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Influenza A virus (IAV) is a highly adaptable pathogen that poses a significant threat to human health. Genomic 
surveillance of IAVs is complex due to their broad host range, zoonotic potential, and rapid evolution. Strategies 
based on codon preference analysis have been successfully employed for the discrimination of IAVs with different 
host specificity in the past. Hence, monitoring changes in codon usage offers a promising strategy for tracking 
IAVs’ host range and identifying significant epidemiological events.

In this study, we developed a computational workflow for the stratification of IAVs based on codon usage profiles 
by analysing recent IAV-associated epidemiological emergencies: 1) the 2009 H1N1 pandemic in North America, 
2) the H7N9 epidemic in China (2013--2017), and 3) the long-term circulation of H5N1 in domestic birds and its 
subsequent spillover to dairy cows. We explore the application of codon usage metrics for capturing patterns of 
viral diversification and expand previous related findings in the field. Our results uncovered important differences 
in genomic features, which are not always reflected in the clade-based nomenclature. Interestingly, a reduced set 
of amino acids and associated codons was sufficient to summarize salient patterns of IAV genomes across the 3 
paradigmatic cases herein considered, suggesting shared evolutionary signatures across IAV serotypes.

Codon usage-based stratification effectively highlighted key epidemiological events and enabled detailed 
comparisons of genomic features across IAV serotypes. The approach developed in this work provides a scalable 
framework for IAV genomic surveillance, offering insights into viral evolution and shared patterns of codon usage 
preferences. Its general applicability makes it suitable for extending to other Influenza A serotypes, particularly 
those for which available genomic data are limited or a reference nomenclature is not established.

1. Introduction

Influenza A virus (IAV), the etiological agent of avian influenza, is a 
highly versatile pathogen that can infect a broad range of hosts and pose 
a significant risk to human health. The two distinct modes of IAV evolu

tion are fundamental to its success. Inter-segment genome reassortment 
is used to conquer new host niches and secure a broader host range 
by spillover and antigenic shift. Adaptation to a specific host, instead, 
is achieved through the gradual accumulation and fixation of mutations 
in the genome, particularly in the genes encoding surface proteins, lead

ing to minor changes in antigenicity (antigenic drift). Once an endemic 
circulation is established in a new host, antigenic drift becomes the 
main evolutionary driver [1]. The tropism for a diversified host range 
challenges IAV with the need to adapt to different ``host environments'' 
constantly.
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Adjusting the viral codon usage to mimic that of the host is consid

ered a key mechanism of viral adaptation. It is postulated that when the 
codon preferences of the virus align with those of its host, viral proteins 
are translated more efficiently, leading to efficient viral replication [2]. 
Thus, monitoring shifts in codon usage may represent a promising strat

egy for the development of computational methods for the genomic 
surveillance of IAVs and the identification of recent spillover and evolu

tionary changes, even when data are incomplete and genome sequences 
are partial. Although influenza A exhibits only moderate biases in codon 
usage [3--6] strategies based on the analyses of codon usage patterns 
have been successfully used to recapitulate host range and host speci

ficity in IAVs in the past [7]. IAVs from different hosts displayed a 
different composition of the genome in terms of mono-, di-, tri-, and 
tetra-nucleotide [8] or only dinucleotide [9] and slight but systematic 
changes in codon usage preferences [7,10--13]. Hence, while spillovers 
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are typically discussed in the context of reassortment, it is possible -at 
least in principle- to identify changes in the host range by the analysis 
of even a single segment or a few segments of the genome. This work 
is placed in the context of a larger effort on developing cost-effective 
genomic surveillance methodologies that are increasingly efficient and 
lightweight. As the HA segment of the genome is sequenced for nearly all 
IAV isolates and is sufficiently diagnostic to identify relevant changes, 
strategies based on the analysis of the HA segment might represent an 
optimum for empowering IAV genome surveillance.

To evaluate the potential of using codon usage patterns in the HA seg

ment for implementing computational methods in the genomic surveil

lance of influenza A here we developed a novel approach to capture 
and stratify the salient features of codon usage and summarize the re

sults in a human-interpretable form. Compared to previous studies such 
as [13] which employed sophistcated ML models to learn and predict 
IAV host specified by learning the characteristic features of 6 distinct 
genome segments and for many different serotypes, the aims of our re

search are focused in the development of a lightweight and effective 
method (i.e., only focusing on the most commonly sequenced segment 
HA), with the potential of detecting ongoing/future spillovers by com

puting codon preference metrics [11,12].

Three paradigmatic use cases associated with recent epidemiologi

cal emergencies were considered to demonstrate the applicability of the 
proposed approach: (a) the ``(H1N1) 2009 pandemic'' in North Amer

ica [14]; (b) the H7N9 ``Asian'' epidemic of avian origin between 2013 
and 2017 in China [15]; and (c) the H5N1 influenza virus spreading 
in domestic bird species since the year 2000 [16] and its subsequent 
spillover to dairy cows [17].

Publicly available genomic sequences were retrieved from the Epi

Flu database of GISAID, the Global Initiative on Sharing All Influenza 
Data [18] and genome sequences were stratified into clusters based 
on the Relative Synonymous Codon Usage (RSCU) of the HA segment. 
The clusters delineated by our approach captured key epidemiological 
events and emerging properties of viral strains circulating throughout 
distinct epidemic/pandemic seasons and viral genome sequences in a 
more granular and informative way compared to the standing clade

based nomenclature. More importantly, our results outlined key differ

ences in codon preferences and patterns of codon usage across distinct 
IAV serotypes, which could be used to inform genomic surveillance sys

tems, enabling them to identify and track changes in viral genomes. 
In conclusion, our results provide solid proof of principle of the ap

plicability of codon usage-based metrics for the genomic surveillance 
of emerging IAV strains, and recovered consistent results across a di

verse set of IAV use cases, including the recent H5N1 spillover in dairy 
cows [17].

2. Results

We developed a data-driven method to partition influenza A genome 
sequences based on Relative Synonymous Codon Usage (RSCU), without 
a priori knowledge of epidemiological data and phylogenetic inference. 
Our choices were driven by the need for a lightweight, easy-to-use, easy

to-interpret method. The conceptual workflow of the method is illus

trated in Fig. 1. Briefly: (i) Sequence data and metadata are retrieved and 
prepared; (ii) RSCU values are computed for all the sequences included 
in the dataset; (iii) Principal component analysis (PCA) is used to iden

tify and rank the most important components that summarize patterns 
of codon usage; (iv) Agglomerative clustering and k-means in the space 
of Principal Components (PCs) are used to determine the most suitable 
number of clusters -- the optimal number is established by evaluating dif

ferent clustering solutions through the Silhouette and Calinski-Harabasz 
scores; (v) Once clusters are established, a linear classifier is trained 
to assign cluster labels based on the RSCUs and determine the relative 
importance (weight) of every codon for the correct assignment of a spe

cific cluster label. Codon weights are scaled by the standard deviation of 
their RSCU, to reward codons with the highest inter-cluster variability 

Fig. 1. Schematic overview of methods. We (i) preprocess genomic data and 
metadata; (ii) compute RSCU values for all the sequences; (iii) run PCA analy

sis; (iv) cluster along the Principal Components and select the most appropriate 
number of clusters; (v) assign interpretable labels to clusters; and (vi) charac

terize clusters by their most important codons.

and calculate an ``impact score''; (vi) Codons with the highest score are 
considered the most impactful codons and key features of the most im

portant codons are inspected to infer common and distinctive patterns 
of codon usage across clusters. The code used for our analyses is pub

licly available on Zenodo [19]. In the following sections, we describe 
the application of our method to three selected use cases:

• H1N1 collected in North America between October 2006 and 
September 2013 (covering 7 influenza seasons centered around the 
2009-2010 ``(H1N1) 2009 pandemic''); 

• H7N9 collected between October 2010 and September 2020 (10 
influenza seasons centered around the 2013-2017 ``Asian'' flu epi

demic in China);

• H5N1 collected from: (1) domestic birds from 2000 until May 2024; 
(2) wild birds from 2000 until May 2024; and (3) complete genome 
sequences collected in North America from September 2023 to 
March 2025�-see Supplementary File for cases (2) and (3).

Each use case is discussed according to the following rationale: first, we 
show the results of the PCA of RSCU values (Figs. 2, 5, and 8); then, we 
discuss the choice of an appropriate number of clusters (Figs. 3, 6, and 
9). Results are summarized in two distinct tables: the first maps clusters 
numerosity onto relevant metadata, e.g., clade, host type, location, flu 
season, pathogenicity (Tables 1, 3, and 5); the second proposes concise 
cluster names based on preponderant metadata characteristics (Tables 2, 
4, and 6). Finally, we show the temporal evolution of clusters using their 
first two principal components (Figs. 4, 7, and 10).
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Fig. 2. Principal Components Analysis (H1N1). a) Elbow plot of the PCs. In blue is the cumulative explained variance, and in red is the variance explained by 
every single component. b) Scatter matrix of the dataset projected on the first 4 PCs.

2.1. The HA segment of H1N1 during the (H1N1) 2009 pandemic

The 2009 H1N1 pandemic was the third recent flu pandemic caused 
by the H1N1 virus, following the 1918--1920 Spanish flu pandemic and 
the 1977 Russian flu [14]. The evolutionary origin of the pandemic virus 
(pdm09) can be traced back to the reassortment in swine in Mexico [20] 
of at least 3 distinct IAVs circulating in North America, Asia, and Eu

rope. Segments PB2, PB1, PA, NP, and NS are derived from a ``triple 
reassortant'' H3N2 swine virus that originated in North American swine 
during the mid-1990s. The HA (H1) segment originated from the ``clas

sical swine'' H1N1 lineage that has been circulating in North American 
swine since the 1918 H1N1 pandemic. The NA (N1) and MP segments 
were related to those of an avian-like Eurasian swine lineage (EAsw) 
that emerged in European pigs in the late 1970s [21].

We considered sequences collected between October 2006 and 
September 2012 in North America and available through the GISAID 
database [18], to cover the pre-pandemic phase, the initial burst, and the 
post-pandemic period. The dataset includes 5782 samples, isolated from 
swine (638), humans (4933), and wild birds (211); 619 sequences were 
not associated with a defined characterization in the reference nomen

clature, while the remaining sequences were assigned to the 6B.1A.6 
(838) and the 6B.1 (4325) clades. Exploratory analyses of viral clades 
and associated hosts recapitulated patterns of viral circulation described 
before and during the 2009 H1N1 pandemic. Before 2009, the major

ity of human infections were caused by clade 6B.1A.6, while -in swine-

clade 6B.1 was predominant. From 2009 onward, clade 6B.1 replaced 
6B.1A.6 and became dominant also in humans. Note that, although the 
reference nomenclature would place 6B.1 as the ancestor of 6B.1A.6, vi

ral circulation patterns are not compatible with this hypothesis (6B.1A.6 
predates 6B.1 according to available data) and a recent study by Ding

et al. [22] suggested inconsistencies between the phylogeny of the HA 
segment of H1N1 IAVs and the clade-based nomenclature.

2.1.1. H1N1: delineation of the optimal number of partitions

As illustrated by Fig. 2a), the first 4 most important PCs in the PCA 
analysis capture 88% of the variability in RSCU scores profiles in this 
dataset. Fig. 2b) shows a 2D scatter matrix of the first 4 PCs. Visual 
inspection of the scatterplots suggests the delineation of 3 (PC2-PC3) to 
5 (PC1-PC3 and PC1-PC4) distinct groups.

To delineate the ideal number of clusters, we applied the workflow 
illustrated in Fig. 3. Panel a) shows a dendrogram of the dataset com

puted through hierarchical agglomerative clustering based on the first 4 
more informative PCs. Following our previous observation, 3 to 5 groups 
could be defined by cutting the dendrogram at different heights: 40 (3 
clusters); 22 (4 clusters); and 15 (5 clusters, see yellow line).

A 10-fold k-means clustering with a 𝑘 number of clusters ranging 
between 2 and 9 was also performed; solutions were ranked based on 
the average score of the Calinski-Harabasz method [23] (Fig. 3b) and the 
Silhouette method [24] (Fig. 3c). While the Silhouette score displayed 
limited differences between solutions with 3 to 5 clusters, the Calinski

Harabasz metric peaked at 5. Based on this observation, we set the ideal 
number of clusters to 5. The data points corresponding to the 5 clusters 
are shown in the transformed space of the PC1 and PC3 in Fig. 3d) using 
different colors.

2.1.2. Characteristic features of H1N1 clusters

Metadata features of the sequences assigned to the 5 clusters were 
used to reconstruct the salient properties of each partition. The following 
metadata were considered: 1) the viral clade defined by the reference 
nomenclature; 2) the host from which the specimen was isolated; and 
3) the flu epidemic season (defined as an interval of time spanning 12 
months from October to September of the following year). The results 
are reported in Table 1, showing the breakdown of the total number 
of sequences in every cluster by each class of metadata. Any metadata 
annotation labeling at least 65% sequences in a cluster was considered 
“prevalent'' and used to derive a label for that cluster (unless prevalent 
in all clusters, see last column ``Extracted feature'').

Labels were used to derive mnemonic names; specifically, we iden

tify clusters with the pattern (<cluster id>) (<MAJOR HOST, 
minor host(s)>) (<flu-season-interval>). The analysis of 
the contingency matrix of metadata led to the names listed in Table 2. 
When arranged chronologically, the five identified clusters correspond 
to:

• a group of clade 6B.1 H1N1 viral isolates circulating mostly in swine 
before, during, and after the 2009 pandemic (cluster-3);

• H1N1 IAVs associated with birds (cluster-2);

• clade 6B.1A.6 viruses with sustained circulation in humans until 
the 2006-2007 flu season (cluster-4);

• clade 6B.1A.6 IAVs infecting human -- with sporadic transmission 
to swine (cluster-1) -- before the 2009 pandemic; and

• IAV A(H1N1)pdm09 that caused the outbreak of ``swine flu'' in 
humans starting from March 2009 (cluster-0) -- these isolates are 
assigned to clade 6B.1 according to the reference nomenclature.

These patterns are illustrated in Fig. 4, where we plot the clusters and 
their numerosity throughout distinct flu epidemic seasons (from 2006 
to 2012), and highlight their differences in terms of codon profile on the 
transformed space in PC1 and PC3.
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Fig. 3. Clustering (H1N1). a) Dendrogram of the agglomerative clustering algorithm on the H1N1 dataset; b) Calinski-Harabasz scores of the 10-fold k-means 
clustering algorithm; c) Silhouette scores of the 10-fold k-means clustering algorithm; d) Clusters of sequences highlighted using different colors and plotted on the 
PC1 and PC3. 

Table 1
Partitioning of the H1N1 sequences based on the metadata properties in the 5 clusters. Cluster IDs are reported in the leftmost 
column. The inner cells report the number of sequences for each metadata value and cluster. The rightmost column contains, if 
possible, the name of a cluster-describing feature based on the observed occurrences.

Cluster ∖ Clade 6B.1 6B.1A.6 NA Extracted feature 
(cluster-0) 3975 0 18 6B.1 
(cluster-1) 2 541 261 6B.1A.6 
(cluster-2) 0 0 207 -

(cluster-3) 348 0 56 6B.1 
(cluster-4) 0 297 77 6B.1A.6 

Cluster ∖ Host Type human swine wild bird Extracted feature 
(cluster-0) 3750 239 4 HUMAN,swine 
(cluster-1) 794 10 0 HUMAN,swine 
(cluster-2) 0 0 207 wild bird 
(cluster-3) 19 385 0 human,SWINE 
(cluster-4) 370 4 0 HUMAN 

Cluster ∖ Flu Season 2006-2007 2007-2008 2008-2009 2009-2010 2010-2011 2011-2012 Extracted feature 
(cluster-0) 1 1 1888 1209 432 462 ≥08-09 
(cluster-1) 34 258 511 1 0 0 ≤08-09 
(cluster-2) 27 56 32 43 18 31 -

(cluster-3) 20 29 34 37 97 187 -

(cluster-4) 368 1 2 2 1 0 =06-07 

Table 2
Mnemonic cluster names of H1N1, formed according to the ``Extracted features'' of 
Table 1.

(cluster-0) 6B.1/HUMAN,swine/≥08-09 (cluster-1) 6B.1A.6/HUMAN,swine/≤08-09 
(cluster-2) wild bird (cluster-3) 6B.1/human,SWINE (cluster-4) 6B.1A.6/HUMAN/=06-07 

2.1.3. H1N1: key findings

The (H1N1) 2009 pandemic virus is labeled with clade 6B.1 in our 
dataset. As reported in Table 1 and Fig. 4, an increasing number of 
infections caused by 6B.1 was observed from 2006 to 2012 in swine. 
Subsequently, clade 6B.1 has been observed in human hosts starting 
from the 2008-2009 epidemic flu season, which corresponds with the 
start of the 2009 H1N1 pandemic. As illustrated in Fig. 4, by the epi

demic season 2009-2010, clade 6B.1 completely replaced 6B.1A.6 and 
became the most prevalent H1N1 clade infecting humans.

Interestingly, our clustering of H1N1 codon usage profiles identi

fies two distinct clusters within clade 6B.1, i.e., cluster-0 (6B.1/HU

MAN,swine/≥08-09) and cluster-3 (6B.1/human,SWINE). Cluster-0 is 
associated (almost) exclusively with specimens collected from human 
hosts starting from the 2008-2009 flu season onward and ideally corre

sponds with A(H1N1)pdm09. Isolates assigned to cluster-3 were col

lected starting from the 2006-2007 flu season and are prevalently 
isolated from swine. This separation is not reflected by the refer

ence nomenclature and might indicate the co-circulation of distinct 

“classical swine'' H1N1 subclades that were not captured by the refer

ence nomenclature. Our analysis also revealed two distinct partitions 
– cluster-4 (6B.1A.6/HUMAN/=06-07) and cluster-1 (6B.1A.6/HU

MAN,swine/≤08-09)-- within the 6B.1A.6 clade. Both clusters are preva

lently associated with the human host and circulated during consecutive 
epidemic seasons: 2006-2007 (cluster-4) and 2007-2008 (cluster-1). 
Cluster-2 (wild bird) is composed exclusively of viral specimens iso

lated from wild birds and shows large differences in codon preference 
with respect to all the other clusters.

2.2. The HA segment of H7N9 during the 2013-2017 outbreak

Starting from March 2013, recurrent transmission to humans of a 
novel zoonotic avian influenza A(H7N9) virus was reported by Chinese 
authorities. As of January 2018, 1566 cases were documented, including 
569 deaths. Since the majority of the cases were isolated and no sus

tained person-to-person transmission was observed, sporadic zoonotic 
transmission to humans from poultry was considered the most likely 
explanation for the outbreak [25]. Recurrent spikes of infections were 
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Fig. 4. Codon profiles of clusters (H1N1). The codon profile of the H1N1 sequences is projected on the PC1 (y-axis) and PC3 (x-axis). The scatter plot is organized 
by flu season. Each sequence is colored according to the assigned cluster.

Fig. 5. Principal Components Analysis (H7N9). a) Elbow plot of the PCs. In blue, the cumulative explained variance, in red the variance explained by every single 
component. b) Scatter matrix of the dataset projected on the first 6 PCs.

observed until 2018 when the emergency was mitigated thanks to a 
mass vaccination campaign [26]. A Highly Pathogenic (HP) [27] H7N9 
strain emerged in the 5th and last wave of the epidemic, whereas all 
the strains associated with the 1st to 4th waves were classified as lowly 
pathogenic (LP). Note that, unfortunately, only a very limited number 
of sequences were collected and made publicly available outside of the 
temporal span of the 2013-2017 epidemic for H7N9.

We retrieved a total of 1879 sequences of the HA segment of H7N9, 
obtained from October 2010 to 2019, both from human and avian sam

ples in Asia. Due to the lack of clade-based nomenclature for H7N9, 
these sequences were not stratified into clades. A total of 1728 sequences 
were annotated as LP, 150 as HP, and 4 were not labeled. Sequences 
were sampled from 12 different host species, but the large majority was 
isolated either from chickens (41%) or humans (55%).

2.2.1. H7N9: delineation of the optimal number of partitions

RSCU scores were computed and the first 6 principal components of 
the PCA were identified as the most informative (Fig. 5a). The selected 
PCs are plotted in the scatter matrix of Fig. 5b), showing three separable 
clusters on PC1-PC2.

Consistent with this observation, the hierarchical clustering based on 
RSCUs, as illustrated in Fig. 6a), shows three stable clusters. Conversely, 
the Calinski-Harabasz (Fig. 6b) and Silhouette (Fig. 6c) scores do not 
provide an obvious optimal solution. For our analysis, we selected 3 
clusters, as indicated by the global maximum of the Calinski-Harabasz 
score (for all the runs) and by the average Silhouette score. The scatter 
plot of the dataset is illustrated in Fig. 6d), with colors denoting three 
different clusters.
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Fig. 6. Clustering (H7N9). a) Dendrogram of the agglomerative clustering algorithm on the H7N9 dataset; b) Calinski-Harabasz scores of the 10-fold k-means 
clustering algorithm; c) Silhouette scores of the 10-fold k-means clustering algorithm; d) Clusters of sequences highlighted using different colors and plotted on the 
PC1 and PC2.

Table 3
Partitioning of the H7N9 sequences based on the metadata properties in the 3 clusters. Cluster IDs are reported in the leftmost column. The inner cells report 
the number of sequences for each metadata value and cluster. The rightmost column contains, if possible, the name of a cluster-describing feature based on the 
observed occurrences.

Cluster ∖ Flu Season 2010-2011 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 2018-2019 Extracted feature 
(cluster-0) 0 0 0 0 39 465 1 0 16-17 
(cluster-1) 1 228 539 177 10 22 0 0 12-15 
(cluster-2) 1 6 90 24 13 202 20 44 13-19 

Cluster ∖ Host Type domestic bird human wild bird Extracted feature 
(cluster-0) 102 385 18 -

(cluster-1) 493 451 33 -

(cluster-2) 181 194 25 -

Cluster ∖ Pathogenicity HP LP None Extracted feature 
(cluster-0) 0 504 1 LP 
(cluster-1) 0 976 1 LP 
(cluster-2) 150 248 2 HP/LP 

Table 4
Mnemonic cluster names of H7N9 according to the ``Extracted features'' 
of Table 3.

(cluster-0) 16-17/LP (cluster-1) 12-15/LP (cluster-2) 13-19/HP,LP 

2.2.2. Characteristic features of H7N9 clusters

Clusters’ metadata (pathogenicity, host type, and flu season) is reported 
in Table 3; clades were not used due to the lack of a reference nomencla

ture. Cluster-0 comprises LP sequences collected between 2015-2017; 
cluster-1, LP sequences from 2012-2015, and a limited number of se

quences from 2015-2017. Finally, cluster-2 includes both HP and LP se

quences, sparsely sampled between September 2013 and October 2019, 
with the highest number of sequences associated with the 2016-2017 
flu season. Consistent with the hypothesis of sporadic zoonotic transmis

sion, we observe that human and poultry hosts are equally represented 
across all the clusters in this dataset. The metadata partitions of the 3 
clusters suggest the names in Table 4.

The temporal span covered by sequences assigned to each cluster is 
shown in Fig. 7, where cluster-1 is the first detected (flu seasons 12-15), 
followed cluster-0 (15-16 and 16-17). Cluster-2 spans from range from 
2013 to 2019.

2.2.3. H7N9: key findings

Although we notice that all of the HP isolates are consistently as

signed to cluster-2 (see mnemonic names in Table 4), the 3 clusters 
identified by our method do not suggest a neat association with a specific 
host or epidemiological feature (i.e., pathogenicity) in this case. This 
observation might be in part explained by 1) the coarse-grained/lim

ited sampling; 2) the lack of a reference nomenclature that could aid 

in the classification of the H7N9 isolates; and -most importantly- 3) 
the sporadic pattern of transmission from poultry to humans of dif

ferent viral strains during the 2013-2017 epidemic. The emergence of 
highly pathogenic IAVs is often associated with the evolution of a furin 
cleavage site at the interface between the HA1 and HA2 subunits [28]. 
Interestingly, we notice that 88% (132/150) of the sequences labeled as 
HP in this dataset carry a non-synonymous A to G single nucleotide 
substitution at position 1012 in the HA and an insertion of 12 bp 
(AAACGGACTGCA) at position 1014. The resulting amino acid sequence 
(PKRKRTARG, see Supplementary File, Fig. S1, panel a)) [29] harbors a 
polybasic furin cleavage motif. Due to the length of the HA protein (570 
amino acid residues), single changes in amino acids and/or small inser

tions are not likely to shift codon usage significantly. This observation 
might explain why our solution based on 3 clusters did not partition all 
of the HP isolates into a single group. This result represents a potential 
limitation of our automated approach. However, following a careful ex

amination of alternative clustering solutions (see the Silhouette score, 
panel c), we observed that 10 clusters might also be an adequate clus

ter choice for this dataset, as illustrated in Fig. 6. By manually setting 
the number of clusters to 10, the method effectively grouped all the HP 
sequences into a single cluster spreading from 2017 to 2019 -- we invite 
the interested reader to inspect the results of our analysis repeated us

ing this partition on the H7N9 dataset, provided in the Supplementary 
File, Table S1.

2.3. The HA segment of highly pathogenic H5N1 IAVs

Due to the high lethality, virulence, widespread occurrence, and di

verse host range, highly pathogenic (HP) H5N1 strains are considered a 
constant pandemic threat by the WHO. The common ancestor of modern 
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Fig. 7. Codon profiles of clusters (H7N9). The codon profile of the H7N9 sequences is projected on the PC1 (x-axis) and PC2 (y-axis). The scatter plot is organized 
by flu season. Each sequence is colored according to the assigned cluster.

HP A(H5N1) IAV was first identified in domestic waterfowl in southern 
China in 1996. Over time, this virus differentiated into multiple clades 
and subclades. Avian A/H5N1 is now widespread in wild bird popula

tions worldwide, with numerous outbreaks both among domestic and 
wild birds and mammals. Sporadic cases of human transmission have 
also been reported, often with high mortality rates (>50%) [30--32,16]. 
In late 2024 clade 2.3.4.4b -a new strain of HP H5N1- caused an epi

demic of avian flu in dairy cows in the USA with multiple spillovers 
to other farmed animals, raising significant concern by health authori

ties A single reassortant genotype of 2.3.4.4b, labeled B3.13, was linked 
with the outbreak [33,17].

To verify whether our approach could flag the emergence of clade 
2.3.4.4b in domestic birds (1) and wild birds (2), and its subsequent 
spillover to dairy cows (3), we analyzed three distinct datasets. For 
(1), we considered the complete collection of HA segment sequences of 
H5N1 isolated from 2000 to May 2024 from domestic birds. The dataset 
(d1) is composed of 3475 sequences and includes all the descendant 
clades (0 to 9) of the Highly Pathogenic Avian Influenza virus labeled 
Goose Guangdong (GsGd) and associated subclades, as well as eight 
Eurasian non-Goose Guandong Influenza viruses (EA_nonGsGd) [34,35]. 
For (2), we performed an equivalent analysis on H5N1 viruses iso

lated from wild birds in a comparable time period (2000 to May 2024). 
The dataset (d2) includes 12021 sequences of the HA segment. Results 
are discussed in the Supplementary File, Figs. S2-S4 and Tables S2

S4. Finally, for (3) we analysed complete genomes collected in North 
America between Sept 2023 and May 2025. This dataset (d3) includes 
5243 complete sequences (with HA). The choice to analyse complete 
genome sequence was driven by three key considerations: i) increased 
data availability: complete genome sequences were available for 94% 
of the isolates); ii) general applicability: we aimed to explore whether 
our approach could be applied to other genome segments, not just HA; 
and iii) genotypes definition: original genotypes were defined by con

sidering complete genome sequences in [17]. Results are shown in the 
Supplementary File, Figs. S5-S8 and Tables S5-S7. Parametrization and 
the definition of the optimal number of clusters will be discussed only 
for (d1) in the main text.

2.3.1. H5N1 (domestic birds): delineation of the optimal number of 
partitions

According to our analytical workflow, the first three PCs of the PCA 
of the RSCU scores captured the highest proportion of the variability 
in the data (see Fig. 8a) and were considered for subsequent analyses. 
These 3 PCs were considered for clustering (see Fig. 8b).

Visual inspection of the dendrogram in Fig. 9a) suggested 3 to 7 
clusters. A 10-fold iteration of the k-means clustering algorithm with 2 
to 15 clusters was used to derive the optimal clustering solution based on 
the Calinski-Harabasz and Silhouette scores shown in Figs. 9b) and 9c). 
Both metrics concurred in the identification of 3 well-defined clusters, 
which are also illustrated on the PC2 (x-axis) and PC1 (y-axis) of Fig. 9d).

2.3.2. Characteristic features of H5N1 (domestic birds) clusters

Table 5 reports the breakdown of the total number of sequences in 
every cluster by flu epidemic season, assigned clade, host type, continent, 
and pathogenicity -- high (HP) or low (LP). The analysis of the contin

gency matrix of cluster metadata derived the mnemonic names reported 
in Table 6 for every cluster. Cluster-0 included isolates from 2008 on

ward and the majority of the sequences were either from clades 2.3.2.1a 
(166) or 2.3.2.1c (622). Cluster-1 featured sequences collected starting 
from September 2020 and corresponded precisely with clade 2.3.4.4b. 
Sequences assigned to cluster-2 were all collected before 2016 and were 
labeled under all the clades (0 to 9) in the H5N1 nomenclature, with the 
exclusion of clade 2.3.2.1 (and its descendants) and clade 2.3.4.4b. The 
temporal span of the clusters is shown in Fig. 10.

2.3.3. H5N1: key findings

The nomenclature of H5N1 comprises 10 distinct clades (designated 
0--9), along with numerous secondary subclades. Certain subclades of 
clade 2 (i.e., 2.2 (2005--2006); 2.3.2.1c (2009--2010 and 2014--2015); 
2.3.4.4a (2014--2015); and 2.3.4.4b (2016--2017)) were previously 
linked with widespread intercontinental circulation and waves of avian 
flu.

From 2020, highly pathogenic avian influenza A(H5N1) viruses of 
clade 2.3.4.4b emerged and rapidly spread across Africa, Asia, Europe, 
and the Americas. IAVs assigned to this clade caused recurrent outbreaks 
in domestic birds and in several mammalian species, including sea lions 
and cats. More recently, an epidemic caused by a recombinant genotype 
of 2.3.4.4b, B3.13, was registered in dairy cattle in the USA. In dataset 
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Fig. 8. Principal Components Analysis (H5N1). a) Elbow plot of the PC. In blue, the cumulative explained variance, in red the variance explained by every single 
component. b) Scatter matrix of the dataset projected on the first 3 PCs.

Fig. 9. Clustering (H5N1). a) Dendrogram of the agglomerative clustering algorithm on the H5N1 dataset; b) Calinski-Harabasz scores of the 10-fold k-means 
clustering algorithm; c) Silhouette scores of the 10-fold k-means clustering algorithm; d) Clusters of sequences highlighted using different colors and plotted on the 
PC1 and PC2.

Table 5
Partitioning of the H5N1 clusters on the metadata values. Cluster IDs are reported in the leftmost column. The inner cells report the number of sequences for each 
metadata value and cluster. In the clade subtable, we sorted clades according to the alpha-numeric order and grouped the ones with low representativeness into 
ordered macro-categories. The first contains clades from 0 to 2.3.2; then, a series of specific clades are represented (2.3.2.1 and its subclades labelled a, b, and c); 
another macro-category includes the subclades rooted in 2.3.4, until 2.3.4.4; the clade 2.3.4.4b is represented in a separate column; all alphabetically subsequent 
clades (from 2.3.4.4c to 9) are merged in one column; finally, we have EA_nonGsGd. The rightmost column contains, if possible, the name of a cluster-describing 
feature based on the observed occurrences (the symbol * captures the clade 2.3.2.1 and its subclades a,b,c). 

Cluster ∖ Flu Season 2001-2008 2008-2013 2013-2014 2014-2017 2017-2020 2020-2024 Extracted feature 
(cluster-0) 7 218 65 396 83 51 ≥ 08
(cluster-1) 0 0 13 2 0 1635 ≥ 20
(cluster-2) 434 420 31 116 2 2 ≤ 16

Cluster ∖ Clade 0 to 2.3.2 2.3.2.1 2.3.2.1a 2.3.2.1b 2.3.2.1c 2.3.4 to 2.3.4.4 2.3.4.4b 2.3.4.4c to 9 EA_nonGsGd Extracted feature 
(cluster-0) 4 14 166 4 622 1 1 3 5 2.3.2.1* 
(cluster-1) 0 0 0 0 0 13 1637 0 0 2.3.4.4b 
(cluster-2) 867 0 0 0 0 74 1 60 3 ≠2.3.2.1*,≠2.3.4.4b 

anser cairina domestic 
Cluster ∖ Host Type anas plat. anser moschata chicken goose guineafowl Extracted feature 
(cluster-0) 5 0 53 758 0 4 -
(cluster-1) 20 23 3 1571 15 18 -
(cluster-2) 0 2 8 995 0 0 -

North South 
Cluster ∖ Continent Africa Asia Europe America America Extracted feature 
(cluster-0) 218 592 9 1 0 Afr,As 
(cluster-1) 181 298 883 198 90 global 
(cluster-2) 439 556 10 0 0 Afr,As 

Cluster ∖ Pathogenicity HP LP Extracted feature 
(cluster-0) 814 6 -
(cluster-1) 1650 0 -
(cluster-2) 995 10 -

Table 6
Mnemonic cluster names of H5N1 according to the ``Extracted features'' of Table 5.

(cluster-0) 2.3.2.1*/≥ 08/Afr,As (cluster-1) 2.3.4.4b/≥ 20/global (cluster-2) ≠2.3.2.1*,≠2.3.4.4b/≤ 16/Afr,As 
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Fig. 10. Codon profiles of clusters (H5N1). The codon profile of the H5N1 sequences is projected on the PC2 (x-axis) and PC1 (y-axis). The scatter plot is organized 
by flu season. Each sequence is colored according to the assigned cluster. 

(d1) (domestic birds), clustering of viral isolates based on codon usage 
profiles clearly separated clade 2.3.4.4b (cluster-1, labelled 2.3.4.4b/≥

20/global) and clade 2.3.2.1 and descendant clades (cluster-0, labelled 
2.3.2.1*/≥ 08/Afr,As) w.r.t. all the other clades in H5N1 (cluster-2). 
Sequences from clade 2.3.4.4 did not form a single cluster, and clades 
2.3.4-2.3.4.4 and 2.3.4.4c were assigned to cluster-2 rather than cluster

1 with 2.3.4.4b.

Cluster-2 and cluster-1 circulated during distinct and non-overlap

ping intervals of time. Our results indicate differences in codon usage 
between clades 2.3.4.4 and 2.3.4.4b, consistent with the distinct phy

logeographic origin and diversification of 2.3.4.4b compared to other 
2.3.4.4x clades [36]. As illustrated in the Supplementary File, Fig. S1, 
panel b), we also notice that sequences assigned to cluster-0, cluster

1, and cluster-2 show slight differences at the furin cleavage site of 
the HA protein: RERRRKKR for cluster-0; REKRRKR for cluster-1 and 
G/RER/KRRKKR for cluster-2.

For wild birds (dataset (d2)) our approach delineated five distinct 
clusters. Each of these five clusters could be easily aligned with those 
defined in domestic birds (dataset (d1)), based on the similarity of their 
respective mnemonic names (Supplementary File, Table S4). Interest

ingly, sequences collected after 2020 and assigned to clade 2.3.4.4b 
were partitioned into two distinct clusters in dataset (d2): cluster-0 
2.3.4.4b/≠anas/≥ 20/Am and cluster-1 2.3.4.4b/≥ 20, compared with 
the single cluster formed in the domestic birds dataset (d1). One of these 
(d2)-specific clusters was included for the majority of sequences col

lected from the American continent, hinting at the circulation of one or 
more geographically distinct lineages of 2.3.4.4b in wild birds in Amer

ica starting from 2020.

The analysis of complete genome sequences, collected in North 
America from September 2023 to March 2025, clearly delineated 5 clus

ters (Supplementary File, Fig. S6, panel d)). Among these, cluster-3 in

corporated all sequences from genotype B3.13 (see Supplementary File, 
Table S5), including every specimen isolated from the avian flu outbreak 
in dairy cows. This pattern is clearly reflected in cluster-3’s mnemonic 
name: B3.13/dairy cow/23-25. Although the remaining clusters were 
less epidemiologically relevant than cluster-3, we observed that all geno

types defined by [17] corresponded almost exactly with only one of our 
clusters. Since genotypes were derived based on the complete genome 
phylogeny of H5N1 in North America, our analysis of RSCU preferences 
broadly recapitulates these phylogenetic groups, thereby providing in

direct validation of our approach. Importantly, when the same analyses 
were repeated using only the HA segment (Supplementary File, Table S7 
and Fig. S8), a single cluster (cluster-3, mnemonic name B3.13/dairy 
cow/23-25) still contained all isolates from the dairy cow epidemic. 
Although there were minor inconsistencies, the mnemonic names of 
these resulting clusters easily matched those derived from the complete 
genome analysis. In our opinion, these results indicate that even single 
genome segments (like HA) are sufficiently diagnostic to capture broad 
changes in IAV genomics features. However, when available, analyses 
based on complete genome sequences likely provide more robust results.

2.4. Common trends of codon usage across IAV serotypes

Clusters delineated by our approach broadly correspond to patterns 
of codon usage profiles and capture the most salient differences in 
codon preference across different IAVs. Interestingly, our results indi

cate how changes in codon usage across the 3 distinct pandemic/epi

demic spillovers and IAV serotypes herein considered are explained only 
by a limited number of amino acids (and associated codons), hence 
pointing to common trends of codon usage. In particular, arginine dis

played a high discriminative power for the delineation of viral groups, 
and 5 out of the 6 synonymous codons for this amino acid were ranked as 
highly informative in one or more of cases considered in our analyses: 
H1N1 (AGA, AGG); H7N9 (CGG); and H5N1 (AGA, CGT, CGA). Con

versely, codons CCG (proline, H1N1), ACG (threonine, H7N9), and GGC 
(glycine, H5N1) displayed a high discriminative power only in a specific 
use case/dataset. We computed and visually inspected RSCU values for 
all alternative codons of each amino acid across all clusters defined by 
our method in H1N1, H5N1, and H7N9 (Supplementary File, Fig. S9). 
Interestingly, we observed that the codons independently flagged by our 
approach were consistently associated with amino acids displaying the 
most pronounced codon usage biases and the largest differences in RSCU 
across all IAV serotypes included in our analysis. This finding supports 
the effectiveness of our method in detecting key differences in codon us

age metrics. For the sake of completeness, impact scores are reported in 
Supplementary File, Table S8.

Fig. 11 reports RSCU values for all the highly informative amino acid 
and associated codons across H5N1, H1N1, and H7N9. The codon AGA 
is by far the preferred codon for arginine in all the IAV serotypes herein 
considered. This pattern is more evident in H1N1 cluster-0 (6B.1/HU
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Fig. 11. Average RSCU values for all the synonymous codons of the four most informative amino acids. Each heatmap shows, on a color scale from pink 
(low) to dark blue (high) blue, the RSCU values for all the synonymous codons of selected amino acids. Each row represents the values of one of the possible codons 
encoding the amino acid, in one of the clusters defined by our approach in three use cases (H1N1, H7N9, and H5N1). Bars on the left are used to indicate the serotype 
and host (m=mammals, b=birds, m&b=mammal and birds) according to the color code in the legend, for every cluster. 

Fig. 12. Codons separating clusters (H1N1). Distribution of RSCUs (exp. value = 1) for codons AGA, CCG, and AGG (i.e., codons for which RSCU distribution 
mostly differs between the 5 clusters). See boxplot in the Supplementary File, Fig. S10.

MAN,swine/≥08-09) and cluster-3 (6B.1/human,SWINE) and in H5N1 
cluster-2. Interestingly, the CGC codon is systematically avoided (RSCU 
close to 0) by all the serotypes, and CG* codons for arginine are gener

ally avoided in IAVs isolated from mammals (see H1N1 clusters 0, 1, 3, 
and 4) but are more tolerated in viruses isolated from birds (see H1N1 
cluster-2, H5N1 and H7N9). A more detailed discussion of codon usage 
patterns observed in each serotype is reported in the following sections.

2.4.1. Codon usage in H1N1 clusters

RSCU scores associated with 3 codons -- AGA (arginine), CCG (pro

line), and AGG (arginine) -- were sufficient to discriminate the 5 clus

ters defined by our analytical workflow, with each cluster showing 
clearly detectable differences in patterns of codon usage as illustrated 
by Fig. 12: CCG is scarcely used by all the clusters with the exception of 
cluster-0; AGG is associated with an increased RSCU in clusters 1 and 4 
w.r.t. the other clusters, while AGA is highly preferred in cluster-0 and 
cluster-3.

Notwithstanding the relative differences, AGA is consistently (RSCU 
range 3.2-4.7) the preferred codon for arginine in H1N1 and the differ

ences in RSCU values (∼3 in clusters 1, 2, and 4; and ∼5 in clusters 0 
and 3) reflect a relative increase (clusters 1, 2, and 4) or decrease (clus

ters 0 and 3) in the usage of the alternative synonymous codon AGG. 
Interestingly, the CCG codon for proline is avoided by clusters 1-4, but 
is not under-represented in cluster-0.

2.4.2. Codon usage in H7N9 clusters

The ACG (threonine) and CGG (arginine) codons were ranked as the 
most important and could ideally discriminate the 3 clusters identified 
by our method in H7N9. The corresponding distribution of RSCU values 
is illustrated in Fig. 13. Cluster-2 displays a very low preference for ACG 
(RSCU close to 0), while cluster-0 and cluster-1 show an RSCU close to 
1, which is in line with the expected value. Relative differences in the 
preference for CGG discriminate between cluster-0 (RSCU close to 0.8) 
and cluster-1 (RSCU close to 0.4).

2.4.3. Codon usage in H5N1 (domestic birds) clusters

The RSCUs for the codons CGT, AGA, CGA (arginine), and GGC 
(glycine) are sufficient to discriminate between the 3 H5N1 clusters 
Fig. 14. The codon CGT is largely avoided in cluster-1, where it shows an 
RSCU close to 0, but is not under-represented in cluster-0 and cluster-2, 
where the RSCU is close to 1. Cluster-0 and cluster-2 instead show dif
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Fig. 13. Codons separating clusters (H7N9). Distribution of RSCUs (exp. value = 1) for codons ACG and CGG (i.e., those for which RSCU distribution mostly 
differs among the 3 clusters). See boxplot in the Supplementary File, Fig. S11.

Fig. 14. Codons separating clusters (H5N1). Distribution of RSCUs (exp. value = 1) for four codons CGT, AGA, CGA, and GGC, for which RSCU distribution 
mostly differs among the 3 clusters. See the boxplot in the Supplementary File, Fig. S12. Corresponding charts for the H5N1 wild birds case are reported in the 
Supplementary File, Figs. S13-S14.

ferences in the usage of GGC (avoided in cluster-0), CGA (avoided in 
cluster-2), and AGA (highest RSCU in cluster-2).

3. Discussion

We conceptualized and developed a computational workflow for the 
stratification of IAVs based on analyzing RSCU and codon preferences. 
The method was applied to the HA segment of three different influenza A 
serotypes: H1N1, H7N9, and H5N1 all associated with recent spillover 
and critical epidemiological emergencies (the 2009 flu epidemic, the 
2013-2018 avian flu epidemic in China, and the ongoing H5N1 flu 
epidemic respectively for H1N1, H7N9 and H5N1). Our approach sys

tematically captured relevant differences in codon preferences in IAVs, 
identified relevant groups of viruses associated with key epidemiologi

cal events, and in some cases had a higher resolution compared to the 
standing clade-based nomenclature.

In the case of H1N1, our analyses clearly discriminated between the 
human pandemic virus (2009pdm) and related viruses in the 6B.1 clade 
circulating in swine before the 2009 pandemic. These results highlighted 
some key features of the 2009pdm virus and a characteristic preference 
for the CCG proline codon that is not observed in any other H1N1 IAV 
included in our dataset. In the absence of additional data, appreciate 
the evolutionary and epidemiological significance of these data. We ob

serve, however, that these findings provide a proof of principle for the 
potential application of metrics based on codon preference for the iden

tification and tracking of novel emerging IAVs. Importantly, even in the 
absence of a corresponding clade in the reference nomenclature, all the 
H1N1 IAVs isolated from birds were correctly placed in the same cluster.

Notwithstanding the availability of a limited number of sequences 
sampled unevenly over time, our method could stratify 3 distinct viral 
groups also in H7N9. Two of these groups included exclusively LP iso

lated in the early phases of the 2013-2017 flu epidemic and during dif

ferent epidemic seasons, while HP isolates and viruses from the last wave 

of the epidemic were all placed in a single cluster. Manual inspection 
of these sequences also indicated the presence of a furin cleavage site 
in H7N9 HP. Interestingly, a broad classification into 3 main lineages 
(A, B, and C) was originally proposed for H7N9 IAVs from the 2013

2017 epidemic [37]. More recently, a study by Lu et al. [38] suggested 
that a subset of isolates from lineage C acquired high pathogenicity. 
We observe that our results are substantially in line with these findings. 
Although in this case codon usage profiles could not set apart viruses 
isolated from humans and viruses isolated from birds, we believe that 
this result does not represent a limitation of our method, and can be ex

plained by the zoonotic nature of the 2013-2017 H7N9 epidemic and 
the lack of sustained human-to-human transmission of H7N9. Indeed, 
as observed by Millman et al., ``A(H7N9) person-to-person spread has 
been limited to 2 or possibly 3 generations of transmission'' [39].

H5N1 IAVs are considered a global pandemic threat for their abil

ity to recurrently infect mammals, as also demonstrated by the recent 
spillover of H5N1 clade 2.3.4.4b in dairy cows in the United States [40]. 
We conducted several complementary analyses to validate and assess 
our approach in identifying and correctly labeling H5N1 viruses asso

ciated with important epidemiological events. First, a broad-spectrum 
analysis of sequences collected from 2000 to May 2024 was performed to 
stratify viral clades circulating in domestic birds (3475 sequences) and 
wild birds (12021 sequences). Both datasets formed highly consistent 
partitions, clearly indicating the worldwide emergence and spread of 
the novel 2.3.4.4b clade starting in 2020. Notably, a cluster of 2.3.4.4b 
specific to the American Continent was detected exclusively in the wild 
bird sequences. These findings align well with known epidemiologi

cal events, suggesting that codon usage-based metrics are effective in 
capturing major shifts in influenza A virus (IAV) evolution [41]. Sub

sequently, we focused on complete genome sequences of 2.3.4.4b IAVs 
isolated in North America from September 2023 to March 2025. The ob

jective of this targeted analysis was to verify if our analytical workflow 
could specifically flag the emergence of B3.13, a reassortant 2.3.4.4b 
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genotype known to have caused a large outbreak of avian influenza in 
dairy cows.

Our approach revealed a clear correspondence between the B3.13 
genotype and a single distinct cluster, indicating that the results of our 
workflow are highly concordant with established phylogenetic analy

ses. This finding further supports the utility of our method in iden

tifying novel emerging viral clades. Importantly, these findings were 
substantially corroborated by independent analyses performed solely on 
the hemagglutinin (HA) segment, demonstrating the utility of single

segment analyses for inferring key whole-genome evolutionary shifts.

Another interesting observation is that -at least for the IAVs consid

ered in this study- similar preferences in arginine synonymous codon 
usage were observed across all serotypes. Whereas the 4 CG* codons for 
arginine are tendentially avoided and show an RCSU largely lower than 
1, the synonymous AGA and AGG codons display RSCU values in excess 
of 2 or higher, indicating a systematic preference for these codons. This 
pattern was previously reported by independent studies in the field, in

cluding, for example, Wong et al. [7] and Gu et al. [11], and is more 
pronounced in IAVs isolated from mammals.

In the light of these results, it is tempting to speculate that the codon 
preference for arginine might represent a strong selective pressure for 
Influenza A viruses. Similarly to other viruses that can infect mammals, 
the observed under-representation of CG* arginine codons could reflect 
an evolutionary pressure exerted by the host zinc finger antiviral protein 
(ZAP), which is known to restrict viral replication by binding to the CpG

rich regions of viral RNA [42,43].

Notwithstanding these consistent results, we acknowledge that our 
proposed workflow and approach present some limitations. Here, we 
only focus on the hemagglutinin segment. This is partly due to the re

duced availability of other genome segments. Indeed, if we considered 
only complete isolates (with all segments available), the proportion of 
data employed in this study would drop by 42.3% for H1N1, 10.1% 
for H7N9, and 31.7% for H5N1 -- before applying data quality filtering 
on the non-HA segments (as our analytical framework would require). 
While this choice can be considered a limitation, at the same time, it is 
an asset of our method, making it applicable to larger datasets and pos

ing the basis for lightweight methods that can be used for early warning 
systems [44]. Here, we do not claim that codon usage in HA is sufficient 
to completely infer host adaptation, but that it is sufficiently diagnos

tic to identify it -as also demonstrated by our results on H5N1 dataset 
(d3)- where a good level of agreement was observed between the results 
obtained from the analysis of HA in isolation and the complete genome 
sequence. Detailed analyses of each individual segments, and reconcilia

tion of the main findings, remain for future work. Further, we recognize 
that the RSCU metric can be insensitive to small changes in sequence 
composition. This was evident in the case of H7N9, where we had to 
manually identify an alternative number of clusters to discern the virus’ 
pathogenicity.

4. Conclusion

All in all, the approach discussed in this study holds significant 
promise for the development of novel strategies for the monitoring and 
tracking of major changes in IAV genomes and the development of or

thogonal tools for genomic surveillance of influenza viruses that could 
complement phylogenetic analyses and the clade-based nomenclature. 
Our findings indicate that, while sensitive to genetic variation, phyloge

netic analysis and the current lineage-based nomenclature of IAVs may 
be insensitive to (possibly) sparse but systematic changes in codon usage 
potentially associated with host adaptation. In this study, by interpo

lating our results with metadata describing contextual viral sequences 
information (e.g., at the time of collection, host type, date, location and 
at the time of classification, clade, pathogenicity), we derive patterns of 
diversification of genomic features that are not captured by the stand

ing clade-based classification. Groups defined by our approach provide 
a more fine-grained classification compared to the originally assigned 

lineages in the paradigmatic cases included in our analyses (enriched 
by the cases of H5N1 infecting wild birds and the recent B3.13 spillover 
– see Supplementary File) and facilitate a high-level comparison of ge

nomic features across a diverse range of influenza A serotypes, all linked 
with reported spillovers. Interestingly, a reduced number of codons and 
amino acids was sufficient to summarize salient features and recurrent 
patterns of codon usage throughout all the use cases, suggesting com

mon selective pressures.

In conclusion, our analyses highlighted the effectiveness of codon 
usage-based metrics for the stratification of influenza A viruses and for 
capturing impactful/important epidemiological events associated with 
recent spillovers. The analytical workflow developed in this study rep

resents a blueprint for future analyses aimed at the precise character

ization of groups of viral sequences based on codon usage metrics. As 
a natural extension of this work, we already started investigating how 
to embed the proposed diagnostic method within systematic scanners 
of continuously produced data to inform early warning systems [45]. 
Due to its general applicability, this approach could also be extended to 
other Influenza A serotypes for which genomic data are scarce and/or a 
reference nomenclature is not established.

5. Methods

Data source and preprocessing. We download viral influenza sequences 
from GISAID [18] (both data and metadata) using the filters available 
on the web portal to select the data of interest. Data downloaded from 
GISAID were processed according to this analytical workflow: removal 
of sequences with duplicate Isolate_ID and Virus_Name, unknown 
host or clade (when the information is essential for selecting the input 
data of the experiment); removal of sequences with length > ±3% dis

similar from the median value; annotation of the hemagglutinin coding 
sequence (CDS); and removal of sequences with incomplete/truncated 
CDS (i.e., when the length is not a multiple of 3). Specifically, we pro

duced five datasets with the following characteristics: 5782 H1N1 HA 
segments collected from Oct. 2006 to Sep. 2012 in North America (see 
first use case); 1882 H7N9 HA segments collected from Oct. 2010 to Dec. 
2019 (see second use case); 3475 H5N1 HA segments collected from 
2000 to May 2024 from domestic bird hosts (see third use case, dataset 
(d1)); 12021 H5N1 HA segments collected from 2000 to May 2024 from 
wild bird hosts (see dataset (d2), Supplementary File, Figs. S2-S4 and 
Tables S2-S4); 5243 H5N1 complete genomes collected from Sept. 2023 
to Mar. 2025 in North America (see dataset (d3), Supplementary File, 
Figs. S5-S8 and Tables S5-S7). For the analysis of complete genomes in 
H5N1, we concatenated the coding sequences (CDS) of all the 8 seg

ments of each isolate. While segments PB2, HA, NP, and NA contain 
only one CDS, the other 4 (PB1, PA, MP, and NS) contain two overlap

ping CDS; for those four segments, we considered only the longest CDS 
among the two to avoid double-counting the same codons while com

puting the RSCUs. On average, the extracted sequences were 12,676 nb 
long for each isolate.

Computation of RSCU. To measure the codon usage profile of indi

vidual viral sequences, we used Relative Synonymous Codon Usage 
(RSCU) [46]. This metric -- different from absolute counts or frequency 
ratios of codon usage -- allows for theoretical comparison between vi

ral species. The RSCU is an algebraic transformation of the codon fre

quency in a sequence and reflects the under/overexpression of a syn

onymous codon under the assumption of even usage. The equation 
𝑅𝑆𝐶𝑈 (𝑗) = (𝑋𝑖𝑗 )∕(

1 
𝑛𝑖

∑𝑛𝑖
𝑗=1𝑋𝑖𝑗 ) indicates the RSCU of the 𝑗𝑡ℎ codon, 

where 𝑋𝑖𝑗 is the frequency of incidence of the 𝑗𝑡ℎ codon encoding the 
𝑖𝑡ℎ amino acid and 𝑛𝑖 is the sum of synonymous codons that encode 
for the 𝑖𝑡ℎ amino acid. For every sequence, we computed RSCU values 
corresponding to the 59 non-synonymous codons, i.e., the 64 permuta

tions with repetitions of 4 nucleotides by 3 after removing 3 stop codons 
(TAA, TAG, TGA) and 2 non-synonymous codons (ATG, TGG). RSCU 
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values were subsequently analyzed through multiple algorithms and an

alytical approaches to identify potential clusters of sequences based on 
similar codon profiles.

Principal component analysis. We use the PCA as a dimensionality re

duction technique before using any clustering algorithm. This additional 
step helps to reduce the number of input features from the 59 RSCU 
values to less than 10 typically. PCA aims to identify a new set of un

correlated variables, the principal components (PCs), capturing the most 
significant source of variability in the input data. Each PC is a linear 
transformation of the feature vectors, with the first PC accounting for 
the maximum variance, followed by subsequent PCs explaining progres

sively less variation. To correctly parametrize the PCA, we perform a 
Scree Test [47]. The test consists of plotting the explained variance ra

tio of every PC in descending order (called the scree plot or ``elbow 
plot'') to identify the ``elbow'', i.e., the point at which the values seem 
to level off. The PCs at the left of the elbow are deemed the most signifi

cant ones. The input data can be plotted in the transformed space using 
any two PCs as axes.

Hierarchical agglomerative clustering. For a dataset of size 𝑛, the hierar

chical agglomerative clustering algorithm produces a variable number 
of clusters from 𝑛 to 1. This approach has the advantage of not requir

ing the number of clusters to be defined a priori. The agglomerative 
clustering algorithm initially assumes that each data point is a cluster 
itself. Then, two data points (or single-item clusters) are progressively 
merged into a cluster at each iteration. At every algorithm step, only the 
two data points leading to the minimum possible increase of the total 
within-cluster variance are clustered (see Ward’s method [48]). The al

gorithm terminates when only a single cluster is left. The intra-cluster 
distance (or cluster’s cohesion) is computed using the Euclidean dis

tance of the input PCs and shown on a dendrogram at each iteration. 
Therefore, the intra-cluster distance is 0 at the beginning of the algo

rithm, and maximum when at the end, i.e., when all the data points 
are part of the same cluster. The number of clusters depends on the set 
maximum inter-cluster distance threshold. The threshold evaluation is 
subjective, but generally, long branches indicate different clusters, while 
short branches correspond to clusters that can be easily considered as 
one. Hierarchical clustering is used here to identify a range for an ap

propriate number of well-separated clusters.

K-means clustering. The k-means clustering algorithm is used to create 
the final clusters and label the data. The k-means clustering algorithm 
assumes that the number of clusters is known a priori and creates a 
corresponding number of randomly generated centroids, i.e., cluster rep

resentatives. At every iteration, the distance between the centroids and 
all the other points is computed, the closest point to a centroid is merged 
with the respective cluster, and the centroids are updated until all the 
points are assigned. We run k-means once for every number of clusters 
in the range of plausible cluster numbers identified through hierarchical 
clustering.

Cluster evaluation. Using the hierarchical clustering algorithm, we com

pute a dendrogram that suggests the range of potentially correct num

bers of clusters. We search for the final number of clusters in this range 
by running k-means once for every value in the aforementioned range 
and evaluating the goodness of the clusters. Among simple evaluation 
metrics for validating the clusters, we consider the within-cluster sum of 
squares (WCSS) and the between-cluster sum of squares (BCSS). The for

mer is the sum of squared Euclidean distances between the data points 
and their respective cluster centroids; the latter is the sum of squared 
Euclidean distances between each cluster centroid and the overall data 
centroid, weighted by the cluster’s size. In our case, the goodness of the 
clusters is evaluated using two metrics:

• the Calinski-Harabasz score [23] derives from the ratio of the BCSS 
and the WCSS, normalized by their respective degrees of freedom. 
Ideally, a good clustering is made of well-separated (high BCSS) 
and compact clusters (low WCSS), therefore, corresponding to a 
high Calinski-Harabasz score.

• the Silhouette score [24] still compares intra-cluster similarity and 
inter-cluster distance, but using slightly different formulae. For a 
single data point, it measures how well it fits into the assigned clus

ter compared to other clusters. For the entire dataset, it is the av

erage of all scores. This value ranges from -1 (i.e., low intra-cluster 
cohesion and low inter-cluster distance) to 1 (i.e., high intra-cluster 
cohesion and high inter-cluster distance). As a rule of thumb, a 
clustering is considered ``strong'' with a Silhouette score > 0.7; ``rea

sonable'' if > 0.5; weak otherwise.

In essence, these measures correspond to a tradeoff between the simi

larity of the data points within each cluster and the dissimilarity of the 
data points belonging to different clusters. They both provide a far better 
evaluation metric than using the simple WCSS and BCSS on their own be

cause, for example, high intra-cluster similarity is achievable also with 
partially overlapping clusters. Secondly, these are both internal evalua

tion metrics -- meaning that no external knowledge is required to assess 
the quality of the clustering -- which is a desirable property as, often

times, no ground truth labels are available for comparison.

Finally, we repeat the assessment procedure 10 times for each num

ber of clusters (10-fold evaluation) to average the scores and mitigate 
the dependency from the random initialization of the cluster centroids 
in k-means.

Identification of the most important codons. Salient features of every clus

ter need to be characterized in order to derive the most relevant changes 
in codon usage between the different groups. This could be done by 
simply averaging the RSCUs of the sequences in each cluster. However, 
we reasoned that comparing 59 features across several clusters might 
not provide an ideal/easy-to-interpret representation of the most impor

tant differences in codon usage. To determine only the most important 
RSCUs for the delineation of clusters we use a multinomial linear classi

fier. A multinomial classifier combines the output prediction of multiple 
binary classification models using the softmax function to return the 
predicted group. Each binary model learns a vector of weights that, 
multiplied by the RSCUs of a sequence 𝑖, returns the likelihoods of 𝑖
to be included in one of the clusters. The model is typically built by 
considering only a subset of the available data, typically 80%, and its 
fitness is measured on the remaining 20% of the data. Then, the vectors 
of weights are extracted from each binary model. Since the classifier is 
multinomial, we build an aggregated vector of ``impact-scores'' as the 
sum of the absolute weights of each model, weighted by the standard 
deviation of the input. A Scree Test on the impact-scores vector returns 
the subset of the most important codons for the classification task. To 
compare the typical RSCUs of such codons in different clusters, we com

pute a matrix of histograms whose columns correspond to the important 
codons, and rows correspond to the clusters. The plot allows us to effec

tively characterize a cluster of sequences using only the RSCUs of a few 
codons.

Software implementation. The data source and processing stage was im

plemented using Python 3.10.12 and the software libraries Pandas 2.2.1 
and Numpy 1.26. The computation of RSCUs was implemented purely 
in Python, without external libraries. The Scikit-Learn 1.3.0 library was 
used for the algorithms of PCA, hierarchical clustering, and k-means 
clustering, for evaluating cluster centroids, euclidean distance, and Sil

houette score, and for the classification task. All plots have been gen

erated using Plotly 5.17.0, except for the dendrogram (with Matplolib 
3.8.0).
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Protein sequence alignment and sequence logo. We computed a global 
multiple sequence alignment of the conceptual translation of the HA 
CDS for all the 11139 sequences included in our analyses (H1N1, H7N9, 
H5N1 domestic birds) was computed with muscle [49], using default 
parameters. Alignments were visualized in seaview [50] and sequence 
logos were computed with WebLogo [51].
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Appendix A. Supplementary material

In the Supplementary File, we provide figures and tables for addi

tional analyses to complement the results in the main manuscript.

Supplementary material related to this article can be found online at 
https://doi.org/10.1016/j.csbj.2025.06.030. 

Data availability

The findings of this study are based on metadata associated with 
three sets of sequences available on GISAID up to 2024/05/10 H1N1 
(gisaid.org/EPI_SET_250319su), H7N9 (gisaid.org/EPI_SET_250319ms), 
and H5N1 (gisaid.org/EPI_SET_250616yr, gisaid.org/EPI_SET_250616ms, 
and gisaid.org/EPI_SET_250616nx); the notebooks used for computa

tions are made available in the Zenodo repository https://doi.org/10.

5281/zenodo.14561947 [19].
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