical tests to, respectively i) identify the
co-occurring and mutually exclusive pairs of mutations,
ii) compare the distributions over lineages of mutations
that appear in previously identified co-occurring pairs,
and iii) test the evolution events happened between co-
occurring pairs.

3) Lineages distribution-dependent analysis (Section 2.3),
i.e., an analysis on mutation pairs that takes into con-
sideration how mutations are spread across the lineages;
it includes the visualization of convergence/divergence
events involving mutation pairs along tree-based struc-
tures representing the hierarchy of Pango lineages.

4) Lineages distribution-independent analysis (Sec-
tion 2.4), i.e., an analysis of co-occurring and mutual
exclusive mutation pairs that ignores how mutations are
spread across the lineages.

The complete analysis has been performed in Python (Ver-
sion 3.7.6), using classical data science libraries, i.e., Pandas
(Version 1.3.5) for data extraction and aggregation, Scipy
(Version 1.4.1) for statistical analysis, Seaborn (Version
0.11.2) and Matplotlib (Version 3.1.3) for data visualization.
2.1. Data preparation

A set of over 8.2 million sequences of SARS-CoV-
2 genome was collected from GISAID since the begin-
ning of the pandemic until mid of February 2022 to be
used in this large scale analysis. Each entry of the initial
dataset represents one viral sequence with their assigned
Pango lineage [35] and a list of its non-synonymous mu-
tations; these belong to all the proteins of SARS-CoV-2,
expressed considering the reference SARS-CoV-2 genome
hCoV-19/Wuhan/WIV04/2019 [53].
Data aggregation. From the initial dataset, we prepared
three intermediate tables that were used in following analy-
ses as shown in the Data preparation box of Figure 1:
1) triplets of the form ⟨𝑚, 𝑙, 𝑆𝑚,𝑙⟩, where 𝑆𝑚,𝑙 represents the

number of sequences from lineage 𝑙 having a mutation 𝑚;
2) for the lineages included in 1), triplets of the form

⟨𝑙, {𝑠𝑒𝑞1,… , 𝑠𝑒𝑞𝑖,…, 𝑠𝑒𝑞𝑆𝑙
}, 𝑆𝑙⟩, where for each lineage

𝑙 we have the set of sequences assigned to that Pango lin-
eage and its cardinality 𝑆𝑙;3) for the mutations included in 1), triplets of the form
⟨𝑚, {𝑠𝑒𝑞1,… , 𝑠𝑒𝑞𝑖,…, 𝑠𝑒𝑞𝑆𝑚

}, 𝑆𝑚⟩, where for each mu-
tation 𝑚 we have the set of sequences exhibiting that mu-
tation and its cardinality 𝑆𝑚.
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Figure 1: Methodological workflow of the study. The schema
is composed of four main parts enclosed in dotted-framed
areas: 1) Data preparation; 2) Data Analysis; 3) Lineages
distribution-dependent analysis; and 4) Lineages distribution-
independent analysis. Legend: 𝑆𝑙: number of sequences as-
signed to lineage 𝑙; 𝑆𝑚: number of sequences holding a muta-
tion 𝑚; 𝑆𝑚,𝑙: number of sequences from lineage 𝑙 holding mu-
tation 𝑚; 𝑆𝑚1 ,𝑚2 ,𝑙: number of sequences assigned to lineage 𝑙
holding the pair of mutations 𝑚1 and 𝑚2; KS test: Kolmogorov-
Smirnov test; MC simulation: Monte Carlo simulation.

To reduce the size of the initial dataset, we only considered
the most frequent mutations, i.e., those found in at least 20K
viral sequences as extracted from the intermediate table 3);
they amount to 421. In the following, we refer to these as
frequent mutations: we only performed the analysis over this
list of mutations.

2.2. Data analysis
2.2.1. Detection of co-occurring and mutually

exclusive mutations pairs
In a given population (e.g., the sequences that are asso-

ciated to a lineage), we define:
• co-occurring pairs of mutations: pairs of mutations that

are observed in the same sequences of the reference pop-
ulation a number of times that is significantly higher than
the expected one when the two mutations are independent
from each other (i.e., frequency of first mutation × fre-
quency of second mutation × size of the population);

• mutually exclusive pairs of mutations: pairs of mutations
that are observed in the same sequences of the reference
population a number of times that is significantly lower
than the expected one when the two mutations are inde-
pendent from each other.

Both co-occurring and mutually exclusive pairs are found at
the two tails of the hypergeometric distribution of pairs of
mutations found within the population. We employ as p-
value for our selection the cumulative distribution function
(cdf) of the hypergeometric distribution:

𝑃 (𝑆𝑚1,𝑚2
= 𝑛) =

(𝑆𝑚1
𝑛

)(𝑃−𝑆𝑚1
𝑆𝑚2−𝑛

)

( 𝑃
𝑆𝑚2

)

where 𝑆𝑚1
, 𝑆𝑚2

and 𝑆𝑚1,𝑚2
are the numbers of sequences

harbouring mutations 𝑚1, 𝑚2, and both 𝑚1 and 𝑚2, respec-
tively, while 𝑃 is the size of the reference population. The
p-value of observing 𝑁 sequences with both mutation 𝑚1and mutation 𝑚2 can be computed as:

𝑃 (𝑆𝑚1,𝑚2
> 𝑁) = 1−𝑃 (𝑆𝑚1,𝑚2

≤ 𝑁) = 1−
𝑁
∑

𝑛=0
𝑃 (𝑆𝑚1,𝑚2

= 𝑛)

We employ the Python cdf (Cumulative Distribution Func-
tion) function of the scipy.stats.hypergeom that, for a pair
⟨𝑚1, 𝑚2⟩ takes as input the number of sequences with both
mutations (𝑆𝑚1,𝑚2

, the total count of available sequences 𝑃 ,
and the number of sequences with 𝑚1 and with 𝑚2 (𝑆𝑚1

and
𝑆𝑚2

) in order to compute the probability 𝑃 (𝑆𝑚1,𝑚2
≤ 𝑁).

We compute p-values for all the possible pairs of frequent
mutations (FM), that are FM*(FM-1)/2. Results are filtered
by using suitable p-values (lower than 0.05 correspond to
co-occurring pairs and higher than 0.95 correspond to mu-
tually exclusive pairs) as shown in the Data analysis box of
Figure 1.
2.2.2. Distribution of frequent mutations over lineages

We employed lineages as they are assigned by Pan-
golin [35]. For each mutation 𝑚 of our dataset and each
available Pangolin lineage 𝑙, we computed the count of
sequences assigned to 𝑙 that hold 𝑚, obtaining the triplet
⟨𝑚, 𝑙, 𝑆𝑚,𝑙⟩. Such data is collected within a 421 (frequent
mutations) × 1,587 (all lineages) matrix. We refer to the mu-
tation 𝑚’s distribution over lineages as the row of the matrix
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corresponding to 𝑚. To focus only on lineages that well-
represent the mutation, for each row we set to zero the se-
quence counts that are less than 0.001 of the total lineage se-
quences. For each pair of co-occurring mutations extracted
during the previous step, we compared the distributions over
lineages of each of its two mutations; the comparison was
performed by employing the Kolmogorov-Smirnov (KS) test
[23] using the scipy.stats.ks_2samp Python method, which
is efficient in determining if two samples are significantly
different from each other. For a pair ⟨𝑚1, 𝑚2⟩ it takes as in-
put the two arrays of 𝑚1 and 𝑚2’s distributions over lineages
and the ‘two-sided’ option. A reasonable p-value < 0.05 is
used as a threshold of significance (see Data analysis box of
Figure 1).

To support the understanding of these methods’ steps, we
exemplify them on a minimal example data structure. As-
sume we prepare a 3 × 3 matrix (Table 1), which collects
the counts of sequences holding mutations 𝑚0, 𝑚1, and 𝑚2taken from sequences assigned to lineages 𝐿1, 𝐿2, and 𝐿3.
The total number of sequences of each lineages are given in
parenthesis in the header.

𝐿1 (10000) 𝐿2 (100) 𝐿3 (300)
𝑚0 4 10 100
𝑚1 4 10 110
𝑚2 300 10 100

Table 1: Minimal example matrix of counts of sequences
assigned to lineages and holding mutations

As 𝐿1 sequences with 𝑚0 and with 𝑚1 are less than
0.001*10000, then the corresponding counts are set to zero
(see Table 2).

𝐿1 (10000) 𝐿2 (100) 𝐿3 (300)
𝑚0 0 10 100
𝑚1 0 10 110
𝑚2 300 10 100

Table 2: Minimal example matrix from Table 1 where non-
representative counts are set to zero

The first row of the matrix is the 𝑚0’s distribution over
lineages. All possible mutation pairs are tested for co-
occurrence with the hypergeometric test; let the following
pairs be selected: ⟨𝑚0, 𝑚1⟩ and ⟨𝑚0, 𝑚2⟩. For each such pair,
we compare their distributions over lineages. The KS test is
employed to conclude that line 𝑚0 is not significantly dif-
ferent from line 𝑚1 and that line 𝑚0 is significantly different
from line 𝑚2, yielding to the corresponding alternative steps
in the workflow. Depending on the results of the KS test,
each pair of co-occurring frequent mutations can be classi-
fied in one of the two categories:
• pairs with different distributions over lineages;
• pairs with similar distributions over lineages.

2.2.3. Convergent and divergent evolution testing
method

We developed a method to identify convergence and di-
vergence events involving two mutations at a time. The
method was run for each pair of mutations extracted from
the previous step, analyzing their presence within couples
of lineages in 1-step relationship on the hierarchical lin-
eages tree (i.e., each node with its direct ancestor). To sup-
port the explanation, we refer to Figure 2, showing a co-
occurrence graph (panel A) where mutations (i.e., nodes)
are exhibited by the same sequences (i.e., edges that con-
nect co-occurring mutations). This graph is connected with
a lineages tree (panel B), where lineages are nodes and edges
explain their hierarchical relationships according to the phy-
logenesis. The mutation graph and the tree are connected
when a mutation occurs above the threshold 0.001 of the se-
quences of a specific lineage.

When considering two mutations co-occurring across
the dataset and having different distributions over lineages,
we observe a convergence event when both the following
conditions occur:
• for each lineage 𝑙, its sequences holding both mutations of

a pair ⟨𝑚1, 𝑚2⟩ represent a large-enough fraction (> 0.01)
of the sequences holding exclusively one mutation of the
pair (i.e., 𝑆𝑚1,𝑚2,𝑙∕𝑆𝑚1,𝑙> 0.01 and 𝑆𝑚1,𝑚2,𝑙∕𝑆𝑚2,𝑙> 0.01);

• only 𝑚1 or 𝑚2 is found in the direct ancestor of 𝑙.
In panel B of Figure 2, the blue rectangle surrounds an event
of convergence between mutations, in which only mutation
B was found in the parent lineage lin.1 whereas both muta-
tions B and C were found together on the same sequences of
the sub-lineage lin.1.1.

Several kinds of divergence events can occur, but here we
focus on a particular definition. When considering two mu-
tations co-occurring together across the dataset and having
similar distributions over lineages, we observe a divergence
event when both the following conditions occur:
• 𝑆𝑚1,𝑚2,𝑙∕𝑆𝑚1,𝑙> 0.01 and𝑆𝑚1,𝑚2,𝑙∕𝑆𝑚2,𝑙> 0.01 (same con-

dition as for the convergence event);
• only one of the two mutations is found in the direct de-

scendant lineage of 𝑙.
As shown in panel B of Figure 2, the orange rectangle sur-
rounds an event of divergence of mutations, in which both
co-occurring mutations C and D were found together on the
same sequences of the parent lineage lin.2.2.2, whereas its
sub-lineages have exclusively mutation C or D.

Based on these definitions, we generate two tables con-
taining: 1) the converging pairs of mutations (‘Convergence
Result’ in the Lineages distribution-dependent analysis box
of Figure 1); 2) the diverging pairs of mutations (‘Diver-
gence Result’ in Figure 1).

For each convergence event (sketched in panel C of Fig-
ure 2), we find a corresponding row in the first table, show-
ing: the pair of converging mutations, the Distinct Ancestor
Lineage (DAL, i.e., the lineage with only one of the two pair
mutations), the Common Descendant Lineage (CDL, i.e., the
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Figure 2: A. Frequent mutations graph whose nodes represent mutations and edges rep-
resent the co-occurrence of the two connected nodes within same sequences. B. Tree
representing the phylogenetic hierarchy among lineages. C. Schematic representation of
a convergence event. D. Schematic representation of a divergence event E. Terminology
used in the methods.

sub-lineage with both pair mutations), the Remaining Muta-
tion (RM, i.e., the mutation found both in the ancestor and
its descendant lineage), the Acquired Mutation (AM, i.e., the
mutation found only in the descendant lineage), the count of
sequences assigned to CDL holding both RM and AM, the
count of sequences assigned to DAL holding only RM, and
the depth of CDL in the lineages tree.

For each divergence event (sketched in panel D of Fig-
ure 2), we find one row in the second table, showing: the
pair of diverging mutations, the Common Ancestor Lineage
(CAL, i.e. the lineage with both pair mutations), a Distinct
Descendant Lineage (DDL, i.e., a sub-lineage with only one
of the two pair mutations), the Remaining Mutation (RM,
i.e., as before, the mutation found both in the ancestor and
its descendant lineage), the Missing Mutation (MM, i.e., the
mutation found only in the ancestor lineage), the count of
sequences assigned to CAL holding both RM and MM, the
count of sequences assigned to DDL holding only RM, and
the depth of CAL in the lineages tree.
2.3. Lineages distribution-dependent analysis

To study the behavior of pairs of co-occurring mutations
along the different lineages in the phylogenetic tree, two ag-
gregated tables were generated from the convergence and di-
vergence tables’ results (shown in the Lineages distribution-
dependent analysis box of Figure 1), by grouping according
to the following fields:
• Pairs of co-occurring mutations. We grouped both ‘Con-

vergence Result’ and ‘Divergence Result’ tables by the
⟨𝑚1, 𝑚2⟩ pair. Since a stronger evidence for converging
mutations pairs (resp. diverging) is available when a pair
shows more convergence (resp. divergence) events) in the
lineages tree – also at different depths – the resulting ag-
gregated tables were ranked by the count of CDL (conver-
gent evolution) or by the count of CAL (divergent evolu-
tion).

• Remaining mutation. We grouped both ‘Convergence
Result’ and ‘Divergence Result’ tables by RM and then
ranked the aggregated tables by descending count of DAL
(convergent evolution) and by descending count of DDL
(divergent evolution).

Monte Carlo simulation. We used a Monte Carlo (MC)
simulation approach to simulate the convergence and diver-
gence tests and calculate the significance of our findings. By
employing the Python method sample of the random library,
we performed a simulation of 10,000 rounds, each composed
as follows: 1) randomly select as many pairs of mutations
as the ones obtained by the hypergeometric test out of the
primary pool of unique pairs of mutations; 2) count how
many distinct pairs of mutations pass the convergence test;
3) count how many distinct pairs of mutations pass the diver-
gence test; 4) calculate the p-values by comparing the ran-
dom distributions generated according to 2) and 3) and the
real data.
Sub-trees visualization. Graphviz [14] and Net-
workX [19] were used to draw lineages trees. Tree-shaped
graphs are generated from the aggregated tables represent-
ing pairs of co-occurring mutations. One graph is produced
for each converging or diverging pair of mutations, follow-
ing the relationships between lineages as indicated by the
Pangolin nomenclature. Each node represents a lineage
and lineages are connected by hierarchical relationships
(arrows). We start from the original SARS-CoV-2 haplo-
types (A or B) and descend the tree up to the node where
an evolution event is identified. Since several pairs have a
high number of evolution events, we omit the visualization
of branches without such events. A color code is used to
highlight where convergent/divergent evolution events are
identified and which mutations from the considered pair are
observed.
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2.4. Lineages distribution-independent analysis
Following the hypergeometric test that identifies co-

occurring and mutually exclusive mutation pairs, we also
perform a lineage-independent analysis, which is not related
to the analysis reported in Section 2.3, as it does not con-
sider how mutations are spread across the lineages. More
precisely, we employ co-occurring pairs to investigate the
defining mutations of lineages. Instead, we employ mutu-
ally exclusive pairs to gain insights on the mutations that are
preferred during the virus evolution. To further study these
two happenings, we incorporate the calculation of fold en-
richment as shown in the Lineages distribution-independent
analysis box of Figure 1.
Fold enrichment calculation. The Fold Enrichment (FE)
is a general statistical term that indicates how many folds a
phenomenon happened more (or less) than expected by ran-
dom chance. For instance, FE=3 means than the event hap-
pened three times the random expectation for that event. We
use the following formula to calculate it:

logFE𝑚,𝑙 = 𝑙𝑜𝑔2(𝑆𝑚,𝑙 ∗ (𝐿∕𝑆𝑚))

where we have that 𝑆𝑚,𝑙 is the total number of sequences
having a mutation 𝑚 in a given lineage 𝑙; 𝐿 is the total num-
ber of lineages found in the population; 𝑆𝑚 is the total num-
ber of sequences having mutation 𝑚 in the population. Here
we considered𝑆𝑚,𝑙 as the count of observed events and𝑆𝑚/𝐿
as the count of expected events. By using logFE𝑚,𝑙, the val-
ues of enrichment range from −∞ to +∞, where negative
logFE𝑚,𝑙 values indicate that the mutation 𝑚 is less enriched
in lineage 𝑙 and positive values indicate that the mutation 𝑚
is more enriched in lineage 𝑙, while zero means the enrich-
ment is as expected by random chance. Details on how this
measure is employed are given in the results (Section 3.2.1),
where noteworthy variants are analyzed.

3. Results
3.1. Dataset description

By analyzing the considered dataset (see Section 2.1 in
the Methods), we observed the distributions of the sequences
over continents and lineages, provided respectively in Fig-
ure 3A and Figure 3B. Half of the viral sequences of the anal-
ysed dataset were collected in the European continent. Se-
quences were assigned to 1,587 distinct Pango lineages, the
most represented lineages being B.1.1.7 (Alpha), AY.4, and
BA.1 (Omicron), respectively represening the 13.8%, 10.1%,
and 9.2% of the total population. According to the WHO,
the current variants of concern (VOCs) are B.1.617.2 (Delta)
and Omicron (including all BA.1, BA.2, BA.3, and BA.1.1),
while previously circulating VOCs were B.1.1.7 (Alpha),
B.1.351 (Beta), and P.1 (Gamma). Figure 3C presents the
counts of sequences from the dataset assigned to distinct
lineages that are currently or were previously considered as
VOCs; these are distributed by collection date for the whole
course of the pandemic.

Almost all the sequences – except for five – exhibit at
least one non-synonymous mutation with a total number
of 156,951 non-synonymous mutations (substitutions, dele-
tions, or insertions) found in the population with an average
of 32.6 mutations per sequence. The most dominant non-
synonymous mutations are the substitution D614G in the
spike protein, the substitution P323L in the non-structural
protein 12, and the substitution T478K in the spike protein,
found in 97%, 96.5%, and 63.8% of the population, respec-
tively.
3.2. Co-occurring and mutually exclusive

mutation pairs
A total of 88,410 unique pairs were generated from the

list of 421 frequent mutations. Using the hypergeometric
test (see Methods, Section 2.2.1), we extracted 16,692 co-
occurring pairs by using p-value < 0.05; note that, using a
smaller p-value < 0.01 produces 16,415 co-occurring pairs,
thus a small decrease. Then, we extracted 69,903 mutually
exclusive pairs by using a p-value > 0.95; note that, out of
these, 62,491 have p-value = 1, with 374 pairs never ap-
pearing together in the same sequence in the entire dataset.
Differently from Zhang et al. [52] (where mutations are con-
sidered as “high frequency” if found in at least 1% of se-
quences), we have used a much lower frequency threshold
(found in more than 20K sequences, i.e. 0.25%). Conse-
quently, when performing the hypergeometric test on pairs
of mutations, this choice has allowed to widen the possibility
of co-occurrence/mutual exclusion detection.
3.2.1. Lineage distribution-independent results

Before proceeding with our main analysis thread, which
evaluates mutations w.r.t. their distributions over lineages,
we derive a series of interesting observations that can be
made just on the basis of the results of the hypergeometric
test. Such results are derived using the methods described in
Section 2.4. First, by exploiting the extracted co-occurring
pairs, we show how they could be used to complement lists
of variants’ defining mutations. Second, by exploiting the
extracted mutually exclusive pairs, we show how the pairs
could be used as insights of the natural evolution of the virus.
Results are explained using notable examples.
Defining mutations of a given lineage: the case of the
Delta variant. The B.1.617.2 variant (Delta) has been con-
sidered for a long time as one of the VOCs by WHO. Al-
most all (19) of its defining mutations (according to CoVari-
ants [20]) are found in our list of frequent mutations (specif-
ically, only 2 out of 21 mutations are missing, but they are
also absent in the full dataset). Table 3 presents the p-values
derived from running a hypergeometric test on each pair
formed by Delta defining mutations in the Spike protein. All
pairs have a significant p-value, except for the pair composed
by Spike_D614G and Spike_E156- (p-value = 0.54) (likely
due to the huge difference in the populations of these two
mutations). In general, these p-values suggest that the pairs
of mutations tend to co-occur together. Out of all the pairs
⟨𝑚1, 𝑚2⟩ resulting from the hypergeometric test, we con-
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Figure 3: A. Sequences’ distribution across lineages, detailing the ten most representative
lineages. B. Sequences’ distribution across all the continents. C. Number of sequences
assigned to the lineages currently or previously considered as VOCs according to the WHO
with their collection dates.

sidered the ones where 𝑚1 belongs to Delta defining muta-
tions whereas 𝑚2 does not. Only mutations 𝑚2 with a logFE
above a threshold of 1 (i.e., mutations that have been found in
Delta’s population at least twice more than expected) were
further considered. We identified other 68 mutations that
co-occur with all Delta defining mutations and that logFE
values above our threshold. Three of these are found in
the Spike protein: Spike_V1104L (FE: 44.87, logFE: 5.48),
Spike_G142D (FE: 41.06, logFE: 5.35), and Spike_S112L
(FE: 13.75, logFE: 3.78); the complete set is found in Sup-
plementary Table S1. Our findings suggest that the identified
mutations could be considered as additional defining muta-
tions of the Delta variant, complementing the list provided
by CoVariants [20]. Properties of significant mutations co-
occurring with Delta defining mutations are shown in the
scatter plots drawn in the panels of Figure 4.

Mutually exclusive mutations: the case of the Al-
pha and Omicron lineages. The variants B.1.1.7 (Al-
pha) and BA.1 (Omicron) have a very high number of com-
mon defining mutations. Among their defining mutations
lists, we identified possible mutually exclusive pairs; see
Table 4, where pairs with p-value = 1 and mutations
from these two variants are reported. We focus on the first
two rows where the number of sequences having both mu-
tation equals to zero: ⟨Spike_S371L, Spike_A570D⟩ and
⟨Spike_S371L, NSP3_A890D⟩. Spike_S371L is one of the
defining mutations of BA.1, while both Spike_A570D and
NSP3_A890D are from the defining mutations of the lin-
eage B.1.1.7 (Alpha). Indeed, Spike_S371L has a logFE of
9.91 in Omicron and −∞ in Alpha, whereas Spike_A570D
and NSP3_A890D both have logFE of −∞ in Omicron and
of 10.58 in Alpha.

This observation suggests that the more recent circulat-
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Figure 4: A. 2D Scatter plot of the p-values of the hypergeometric tests on all the pairs
of mutations in which only one of the two is a defining mutation of Delta variant, mapped
on the values of logFE of the mutation of the pair that is not a Delta-defining mutation
(outside of the list). A total of 7,638 pairs of mutations were considered in the figure
after removing mutations with FE=0. Blue dots indicate the p-values < 0.05, whose
corresponding non-Delta mutations have a logFE>1. B. Zoomed version of Panel A
scatter plot; it includes 68 mutations extracted from the ‘blue’ pairs selected in Panel A
(co-occurring with all 19 Delta-defining mutations); here, a color scale is used to indicate
the logFE of the pair mutation that belongs to the Delta variant: the darker the color, the
higher the value. The corresponding 3D scatter plot is provided in Supplementary Figure
S1.
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Table 3
Examples of co-occurring pairs of mutations in the Spike pro-
tein, extracted from the defining mutations list of the Delta
variant [20]. The provided number of sequences is evaluated
on the complete dataset.

𝑚1 𝑚2 #Seq. with 𝑚1 #Seq. with 𝑚2 #Seq. with 𝑚1, 𝑚2 P-value

T19R E156- 4145223 21528 20285 4.72e-09
T19R F157- 4145223 3867174 3833412 0.0
T19R R158G 4145223 24435 23862 0.0
T19R L452R 4145223 4199166 4034866 0.0
T19R T478K 4145223 5252904 4046410 3.74e-09
T19R D614G 4145223 7981457 4134564 1.04e-08
T19R P681R 4145223 4208095 4123831 3.28e-09
T19R D950N 4145223 4033822 3960828 0.0
E156- F157- 21528 3867174 20395 0.0
E156- R158G 21528 24435 18717 0.0
E156- L452R 21528 4199166 17429 1.01e-09
E156- T478K 21528 5252904 17870 7.69e-09
E156- D614G 21528 7981457 21339 0.5496
E156- P681R 21528 4208095 20315 5.83e-9
E156- D950N 21528 4033822 19943 2.06e-09
F157- R158G 3867174 24435 17664 0.0
F157- L452R 3867174 4199166 3785418 0.0
F157- T478K 3867174 5252904 3795616 0.0
F157- D614G 3867174 7981457 3857745 7.53e-09
F157- P681R 3867174 4208095 3849316 5.77e-10
F157- D950N 3867174 4033822 3724976 0.0
R158G L452R 24435 4199166 20816 0.0
R158G T478K 24435 5252904 21209 0.0
R158G D614G 24435 7981457 24247 0.0418
R158G P681R 24435 4208095 23830 0.0
R158G D950N 24435 4033822 22455 0.0
L452R T478K 4199166 5252904 4080758 1.02e-09
L452R D614G 4199166 7981457 4189517 4.32e-09
L452R P681R 4199166 4208095 4078817 0.0
L452R D950N 4199166 4033822 3907159 9.18e-10
T478K D614G 5252904 7981457 5241411 8.97e-09
T478K P681R 5252904 4208095 4082650 4.22e-09
T478K D950N 5252904 4033822 3919358 2.71e-10
D614G P681R 7981457 4208095 4197588 4.37e-09
D614G D950N 7981457 4033822 4025217 5.00e-09
P681R D950N 4208095 4033822 4001531 5.86e-09

Table 4
Examples of mutually exclusive pair of mutations. 𝑚1 are ex-
tracted from the defining mutations’ list of the Omicron vari-
ant; 𝑚2 are defining mutations of the Alpha variant.

𝑚1 𝑚2 #Seq. with 𝑚1 #Seq. with 𝑚2 #Seq. with 𝑚1, 𝑚2 P-value

Spike_S371L Spike_A570D 1012982 1161124 0 1.0
Spike_S371L NSP3_A890D 1012982 1159088 0 1.0
Spike_S371L Spike_D1118H 1012982 1153130 20 1.0
Spike_Y505H Spike_A570D 1115034 1161124 109 1.0
Spike_Y505H NSP3_A890D 1115034 1159088 110 1.0
Spike_Y505H Spike_D1118H 1115034 1153130 131 1.0
Spike_T547K Spike_A570D 1184888 1161124 116 1.0
Spike_T547K NSP3_A890D 1184888 1159088 116 1.0
Spike_T547K Spike_D1118H 1184888 1153130 140 1.0

ing lineage, i.e. Omicron, tends to favor Spike_S371L over
Spike_A570D or NSP3_A890D. Note that BA.1 (Omicron)
and B.1.1.7 (Alpha) are sharing many defining mutations
(e.g., H69-, V70-, Y144-, D614G, N501Y, and P681H in
Spike_protein and other mutations in other proteins) – al-
most half of the defining mutations of Alpha are considered
defining mutations also of Omicron – and that they are not
closely related lineages. This may suggest that the virus
could be evolving into the direction of collecting new mu-
tations that might enhance its features, e.g., Omicron is now
the most complete ‘escapee’ from neutralization by currently
available antibodies in comparison to other SARS-CoV-2
variants, including the Alpha variant [27].

3.3. Lineages distribution analysis for
co-occurring mutations pairs

Following the methods described in Section 2.2.2, we
were able to study the quantitative behavior of pair muta-
tions over lineages. We extracted distributions over lineages
for each frequent mutation. Figure 5 presents the number of
sequences and lineages of each frequent mutation considered
for the Spike protein. As expected, the most dominant mu-
tation is Spike_D614G, found in 1,534 lineages out of 1,587
total lineages. Then, we compared each such distributions
in pairs, using the KS test. As a result, we obtained 4,000
pairs with different distributions over lineages and 12,692
pairs with similar distributions over lineages. A 3D scatter
plot of the KS test results for all the 421 frequent mutations
is provided in Supplementary Figure S2.

Based on the procedure described in Section 2.2.3, from
the group of pairs with different lineages distributions, we
identified 4,489 distinct events of convergent evolution,
whereas from the group of pairs with similar lineages dis-
tributions, we identified 415,892 distinct events of divergent
evolution.

Along the Methods described in Section 2.3, we then
produced the tables aggregated by mutation pairs and re-
maining mutations, which are analyzed in the next section.
3.4. Convergent and divergent evolution of pairs

of mutations
3.4.1. Convergence

By using pairs of mutations as a grouping factor in the
‘Convergence Result’ table, we generated a table with 1,818
unique pairs of co-occurring mutations having at least one
event of convergent evolution. Table 5 presents the pairs of
mutations with the highest count of convergence events; the
complete result is provided in Supplementary Table S2.
Example 1. The first line of the table shows that the co-
occurring pair composed by NSP1_V84- and NSP1_V86-
is found separately in 8 Distinct Ancestor Lineages (#DAL)
and appears in 24 of their Descendant Lineages (#CDL), oc-
curring at various depths of the lineages tree (between the
third and the sixth level). In all such cases, the Remaining
Mutation is, alternatively, the first or the second mutation of
the pair. The lineages tree related to this pair is shown in
Supplementary Figure S3.
Example 2. In addition to several co-occurring (and
closely positioned) deletions, in the seventh row of Ta-
ble 5 we can observe a pair composed by NSP4_V167L
and Spike_P681R, which are present separately in 4 lineages
(#DAL) and appear together in 17 of their descending lin-
eages (#CDL), spotted at both the third and fifth level of the
tree. Figure 6 shows the representative lineages tree of this
pair. Note that having found a pattern of converging muta-
tions in such a high number of lineages suggests the exis-
tence of selection advantages for such mutations.

We deepen our analysis by using remaining mutations
(RM) as a grouping factor in the ‘Convergence Result’ table.
We generate a table of 308 converging mutations. Table 6
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Figure 5: Scatter plot indicating the number of lineages containing the frequent mutations
of the Spike protein; the higher the number, the more spread a mutation is over the lineages.
A color scale is used to express the number of sequence exhibiting each mutation.

Figure 6: Tree-based representation of lineages involved in the
evolution of NSP4_V167L and Spike_P681R. Each node rep-
resents one lineage and the arrow between two lineages draws
the phylogenetic relation between an ancestor lineage and its
descendant lineage. For ease of visualization, we show only
part of the tree (5 convergence events out of 17 events de-
tected by the pair). Colors are used to indicate which mutation
is present in the indicated lineage: black when both mutations
are present, blue when only Spike_P681R is present, and yel-
low when only NSP4_V167L is present.

shows the converging mutations participating to the highest
number of convergent evolution events across the whole lin-

Table 5
Top 10 converging pairs of mutations ranked by descending
#CDL.

⟨𝑚1, 𝑚2⟩ #CDL CDL depth #DAL #RM

NSP1_V84-+NSP1_V86- 24 3,4,5,6 8 NSP1_V84-,NSP1_V86-
NSP1_H83-+NSP1_V86- 23 3,4,5 7 NSP1_H83-,NSP1_V86-
NSP1_G82-+NSP1_V86- 23 3,4,5 7 NSP1_G82-,NSP1_V86-
NSP6_F108-+NSP6_S106- 18 3,4 3 NSP6_S106-
NS8_P93S+NSP3_V932A 18 4 1 NSP3_V932A
NSP6_F108-+NSP6_G107- 18 3,4 3 NSP6_G107-
NSP4_V167L+Spike_P681R 17 3,5 4 NSP4_V167L,Spike_P681R
NSP6_L260F+NSP6_S106- 15 2,3,4,5 4 NSP6_S106-
N_G204R+N_R203K 15 1,3 4 N_R203K,N_G204R
NSP6_G107-+NSP6_L260F 14 2,3,4,5 4 NSP6_G107-

Table 6
Top 10 remaining mutations ranked by descending #DAL
(counting converging events).

RM #CDL #DAL #AM

NSP6_G107- 53 17 24
NSP6_S106- 54 17 24
Spike_N501Y 24 14 14
NS8_R52I 30 12 15
Spike_L452R 20 12 9
Spike_P681H 17 12 17
NSP12_F694Y 15 11 12
NS8_Q27stop 28 11 15
NSP6_F108- 35 11 28
N_T205I 23 10 18

eages tree; the complete list is provided in Supplementary
Table S4. In Table 6 we find the three consecutive deletions
occurring on the non-structural protein 6 (NSP6) at positions
106–108. These three mutations are co-occurring and con-
verging in 28 different lineages, suggesting that the deletion
of 9 nucleotides in ORF1ab gene that generates the ‘SGF
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Figure 7: Tree-based representation of lineages involved in the evolution of Spike_H69-
and Spike_Y144-. For ease of visualization, here we present a portion of the original tree,
with 19 out of 307 total divergent events detected for the pair of deletions.

Table 7
Top 10 diverging pairs of mutations ranked by descending
#CAL.

⟨𝑚1, 𝑚2⟩ #CAL CAL depth #DDL #RM

Spike_D614G+Spike_L5F 22 1,2,3,4 584 Spike_D614G,Spike_L5F
NSP1_H83-+NSP1_M85- 21 1,2,3,4,5 236 NSP1_H83-,NSP1_M85-
NSP1_G82-+NSP1_M85- 21 1,2,3,4,5 235 NSP1_G82-,NSP1_M85-
NSP12_P323L+Spike_L5F 21 1,2,3,4 587 NSP12_P323L,Spike_L5F
NSP1_M85-+NSP1_V84- 20 1,2,3,4,5 202 NSP1_M85-,NSP1_V84-
NSP1_M85-+NSP1_V86- 19 1,2,3,4,5 124 NSP1_M85-,NSP1_V86-
Spike_H69-+Spike_Y144- 17 1,2,3,4 307 Spike_H69-,Spike_Y144-
Spike_V70-+Spike_Y144- 17 1,2,3,4 307 Spike_V70-,Spike_Y144-
NSP5_K90R+Spike_D614G 17 1,2,3,4,5 406 Spike_D614G,NSP5_K90R
NSP16_K160R+Spike_D614G 15 2,3,4 63 Spike_D614G

deletion’ is among the most prevalent remaining mutations
in convergent evolution events in the population. Note that
this triple amino acid deletions is included in the defining
mutations lists of three previous VOCs, i.e., Alpha, Beta,
and Gamma. NSP6 is a multi-pass transmembrane protein
that is thought to be involved in autophagy and antagonism
of innate immune responses, but it remains unclear what
influence this deletions has on virus phenotype [49, 37].
Other mutations in Table 6 are N501Y, L452R, and P681H in
Spike. These mutations started to converge from the second
wave of COVID-19 and have been reported in many glob-
ally circulating lineages. They are considered as defining
mutations of different lineages considered as VOCs, namely
N501Y is a defining mutation of Alpha, Beta, Gamma, and
Omicron; L452R is a defining mutation of Delta; and P681H
is a defining mutation of Alpha and Omicron. Moreover,
N501Y may increase the binding affinity to ACE2 [3] and
affect the immune response to possible vaccines and treat-
ments [4, 48]; L452R is one of the RBD mutations that pos-
sibly enhance the binding affinity to ACE2 receptor and re-
duce the binding affinity of many antibodies [51]; finally,
P681H enhances the furin binding and viral infectivity [33].

Table 8
Top 10 remaining mutations ranked by descending #DDL
(counting diverging events).

RM #CAL #DDL #MM

Spike_D614G 66 1416 244
NSP12_P323L 62 1389 221
NSP6_L37F 47 873 88
Spike_L5F 28 685 58
NS3_Q57H 22 594 50
N_R203K 22 579 91
N_G204R 21 567 85
NSP1_M85- 36 551 115
Spike_Y144- 27 519 87
NSP16_K160R 24 452 47

3.4.2. Divergence
By using pairs of mutations as a grouping factor on the

‘Divergence Result’ table, we generated a table of 6,625
unique pairs of co-occurring mutations with at least one pos-
sible event of divergent evolution. Table 7 presents the pairs
of mutations with the highest count of divergence events; the
complete table is provided as Supplementary Table S3.
Example. Coronaviruses, including SARS-CoV-2, have
lower substitution rates than other RNA viruses because
of an RdRp with proofreading activity [13, 32]. However,
proofreading cannot correct deletions. Even if deletions in
the considered frequent mutation list are only 31 (7.36% of
the total), we found that in 18.66% of the observed diver-
gence events the remaining mutation (RM) was a deletion.
This might be explained by the fact that, unlike substitu-
tions, deletions cannot be corrected by proofreading activ-
ity [30]. Notable examples of pairs of deletions with diver-
gent evolution through the lineages tree are ⟨Spike_H69-,
Spike_Y144-⟩ and, similarly, ⟨Spike_V70-, Spike_Y144-⟩;
see the seventh and eigth rows of Table 7. Spike_H69- and
Spike_H70- are co-occurring mutations having very simi-
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Figure 8: Distributions of the counts of pairs with randomly detected convergent (left) or divergent (right) events, extracted
from a sample of 16,692 pairs of mutations repeated for 10,000 times.

lar lineages distribution according to the KS test (p-value =
1.0); they are spotted together in 439 different lineages
(forming respectively 98% and 99% of the lineages they ap-
pear in). Therefore, we discuss about this double deletion
as if it were a unique mutation and compare its pattern of
distribution with the one of Spike_Y144-. We detected 304
divergent events, whose 86.18% includes Spike_Y144- as
the diverging mutation (RM) passing to the new descen-
dant lineage, while only 13.81% includes Spike_H69-/V70-
as the remaining mutations. Both Spike_H69-/V70- and
Spike_Y144- are deletions that lie in the NTD region of
Spike and may modulate antigenicity [25, 29, 30]. Since the
count of DDL is high (307), the generated tree is very large,
thus Figure 7 shows only a portion of it.

We deepen our analysis by using remaining mutations
(RM) as a grouping factor in the ‘Divergence Result’ ta-
ble; we generate a table of 362 unique diverging muta-
tions. Table 8 shows the remaining mutations participating
to the highest number of divergent evolution events across
the whole lineages tree; the complete list is provided in Sup-
plementary Table S5. The table shows two mutations that
were expected, i.e., Spike_D614G and NSP13_P323L, as
they are the most dominant mutations across the population.
With the exception of Spike_L5F, the other seven top mu-
tations are well known mutations that were studied since al-
most the beginning of the pandemic, having a major role in
forming the five well-known distinct clades [36]. This may
explain why we detected a considerably high numbers of di-
vergence events, compared to the convergence ones.

3.4.3. Validation
To assess the significance of our findings, we performed

a Monte Carlo simulation to compare the resulting numbers
of pairs showing convergence/divergence events with num-
bers of randomly selected pairs. A p-value < 10e-4 in both
cases of convergent and divergent evolution was detected.
Figure 8 shows the distribution of the counts of pairs of mu-
tations with at least one convergent or divergence event de-
tected following the Monte Carlo approach; both distribu-
tions are centered on mean values that are considerably dis-
tant from the observed values (1,818 for convergence events
and 6,625 for divergence events).

4. Discussion
The SARS-CoV-2 pandemic is a major threat to the pub-

lic health. In response to the continuous spreading of the
virus the global community answered with an incredible ef-
fort to collect and deposit a huge amount of viral genomes
to public repositories. Thanks to such availability, we were
able to conduct a large-scale analysis that aimed at highlight-
ing the role of non-synonymous mutations’ pairs in identi-
fying evolution events of SARS-CoV-2.

First, we analyzed the patterns of co-occurrence and mu-
tual exclusion of pairs of mutations on sequences of the
virus. We then focused on sets of significantly co-occurring
pairs of mutations by analyzing how their distributions over
lineages compare. Finally, we precisely described events of
convergence (when two mutations are frequent in a lineage
but only one of them is frequent in its ancestor) and of di-
vergence (when two mutations are frequent in a lineage but
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one of the two disappears in a sub-lineage). Based on this
notion, we observed that co-occurring pairs with different
distributions allow to identify convergence events, while co-
occurring pairs with similar distributions allow to identify
divergence events. The obtained results were grouped by 1)
considering for each pair of mutations the number of lin-
eages where it instantiates a converging/diverging behavior
and 2) considering for each remaining mutation (i.e., main-
tained through two directly-related lineages) the number of
lineages where it participated to a converting/diverging be-
havior.

The essence of this work can be summarized as follows.
The lineage-independent analysis, which included a study
of the most significant co-occurring mutation pairs, comple-
mented by the fold enrichment calculation, suggested a way
to find candidates for “variants’ defining mutations” that are
not currently listed by reference sources (e.g., CoVariants)—
as shown for the Delta variant case, where we highlighted
the mutations S112L, G142D, and V1104L in the spike pro-
tein. Then, considering the mutually exclusive mutation
pairs assigned to two different variants, we regard them as
candidates for characterizing different variant phenotypes.
Among them, we spotted Spike_S371L in Omicron which
never occurs together with Spike_A570D or NSP3_A890D
in Alpha.

Convergent and divergent events can instead be used for
anticipating lineage evolution. Specifically, if two muta-
tions are co-occurring – one remaining (RM) and one ac-
quired (AM) – whenever RM appears in a lineage then we
expect that AM will be next acquired; in our analysis, we
spotted several confirmations, e.g., Figure 6 represents 5
(out of 17) converging events having either NSP4_V167L or
Spike_P681R as RM in a parent node and both mutations in
one of its descendant nodes. In convergence events, we high-
light the presence of remaining mutations that are widely
spread and defining several VOCs (see Table 6).

Conversely, if two mutations are mutually exclusive –
one remaining (RM) and one missing (MM) – whenever RM
and MM appear in a lineage, then we expect that MM will
not be present in some descendant node; in our analysis, we
spotted several confirmations, e.g., Figure 7 represents 19
(out of 307) diverging events having both Spike_H69- or
Spike_Y144- as RM in a parent not and only one of them
in its descendant nodes. In divergence events, we highlight
the presence of remaining mutations that are frequent in the
dataset but not specifically defining notable variants (see Ta-
ble 8).

The analysis elements proposed in this study pose the ba-
sis for anticipating the evolution of the SARS-CoV-2 virus,
by observing mutation and lineages behaviors from a purely
data-driven quantitative point of view.
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